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Dynamics of beating cardiac tissue under slow periodic drives
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Effects of mechanical coupling on cardiac dynamics are studied by monitoring the beating dynamics of a
cardiac tissue which is being pulled periodically at a pace slower than its intrinsic beating rate. The tissue is
taken from the heart of a bullfrog that includes pacemaker cells. The cardiac tissue beats spontaneously with an
almost constant interbeat interval (IBI) when there is no external forcing. On the other hand, the IBI is observed
to vary significantly under an external periodic drive. Interestingly, when the period of the external drive is about
two times the intrinsic IBI of the tissue without pulling, the IBI as a function of time exhibits a wave packet
structure. Our experimental results can be understood theoretically by a phase-coupled model under external
driving. In particular, the theoretical prediction of the wave-packet period as a function of the normalized driving
period agrees excellently with the observations. Furthermore, the cardiac mechanical coupling constant can be
extracted from the experimental data from our model and is found to be insensitive to the external driving period.
Implications of our results on cardiac physiology are also discussed.
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I. INTRODUCTION

It is well known that our hearts do not beat with a constant
rate and its variability known as heart rate variability (HRV)
has long been investigated for both its clinical significance [1]
and fundamental mechanism [2]. HRV is measured by the
fluctuations in the interbeat interval (IBI) in time, and is
an important physiological indicator. A low HRV often is a
predictor of mortality after myocardial infarction and often
correlated to other cardiac related diseases such as congestive
heart failure, postcardiac transplant, susceptibility to sudden
infant death syndrome and poor survival in premature babies.
It is generally believed that HRV reflects the physiological
state of our nervous control system and therefore can be used
as an index of our health. With this picture, a high HRV
signifies a high complexity or flexibility in our nervous control
system and therefore indicates a state of well-being of our
health. For example, a patient in an intensive care unit has
a very small HRV even if the heart can beat on its own,
whereas meditation [3] can supposedly enhance one’s HRV
and therefore health. In recent years, continuous monitoring
of HRV by wearable electronic devices is a common health
biomarker. Hence a deeper understanding of the IBI cardiac
dynamics would be important for both the fundamental phys-
iological HRV dynamics and for medical purposes. HRV is
closely related to a phenomenon known as RSA (respiration
sinus arrhythmia) [4] in which our heart rate increases during
inhalation and vice versa. The mechanism of RSA is still not
clear but it is generally believed that it is through the activa-
tion and deactivation of the sympathetic and parasympathetic
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nerve system [5] through our respiration that modulates the
heart rate. However, there is another effect of respiration on
cardiac beating, namely the periodic mechanical stress created
in our chest. For example, the respiration of a pregnant woman
might provide the common drive for modulating her and the
fetus’s heart rates through mechanical stresses [6].

On the tissue level, the pacemaking of a heart beat orig-
inates from the sinus atrial node (SAN) [7]. Interestingly,
the SAN is not a well defined organ, but is a cluster of
cardiac myocytes (CMs) and fibroblasts (FBs). A CM is an
electrically excitable cell which is responsible for mechanical
contraction of the heart. A FB is not electrically excitable
but is known for its mechanical sensitivity [8]. However,
it is still not clear what is the function of the mechanical
sensitivity of the FB although it is known that coupling among
CMs and FBs can regulate the beating frequencies of the
cardiac tissue [9]. In a normal functioning heart, the beating
is generated from the SAN controlled by parasympathetic
and sympathetic nerves. However, the SAN is an oscillatory
medium and it can still generate its own beat as in the case
of an isolated heart preparation where all nerves connected to
the heart are severed. Although HRV dynamics is regulated by
various other physiological systems such as the sympathetic
and parasympathetic nerves, blood pressure, etc., HRV still
persists in isolated hearts [10] which presumably is due to
intrinsic intracardiac factors that affect the cardiac rhythm.
One possible origin of the HRV in an isolated heart is that
there is a feedback from the FB to the pacemaking dynamics
of the SAN modulated by the mechanical stress experienced
by the FB in the SAN.

From another perspective, it was known that cardiac mas-
sage could revive sudden circulatory arrests since the early
20th century [11]. Such a first-aid procedure not only can
help blood pumping and prevent the brain from hypoxia, it

2470-0045/2020/101(1)/012201(8) 012201-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3236-5675
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.012201&domain=pdf&date_stamp=2020-01-03
https://doi.org/10.1103/PhysRevE.101.012201


CHOU, CHIANG, CHAN, AND LAI PHYSICAL REVIEW E 101, 012201 (2020)

also enhances heart rate regulations [12] that involve possible
mechanoelectric feedback processes, in which the mechanical
stimulus is transduced into an electrical signal [13,14] and
in turn revives the cardiac system to beat normally. The
contractile force of the intact natural heart tissue depends
on the species; it is around few tens mN/mm2 [15,16] for
mammals such as human, rabbit, and rats, and is around a
few mN/mm2 for frogs [17]. For those engineered cardiac
tissues, such as those employing iPSC technology, the force
is an order of magnitude smaller [18]. Thus it is of interest
to investigate the effects of external stretching forces with
comparable magnitudes on the beating dynamics. Studies
have been focused on the stretch response in different levels;
in vivo [19], tissue level [20], and single cell level [21,22], the
effects of stretching on the diastolic depolarization rate, beat-
ing rate, and the value of maximal systolic potential [23,24]
were investigated. On the cellular level, several processes are
involved in response to the stretching of cardiac cells, such as
integrin binding on cell surface followed by signal trigger and
cation flow induced by stretched-activated channel. Experi-
ments on cardiac cells under periodic electrical stimulus have
been performed [25] focusing on the phase-locking between
external stimulus and cardiac cell, and period-doubling of
beating rates were observed and analyzed theoretically by
using a phase variable in a circle map.

In this work, we focus on the dynamical response of
cardiac tissue under external cyclic pulling, and aim to un-
derstand the dynamics of beating, interbeat interval (IBI),
under different driving periods by employing a phase-coupled
model. We find that the dynamics of IBI under suitable peri-
odic pulling is in the form of a “wave packet,” with the period
of the wave packet (Twp) being a function of the external
driving period (Tdrive). A remarkable feature is that Twp seems
to be maximal when Tdrive ∼ 2T0 where T0 is the intrinsic
beating period of the cardiac tissue. A phase model, with
the key parameter being the coupling constant (K) between
the phases of beating and external pulling, is then developed
which can quantitatively describe our experimental findings
well. In addition, the amplitude of the wave packet is found
to be related to K , thus allowing the extraction of K from
experimental IBI time-series data.

II. EXPERIMENTAL METHOD

The schematic of the experiment is shown in Fig. 1(a).
Samples of beating sinus venosus (typical size ≈5 mm ×
10 mm) are dissected from bullfrogs. The sample is fixed at
one end on a PDMS substrate in a Petri dish by two electrodes
(200 μm in diameter and about 1 mm apart) made from insect
pins. The other end of the sample is tied to a string which is
connected to servomotor. During the experiment, the sample
is kept at room temperature and perfused continuously with
the Ringer solution (6 g NaCl, 0.2 g Na2SO4, 0.2 g KCl,
and 0.2 g CaCl2 in 1000 ml of water). The sample can be
pulled by the servomotor controlled by a computer while
the beatings of the sample are monitored by measuring the
local-field potentials obtained from the electrodes. The pulling
force is measured by the extension of the spring monitored
by a charge-coupled device camera. The stretching force we
employed in the experiments is comparable to the contractile
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FIG. 1. (a) Schematic experimental setup. (b) Top: Time course
of measured local field of potential acquired by the electrodes (blue
curve showing 21 beats) from which the interbeating-interval (IBI)
is determined. Shaded regions show the periods during which the
stretching force is acting on the tissue. Bottom: Time course of the
20 IBIs determined from (a). The insets show the time course of a
whole experiment. Periodic stretching force is applied from 60 to
460 s as indicated by arrows. Note that there is a systematic slight
increase in IBI due to aging of the sample.

force of the cardiac tissue in order to achieve a non-negligible
effect. The typical magnitudes of the stretching force on the
cardiac tissue used in the experiment are around few tens to
hundreds mN. With the setup described above, the sample
can beat for at least 24 h with a systematic increase in IBI
because of aging of the sample in vitro. Figure 1(b) shows
a typical time course of the electrical signals obtained from
the electrodes for a pulling experiment. These signals are first
amplified (model 1700, A-M Systems, USA) with a low-pass
filter (500 Hz) and then recorded by a digital data acquisition
system NI-6221 (National Instruments, USA) which was con-
trolled by PowerGraph Professional software (version 3.3.7,
Russia) with a 4-kHz sampling rate. The peak locations of
the recorded local-field potentials can be determined with
a precision of 0.25 ms and therefore the interbeat intervals
(IBIs) can be determined with a precision of 0.5 ms. The de-
termined IBI is shown in the bottom panel in Fig. 1(b). Before
the start of a pulling experiment, the intrinsic IBI (without
pulling) of the sample is monitored for at least 15 min to make
sure the sample is adapted to the in vitro environment with
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FIG. 2. Time course of IBI for cardiac tissue under external
driving of period Tdrive. (a) Very slow driving period with Tdrive = 8 s.
The IBIs basically follow the external driving. (b) For Tdrive of the
order of twice the intrinsic beating period, the wave-packet pattern
appears. The instantaneous intrinsic beating period (T0) of the cardiac
tissue is obtained by averaging the interbeat intervals over one
wave packet.

an almost constant intrinsic IBI. In the experiments reported
below, the duration for each pulling experiment trial is 600 s;
periodic stretching is applied between the 60th second and the
460th second.

III. EXPERIMENTAL RESULTS

It is convenient to describe the time course of the beating
dynamics in terms of the beat number n. The nth beat is
defined as the nth peak voltage measured which occurs at time
Tn. The nth IBI is then defined as the difference between two
consecutive beating times Tn+1 − Tn. By applying a periodic
stretching, the beating cardiac tissue responds to the external
driving by changing its IBIs. For very slow driving periods,
the IBIs show modulations that follow the external driving as
shown in Fig. 2(a). Notice again that there is a systematic drift
in the IBI oscillations, presumably due to the slow aging of the
cardiac tissue. Remarkably, for driving with Tdrive of the order
twice that of the intrinsic beating period, the IBIs display a
wave-packet pattern as shown in Fig. 2(b). Each wave packet
basically consists of alternating high and low values of IBIs,
i.e., IBI alternans, with the amplitude being modulated by a
slow wave-packet period (Twp). When the external stretching
period is varied, different periods of wave packet are observed
as displayed in Fig. 3. Interestingly, the period of wave packet
changes nonmonotonically with the driving period, and Twp is
largest when the stretching period is close to two times the
intrinsic beating period.

To quantify the wave-packet pattern, the period of wave
packet is measured for different external driving periods.
Since the mean IBI for each wave packet is not stationary,
a temporal average IBI is measured within a wave packet
(denoted by T0) and regarded as the (instantaneous) intrinsic
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FIG. 3. Time course of the interbeat intervals obtained from
local-field potential of the same cardiac tissue under different ex-
ternal stretching periods. The wave-packet period varies with the
stretching period nonmonotonically.

beating period of the wave packet. The amplitude of the wave
packet, denoted by A, is also measured for each wave packet
from the maximal magnitude of IBI deviated from the mean
IBI within the wave packet [see Fig. 2(b)]. The periods of
the wave packets under different driving periods are measured
and the results are displayed in Fig. 4. For a given external
driving frequency, one can obtain a set of data with a range
of values of Tdrive/T0 depending on how much the intrinsic
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FIG. 4. The wave packet periods(Twp) obtained from experimen-
tal data of the IBI dynamics, plotted against the ratio of the driving
period to the intrinsic beating period. The intrinsic heart beating
rate is nonstationary and drifts with time, thus the intrinsic period
(T0) is temporally defined within one period of wave packet. All the
data for Twp collapse into a master curve that depends on the ratio
of Tdrive/T0 and diverges at Tdrive/T0 = 2. The dashed curve is the
analytic formula from (8) showing excellent agreement.
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FIG. 5. Interbeat interval (Bn), in unit of the intrinsic beating period T0 = 2π

ω
, as a function of beat number obtained by Tn+1 − Tn, where

Tn are the successive roots found in Eq. (4). Coupling constant K
ω

= 0.1. (a) ω/� = 6.6 and (b) ω/� = 2.2.

beating period drifts. Figure 4 shows the experimental results
of the measured Twp (in units of beats) plotted as a function
of Tdrive/T0 for various driving periods. Remarkably all the
data collapse into a master curve and the wave-packet period
appears to diverge at Tdrive/T0 ≈ 2. and appears to be inde-
pendent of the mechanical coupling between the tissue and
the external driving, since the data are from different animals.
The divergence of Twp near Tdrive/T0 � 2 simply indicates a
pure (unmodulated) IBI alternans state of alternating high and
low IBIs.

IV. PHASE MODEL FOR CARDIAC TISSUE UNDER
PERIODIC FORCING

In order to understand theoretically the experimental re-
sults, we employ a phase model to describe the response of
the beating dynamics of the cardiac tissue under an external
periodical mechanical stretching. Denote the phase and the
intrinsic frequency (i.e., under no external forcing) of the
beating tissue by φ(t ) and ω respectively; the tissue is phase-
coupled to the external driving oscillator of frequency �, and
the dynamics is governed by the following equations:

φ̇ = ω + K sin(� − φ), �̇ = �, (1)

where K > 0 is the coupling constant and � is the phase of
the external periodic device that provides the stretching. The
dynamics of this system can be better understood in terms
of the phase difference, ψ (t ) ≡ φ(t ) − �t , and (1) can be
reduced to

ψ̇ (t ) = ω − � − K sin ψ. (2)

It is convenient to define the dimensionless coupling
K̃ ≡ K

ω−�
for further theoretical analysis. It should be noted

that (1) is the same as the firefly entrainment model [26] for
the synchronization of an oscillator under external periodic
drive. For |K̃| > 1, entrainment can be achieved with the
existence of stable fixed point and the oscillator is phase-
locked with the external drive with ψ = sin−1(K̃−1). For �

near ω, the cardiac tissue lies in the entrainment regime
and will simply follow a compromised frequency that lies
between ω and �. However, as will be shown in next section,
the coupling is small (K � ω) for this cardiac system, the
entrainment regime is very narrow. Here we focus on the

much less studied oscillatory phase drift behavior for the
asynchronized dynamics, and in particular on the situation of
slow driving with � < ω and the weak-coupling regime of
0 < K̃ < 1. ψ (t ) in (2) can be integrated analytically to give

tan
ψ (t )

2
= K̃ +

√
1 − K̃2

tan
[√

1−K̃2

2 (ω − �)t
] − β

1 + β tan
[√

1−K̃2

2 (ω − �)t
] ,

(3)

where β is a constant determined by the initial condition.
For ψ (0) = 0, β = K̃√

1−K̃2
. Define Tn as the time for the nth

beat to occur, and the origin of φ can be chosen such that
φ(Tn) = 2nπ , then at t = Tn, ψ (Tn) ≡ ψn = 2nπ − �Tn,
and (3) can be reduced to (see Appendix A for a detailed
derivation)

tan
�Tn

2
+ K̃ +

√
1 − K̃2

tan
[√

1−K̃2

2 (ω − �)Tn
] − β

1 + β tan
[√

1−K̃2

2 (ω − �)Tn
] = 0.

(4)

Tn can be obtained from the roots of the transcendental
equation (4). The nth IBI (denoted by Bn) is then given by
Tn+1 − Tn. The roots of the transcendental equation (4) are
obtained numerically and the time course of Bn is shown
in Fig. 5 for two driving frequencies. For very slow driving
frequency (ω/� = 6.6), the IBI variation simply follows the
slow driving frequency, agreeing with experimental observa-
tions, as shown in Fig. 5(a). On the other hand, Bn displays the
characteristic wave-packet structure similar to experimental
observation when � is of the order of ω/2 [Fig. 5(b)].

In order to gain a deeper connection between the theoret-
ical model and the experimental data, we derive an explicit
analytic formula for Bn using systematic expansion in powers
of K̃ (details of the derivation are shown in Appendix B). To
first order in K̃ , we obtain the formula

Bn ≈ 2π

ω
+ 2K̃

ω
sin

(
�π

ω

)
sin

[
�

ω
(2n + 1)π

]
+ O(K̃2).

(5)
One can see clearly that even under the first-order ap-
proximation of K , Bn fluctuates about 2π/ω with an
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pling (in unit of �, symbols) obtained by measuring the amplitude of
the wave packet in numerical solution [using (1)] for given K (also in
unit of �). The dashed line indicates the y = x line is a guide to the
eyes. Coupling constant K can be accurately extracted for low values
of K/� up to K/� ∼ 0.4.

amplitude of 2K̃
ω

sin �π
ω

modulated by the sin [�
ω

(2n + 1)π ]
term. Therefore, by measuring the amplitude (denoted by A)
of the wave packets of the IBIs [see Fig. 2(b)], the coupling
constant K can be inferred using

K = A

2

ω(ω − �)

sin
(

�
ω
π

) . (6)

To find out the range of validity of the above extraction of
K from the time course of Bn via Eq. (6), we first generate
the time-series data of Bn for some fixed value of K from the
numerical solution of (1) to produce the wave packets, then the
amplitude of the wave packets is measured to give an extracted
value of K (Kpredicted) from (6). The extracted Kpredicted is then
compared with the known K and the results are shown in
Fig. 6; the agreement is very good for low values of K up to
K/� ∼ 0.4. Thus for small mechanical couplings, the first-

order approximation in (5) would allow accurate extraction
of the coupling constant between the external driving and the
cardiac tissue from experimental data. Figure 7(a) displays
the experimentally extracted coupling constants K via Eq. (6)
by measuring the amplitudes of the wave packets for cardiac
tissues from five different samples as a function of the external
driving period. The inferred K (in units of s−1) values show
some scattering but in general the couplings are small and
insensitive to the external driving period, justifying the use
of expansion to first order in K̃ in (5). We further perform
experiments on the same cardiac tissue and with periodic
stretching of two different force magnitudes. The extracted
K is shown as a function of Tdrive in Fig. 7(b), showing
the coupling constant is also insensitive to the magnitude
of force, thus justifying the use of a phase model as our
theoretical basis.

In order to show that our model is capable of describing
the detailed dynamical behavior quantitatively in the cardiac
tissue of sinus venosus in a bullfrog, we derive an analytic
result to account for the universal feature of the wave-packet
periods shown in Fig. 4, and the divergence at Tdrive/T0 ≈ 2.
From (5), the oscillating term can be rewritten to give

sin

[
�

ω
(2n + 1)π

]
= (−1)n cos

[
(2n + 1)π

(
�

ω
− 1

2

)]
,

(7)

revealing that the alternating term (−1)n is being modulated
with a “wave-packet” period of (in unit of beat number)

Twp = ω

�

1∣∣2 − ω
�

∣∣ . (8)

Twp → ∞ simply means that the IBIs alternate between a high
and a low value, i.e., a pure IBI alternans state. In fact, it can
shown that Twp diverges at ω = 2� even if higher orders in K̃
are included in the calculations.

V. SUMMARY AND DISCUSSION

In this paper, the dynamical response of a beating tissue
of sinus venosus from a bullfrog under periodic stretch-
ing with different periods is measured experimentally. By
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FIG. 7. Extracted coupling strength from Eq. (6). By measuring the amplitudes of the wave packets, coupling strengths between tissue and
external driving are extracted from experimental data through Eq. (6). (a) Inferred coupling strengths (in unit of s−1) as a function of driving
period, for five different tissue samples. (b) Inferred coupling constant under two different force magnitudes on the same tissue. F1 � 0.062N
and F2 � 0.112N .
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applying a periodic stretch on cardiac tissue, IBIs are imme-
diately modified. A wave-packet structure is observed under a
suitable driving period. We then develop a theoretical model
to understand this interesting phenomenon. By utilizing a
phase model to describe the dynamics of the cardiac tis-
sue coupled to the external periodic driving, our model can
produce very well the empirical observations. Furthermore,
the analytical results from the model enable us to extract
the effective coupling between the cardiac tissue and ex-
ternal forcing from experimental measurements of the IBI
time courses. It is found that the measured values of the
coupling constant are rather robust for cardiac tissues from
different samples, and are insensitive to the external driving
frequencies and stretching force strengths. The variation of
IBIs form a wave-packet pattern when Tdrive is of the or-
der of twice the intrinsic beating period T0, and the wave-
packet period Twp appears to diverge at Tdrive/T0 = 2. Such
Twp variation is universal in the sense that the data of the
wave-packet periods under different Tdrive all collapse to a
universal curve as a function of Tdrive/T0, and is well de-
scribed by the analytic formula (8). On the theoretical side,
by solving the roots in the transcendental equation derived
from the phase model, the beating times are obtained which
in turn gives the IBI dynamics. The theoretical IBIs show
wave-packet patterns agreeing with experiment observations.
In addition, the amplitude and period of the wave packets are
derived analytically by systematic expansion in the coupling,
which enable the experimental extraction of the coupling K
conveniently.

One would like to explore possible mechanisms of how
mechanical stretching can immediately modulate the dynam-
ics of a cardiac tissue, which is probed in this study by a
periodical stretching. One possible cellular mechanism is that
the periodic stretching activates the stretch-activated channels
and hence induces cyclic ion currents. This can be interpreted
on the cellular level as the periodic stretching on cardiac tissue
inducing cyclic electrical stimuli which in turn regulate the
beating dynamics of the cardiac tissue. Since a phase model
of circle map has been employed successfully to account for
cardiac cells under cyclic electrical stimuli [27,28], the use
of the phase model coupled to an external driving in (1) is
justified to describe the dynamical response of the tissue under
periodic forcing.

Our experimental results indicated that the HRV can be
modulated by external periodic mechanical forcing that acts
on the tissue level, and hence can provide a convenient
means to regulate the cardiac dynamics. Furthermore, cou-
pling strength K can be extracted accurately and conveniently
from the amplitude of the IBI wave packet with the analytical
derived expression (6). The extracted coupling strengths ob-
tained under different stretching periods and for different tis-
sue samples are found to be relatively weak and the values are
rather robust for different tissue samples. Since the amplitude
of the wave packet is a measure for the HRV, our theoretical
result (6) indicates that a better mechanical coupling can
result in higher HRV, and hence a better cardiac physiological
condition. Thus our result suggests that on the tissue level,
a better mechanical coupling with external stimulus reflects
a better cardiac health condition, agreeing with our common
belief.

In fact, the detailed biochemical process in cardiac pace-
maker consists of two clocks: they are the membrane clock
(induced by ion channels on the membrane) and the calcium
clock [periodic release of calcium by sarcoplasmic reticu-
lum (SR)], respectively. The calcium released by SR affects
directly the membrane clock whereas the influx of calcium
through the ion channel on the membrane controls the avail-
ability of calcium for SR pumping which in turn affects the
calcium clock. These two clocks interact and cross talk with
each other, and hence a cardiac pacemaker can be viewed as
two coupled oscillators [22,29]. In the present study, we have
successfully utilized a phase coupled oscillator system to de-
scribe a tissue driven by cyclic external stretch. Presumably, in
our experiment, we perturb the membrane clock by stretching
which deforms the membrane and activates hyperpolarization-
activated cyclic nucleotide-gated channel and various L-type
and T -type Ca2+ channels; as a result the RyR opening
probability of the calcium clock is regulated. However, more
detailed experiments need to be carried out to confirm this
picture. Detailed ionic current information by patch-clamp
experiments would be ideal to reveal the intracellular transport
and the coupling between the two clocks, however it in
practice is highly challenging to perform precise patch-clamp
measurements for autonomous beating tissues and at the same
time under external stretching of large deformations. On the
other hand, our present method of measuring the IBI dynamics
is very robust and can reveal various interesting dynamics
resulting from the regulation from external stretching. Here
by directly applying mechanical forces on the cardiac tissue,
our results suggest a possible mechanism that the periodic
stretching induces cyclic ion current and therefore affects the
cardiac beating dynamics. The empirical coupling strength
between external force and tissue can be deduced from our
analytic results, providing additional insight on the entrained
cardiac tissue beyond previous studies.
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APPENDIX A: DERIVATION OF EQ. (4)

By integrating Eq. (2), we obtain

tan
ψ (t )

2
= K̃ +

√
1 − K̃2 tan

[√
1 − K̃2

2
(ω − �)(t − t0)

]
.

(A1)

Here K̃ ≡ K
ω−�

, t0 is the constant determined by the initial
condition. By applying the initial condition that ψ (0) = 0,
Eq. (A1) gives

tan

[√
1 − K̃2

2
(ω − �)t0

]
= K̃√

1 − K̃2

= K√
(ω − �)2 − K2

≡ β. (A2)
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Next, we will show that the cardiac beating time can be
obtained by finding the roots in a transcendental equation and
therefore interbeat intervals. Using the identity tan(A − B) =
(tan A − tan B)/(1 + tan A tan B), Eq. (A1) can be rewritten as

tan
ψ (t )

2
= K̃ +

√
1 − K̃2

tan
[√

1−K̃2

2 (ω − �)t
] − β

1 + β tan
[√

1−K̃2

2 (ω − �)t
] .

(A3)

Define Tn as the time for the phase φ to be at of 2nπ , i.e.,
φ(Tn) = 2nπ , then t = Tn, ψ (Tn) ≡ ψn = 2nπ − �Tn, and
hence Eq. (A3) gives

− tan
�Tn

2
= K̃ +

√
1 − K̃2

tan
[√

1−K̃2

2 (ω − �)Tn
] − β

1 + β tan
[√

1−K̃2

2 (ω − �)Tn
] ,

(A4)

which in turn gives Eq. (4).

APPENDIX B: EXPANSION OF Bn IN POWERS OF K̃:
DERIVATION OF EQ. (5)

Analytical explicit formula of the IBI can be obtained by
systematic expansion in powers of K̃ outlined as follows. For
small K̃ , one can expand the beating times Tn in powers of K̃

and write

Tn � α(0)
n + α(1)

n K̃ + α(2)
n K̃2 + · · · . (B1)

Substitute into the transcendental equation (3), equating the
coefficients of different powers of K̃ gives the equations for
α(0)

n , α(1)
n , α(2)

n , . . . . For instance,

O(K̃0) : tan
α(0)

n

2
+ tan

[( ω

�
− 1

)α(0)
n

2

]
= 0 (B2)

⇒ α(0)
n = 2nπ�

ω
, (B3)

O(K̃1) :
α(1)

n

2
s2 α(0)

n

2
+ 1

+
(

α(1)
n

2

( ω

�
− 1

))
s2

[( ω

�
− 1

)α(0)
n

2

]
= 0 (B4)

using (B3) ⇒ α(1)
n = 2�

ω
sin2 α(0)

n

2
= 2�

ω
sin2 nπ�

ω
.

(B5)

Since Bn = Tn+1 − Tn, we have

Bn = 2π

ω
+ 2K̃

ω
sin

(
�π

ω

)
sin

[
�

ω
(2n + 1)π

]
+ O(K̃2).
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