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Two-dimensional telegraphic processes and their fractional generalizations
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We study the planar motion of telegraphic processes. We derive the two-dimensional telegrapher’s equation for
isotropic and uniform motions starting from a random walk model which is the two-dimensional version of the
multistate random walk with a continuum number of states representing the spatial directions. We generalize the
isotropic model and the telegrapher’s equation to include planar fractional motions. Earlier, we worked with
the one-dimensional version [Masoliver, Phys. Rev. E 93, 052107 (2016)] and derived the three-dimensional
version [Masoliver, Phys. Rev. E 96, 022101 (2017)]. An important lesson is that we cannot obtain the two-
dimensional version from the three-dimensional or the one-dimensional one from the two-dimensional result.
Each dimension must be approached starting from an appropriate random walk model for that dimension.
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I. INTRODUCTION

Telegraphic processes generalize diffusion processes in
two ways: (i) They allow for a finite velocity whereas dif-
fusion processes are instantaneous at all points in space,
implying an infinite speed. This is contrary to the principles of
relativity and unsatisfactory from a conceptual point of view.
(ii) Telegraphic processes are nearly deterministic (ballistic)
in any direction at short times, whereas, at long times, they
are diffusive. This characteristic is very useful, for instance,
when modeling transport phenomena where thermalization
due to random collisions takes a measurable time and the
flux of ballistic particles may not be negligible, all of it
resulting in anisotropic scattering along the forward direction
[1]. For the same reason, telegraphic processes are useful in
the description of early-time effects when ballistic motion
may be important as is the case near interfaces.

As a first approximation, telegraphic processes can be
described by the telegrapher’s equation (TE), which can be
written as
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Here, p = p(r, t|rp) is the probability density function for the
process to be at r at time ¢ having started at ry at t =0,
T > 0 is a characteristic time, and v > 0 is a characteristic
speed. From a mathematical point of view, this is a hyperbolic
equation which, as t — oo with v fixed, becomes the wave
equation,
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whereas as T — 0 and v — oo such that v>T — D is finite it
reduces to the diffusion equation,
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Equation (1), thus, possesses wave and diffusion features, and
it describes “diffusion with finite propagation velocity” but
also “wave motion with damping” [2].

The TE first appeared in the nineteenth century in the
works of Kelvin and of Heaviside related to the analysis of
transmission of electromagnetic waves in telegraphic wires.
In this context, the three-dimensional telegrapher’s equation
can be derived directly by combining Maxwell’s equations for
homogeneous media [1,2]. It can also be phenomenologically
derived from thermodynamics by using Cattaneo’s equation,
a nonlocal generalization of Fick’s law accounting for non-
instantaneous diffusions [3-5], and from random walk theory
where the one-dimensional TE is the master equation of the
persistent random walk [6-8] (see also Ref. [9] for a fractional
version of the one-dimensional TE and Ref. [10] for a recent
three-dimensional generalization).

From a mesoscopic point of view (somewhere between the
microscopic view of random walk models and the macro-
scopic approach of thermodynamics) telegraphic processes
are closely related to Brownian motion. As was studied
some years ago in Refs. [11-13], the telegrapher’s equation,
like the diffusion equation, can also be derived from the
Chapman-Kolmogorov equation, which is the master equation
for Markovian processes.

In the context of transport theory, the three-dimensional
TE is the so-called P; approximation to the full transport
equation for which the basic assumption is that the change
in the direction of motion due to a single scattering event
is small [1,14-16]. In a more recent approach [17], a three-
dimensional TE model is obtained by a modification of the
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continuity equation for the probability current. The model
is, however, limited to a discrete number of transport direc-
tions, which restricts possible applications. Other approaches
suppose phenomenological generalizations where a three-
dimensional TE is postulated for uniform isotropic media
by assuming the same form as the one-dimensional TE but
with numerical corrections in the coefficients which guarantee
correct ballistic (¢ — 0) and diffusive (f — o0) behaviors in
three dimensions [18-20]. The more fundamental and less
phenomenological way of describing telegraphic processes
is, however, based on random walk models since they try to
reproduce the microscopic mechanism of transport.

Random walk models for describing telegraphic processes
are modifications of the ordinary random walk because the
latter for long times and long distances (i.e., the so-called
“fluid limit” [21]) lead to the diffusion equation but not to
the telegrapher’s equation [1,2,22]. However, and contrary to
one dimension where the TE is readily obtained from the
persistent random walk on the line [1,6,7], in higher dimen-
sions obtaining the TE from microscopic models encounters
serious difficulties. The main reason lies in the difficulty
of generalizing persistence in dimensions greater than one
[23-29].

We have recently solved this problem by obtaining the
three-dimensional TE from a random walk model [10]. The
model—a generalization of the persistent random walk in
three dimensions—consists of a continuous version of a three-
dimensional random walk with a continuum of states [10].
However, the TE obtained is only valid for three dimensions
and not for any other number of dimensions greater than one.
Since dimensions other than three, especially bidimensional
problems, are also important in many practical applications,
we will herein obtain the two-dimensional TE from a planar
random walk model.

There are several physical situations in which two-
dimensional diffusion processes and, hence, two-dimensional
telegraphic processes are of great interest. In this way, the
transport of particles on surfaces has a great number of phys-
ical applications in a large variety of problems including, for
instance, semiconductor electronics [30], interfacial transport
[31-35], chemical physics [34-38], and biophysical motions
on surfaces [39,40] among many others.

In our recent approaches to persistent random walks giving
rise to one-dimensional or three-dimensional telegrapher’s
equations [9,10], one of us has also generalized the procedures
to include fractional versions of the TE that provide one
mechanism for anomalous transport and related phenomena.
In Ref. [10], we have proved that the fractional TE in three-
dimensional uniform isotropic media reads
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Here, 3% p/dt is the Caputo derivative, and V> p is the Riesz-
Feller Laplacian (0 < @ < 1, 0 < y < 1) [10]. Our objective
here is to obtain the fractional telegrapher’s equation (FTE) in
two dimensions.

In one dimension, the FTE is mostly based on a fractional
generalization of the persistent random walk [9]. We have also
showed that straight higher-dimensional generalizations of the

one-dimensional persistent random walk leads to inconsistent
and paradoxical results [9], and we have had to use the contin-
uous and isotropic three-dimensional random walk model to
obtain a three-dimensional FTE [10]. Another objective of this
paper is, therefore, to obtain the two-dimensional FTE starting
with the two-dimensional isotropic random walk which, as
mentioned above, is not included in the three-dimensional
walk as a special case.!

The paper is organized as follows. In Sec. II, we present the
general model in two dimensions, and in Sec. III, we solve it
in isotropic and uniform media. The fluid limit approximation
and the two-dimensional telegrapher’s equations are derived
in Secs. IV and V. In Sec. VI, we generalize the isotropic
random walk in order to include a fractional version of it and
derive the FTE in two dimensions. Concluding remarks are in
Sec. VIIL.

II. CONTINUOUS MULTISTATE RANDOM
WALK IN TWO DIMENSIONS

We present a microscopic model for the transport of
particles in planar continuous media. The model is a two-
dimensional modification of the three-dimensional random
walk derived in Ref. [10], and we basically follow that
derivation. Imagine a two-dimensional walker moving along
a straight line with a direction determined by an angle ¢.
At random instants of time, the walker shifts direction and,
hence, the duration of the motion along a given ¢ (the motion
along a fixed angle ¢ is usually called a sojourn) is a random
variable determined by a probability density function (PDF)
which we denote by ¥ (¢|¢). The cumulative distribution,

V(tlp) = / v (t'le)dt’ )

gives the probability that the duration of a given sojourn is
greater than ¢.

In order to characterize the random walk, we also need
the joint PDF for the displacement in a given sojourn along
direction ¢ to be equal to r = (x, y) and the sojourn duration
to equal 7. We denote this density as A(r, t|¢) and as H(r, t|¢)
the probability density for the displacement to be r when
the duration is greater than ¢. Observe that the duration PDF
¥ (t]|¢) is the marginal density of A(r, t|p),

/R e tlg)’r = ), ©)

'In one dimension, one attempt to give physical grounds for the
time-fractional TE was the work of Refs. [41,42] (see also Ref. [43])
who, starting from Cattaneo’s equation, proposed three different
candidates for the one-dimensional time-fractional TE. One of them,
having the standard form given in Eq. (4) for one dimension, is
derived from the continuous time random walk formalism applied to
the probability flux and followed by the particular choice of a Gaus-
sian distribution for jump lengths [41]. In Ref. [9], we undertook a
more general approach based on the persistent random walk without
assuming any special form of the jump density and which results in
a space-time fractional TE agreeing with the standard form.
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and W(r|p) is the marginal probability stemming from the
density H(r, t|p),

/R 2 H(r,tlp)dr = ¥(t|p). (7)

At the end of a given sojourn, the walker moving along
direction ¢’ switches to direction ¢ within d¢. We indicate,
by b(¢|¢’), the probability density of this transition,

b(gle")dg = Prob{y’ — ¢ + dy}.

Let us denote by p(r, t, ¢) the joint PDF for the walker to
be at r at time ¢ and moving in direction ¢. Our final objective
is, however, to know the density p(r, t) for the random walker
to be at r at time ¢ regardless of the direction. The latter is the
marginal density of the former,

27
p(r,t) = /0 pr,t,)de. ®)

In order to evaluate p(r,t,¢), we define the auxiliary
density p(r, f, @) as

p(r,t, 9)d’rdt = Prob{a sojourn in direction ¢ ends in
the region (r, r 4 dr) at (¢, ¢t + dt)}.

This joint density describes the state of the process at the
scattering points where the direction of the walker changes.
Thus, if a scattering event happens at time ¢, it must either
be the first one (assuming the initial one to have occurred
at t = 0) or else be an earlier change in direction ¢’ — ¢
[ruled by b(¢|¢’)] happened at any earlier time ¢’ < ¢t with
the random walker at some position r’. It is not difficult
to convince oneself that this renewal argument leads to the
following integral equation for the auxiliary density:

2T
p(r.1.9) = bpIh(r, 1) + / bple)dy'
0

t
X/ dt// h(r =t —t|p)p@ ', o"dr,
0 R2
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where b(¢p) is the probability that the process starts moving in
direction ¢.

In terms of the auxiliary density p(r,?, ¢), the PDF
p(r, t, @) for the walker to be at r at time r whereas moving in
direction ¢ is

27
p(r.t,p) = b(<p)H(r,tIso)+f b(ple)dy'
0

t
x/ dt' | H—r',t —1t|o)p, 1, ¢)d*r.
0 R2
(10

The reasoning behind this equation is similar to the one given
for obtaining Eq. (9). The displacement of the walker is either
within the first sojourn, this given by bH on the right-hand
side, or else an earlier change of direction occurred at time
t' < t while the walker was at position r’, and the time interval
to the next scattering exceeded r — ¢'.

We, thus, see that, in the most general case, the solution
to the problem, that is to say, obtaining the PDF p(r,1t)

[cf. Eq. (8)] is given by first solving the integral equation
(9) for the auxiliary function p and afterwards substituting
this solution into Eq. (10) and the result into Eq. (8). In the
most general case, for arbitrary forms of b(¢|¢’), h(r,t|p),
and H (r, t|p), obtaining analytical expressions is out of reach,
and one has to resort to numerical work.

Independent scattering

In order to proceed further analytically, we will assume as
in the three-dimensional case [10], that, after each scattering
event, the direction is randomized independently of the previ-
ous direction of the walker. This leads to the following form
of the scattering kernel:

b(gle") = bl), (11

which is independent of the incoming direction ¢’. The scat-
tering process is, thus, an independent random process in the
change of direction. In this case, Egs. (9) and (10) reduce to

p(r,r,¢>=b(¢>[h(r,r|¢>+f dr’/R he -t —1'lg)
O 2

2w
% er/f ,O(I'/,t,, w/)dwl]’ (12)
0
and

p(r,t, @)= b(w)[H(r,tlw) +/ dt' | H(x—r',t —1'|p)
0

]RZ
2

xdzr// p(r/,t/,<p/)d<p/]. (13)
0

Integrating Eqs. (12) and (13) with respect to all possible
directions, recalling Eq. (8) and defining

2
p(r,t) = / p(r, 1, 9)de, (14)
0

2T
hr, 1) = / b)h(r, tlp)dg (15)
0

[with a similar definition for H(r,t)], we obtain a simpler
integral equation for p(r, t),

t
,o(r,t):h(r,t)+f dt’/ h(r—r',t —p', t)d*r,
0 R2

(16)
and the PDF p(r, ¢) will be given by

H(r—r',t —t)p, t)dr.

A7)
The problem can now be solved in Fourier-Laplace space.
Thus, defining the joint Fourier and Laplace transform,

t
p(r,t) = H(r,t) ~|—/ dt’
0 R2

o0
p(w, s, <p):/ e“’dt'/ e p(r,t, p)d°r,
0 R?

the integral equation (16) turns into a simple algebraic equa-
tion for p whose solution can be readily obtained and reads

fz(a), s)

= (18)
1 — h(w, 5)

p(w,s) =
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On the other hand, by transforming Eq. (17), we get

B, s)=H(w, )1 + p(®, 5.

which, after substituting for (18), yields

A, s)

- . (19)
1 — h(w, 5)

plw, s) =

The form of Eq. (19) is equal to that of the equivalent
PDF of the three-dimensional walk presented in Ref. [10] and
it is a generalization of the Montroll-Weiss equation [44,45]
for higher-dimensional continuous time random walks with
independent directions.

III. THE ISOTROPIC AND UNIFORM RANDOM WALK

Equation (19) constitutes the formal solution to the prob-
lem for independent scattering in Fourier-Laplace space. It is
valid for any form of the conditional densities A(r, t|¢) and
H(r, t|p). In other words, Eq. (19) applies to any kind of mo-
tion inside a given sojourn and to any distribution of sojourn
times. In order to proceed further, and solve the problem in an
explicit way by obtaining the explicit expression for p(r, ¢) in
real time and space, we next assume that the walker moves in
an isotropic medium so that the pausing time density and its
cumulative probability are independent of the direction,

V(tlp) = v (@),

We further assume that, inside any sojourn, the motion is
uniform with a constant speed ¢ so that after each sojourn the
velocity of the walker takes a different direction but with the
same modulus and, hence, the kinetic energy is conserved.
Despite its simplicity, the model describes the planar motion
of noninteracting particles—such as, for instance, photons—
undergoing elastic dispersion with randomly distributed fixed
centers.

The uniform motion leads us to assume that the conditional
densities for the displacement in a given sojourn are given by

h(r,tlp) = 8(r — cur)y (1), (20)

Y(t|g) = W().

and
H(r,t|g) = 5(r — cur)¥(t), 21

where u = (cos g, sin ¢) is the unit vector pointing in direc-
tion ¢. The Fourier transforms of these densities read

h(@, t]p) = "™y (1), (22)
and
H(w, tlp) = @Wu(1). (23)

In addition to the assumption that after each scattering
event the new direction is randomized independently of the
previous direction [cf. Eq. (11)], we also suppose complete
isotropy so that all outgoing directions are equally likely.
Therefore,

1
blple") = ble) = p (24)

Let us recall that the average,

2
fl(w,t)=f0 b(p)h(w, tlp)de

represents the characteristic function of displacement and
duration inside any sojourn independent of the direction of the
walker [see Eq. (15)]. For the isotropic case and for uniform
motion [cf. Egs. (22) and (24)], we, thus, obtain

2
fz(w, l) — % A eictwud(p
_ M 2

— ezct\w\cos (pd@
2 0

= M /n cos(ct|®| cos ¢)de.
T Jo

From the integral representation of the Bessel function Jy(z)
[46],

1 T
Jo(ctlw|) = —/ cos(ct|®| cos @)do, (25)
7 Jo

we get

h(@, 1) = ¥ (t)Jo(ct|@)), (26)
and analogously

H(w,t) = W(t)Jo(ct|o|). (27)

In order to proceed further, we should specify the form of
the sojourn time density 1/ (¢). One of the most natural and
universal assumptions consists of taking the random instants
of time at which the scattering process occurs to be Poisso-
nian, which implies that the time intervals for the duration of
any sojourn are exponentially distributed

v()=re ™ and W(E)=e M,
where A ~! is the mean sojourn time. We then have
- - 1.
h(w,t) = re Miy(ctlw|), Hw,t)= Xh(w, 1).

Let us now take the Laplace transforms of these expres-
sions. Recalling that

L{Jo(ct|@])} =

1
V2 + w2

and the standard property [47],

L f)y = f(r+s), (28)
we get
PS A
hw,s) = s 29
(@) A+ 9)? + 2?|w|? @
and
Ao, s) = ! (30)

SOt Alwl?

Substituting these expressions into Eq. (19), we finally obtain
1

N I

pw,s) = (31)
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which is the solution of the homogeneous and isotropic ran-
dom walk on the plane and it is the starting point for deriving
the two-dimensional telegrapher’s equation as we will see in
the following sections.

IV. FLUID LIMIT APPROXIMATION

The homogeneous and isotropic random walk described
above is a microscopic model of two-dimensional transport
in which particles move along straight lines with constant
speed until they elastically collide with fixed centers of force
randomly distributed on a two-dimensional region. In order
to obtain a telegrapher’s equation, we need to zoom out of
this microscopic picture by performing the “fluid limit” and
rewrite the model for long times and long distances [21,48].
Because of Tauberian theorems [49,50], long times and long
distances, t — oo and |r| — oo, correspond to small Laplace
and Fourier variables s — 0 and |@| — 0.

Let us note that we can get an approximate expression for
the transformed PDF p(|w|, s) either through Eq. (31) or else

through the approximate expressions of 4 and H given by
Eqgs. (29) and (30) for small |@| and s and their subsequent
substitution into Eq. (19). We will follow the latter method
since it will be useful for the fractional generalization of the
random walk.

We start from Eq. (29) and rewrite it as

! X ol \217°
(w,s)-()\+s> +<A+s> ’

which, when |@| — 0, can be written as

R s 1( clol \* 4
h(w, s) = 1_§<A+s> + O(|l@|™) |. (32)

S

| —h@s)=1— |- Ll 2+0(|w|4)
o) =1 — 1
A+s 2\ A +s

1 +,\ clo| 2+0(| 4
= s+ - —— ®
A+s 2\ A+

= L Lot + 2P + 0gel)
(h + )3 2 ’
and as s — 0, we may write
1 — i@, )
2
_ 12 4o A2y2 3 4|
G 1) [S( +2hs) + Sl + OGs, lef)

(33)
Substituting Egs. (32) and (33) into Eq. (19) and recalling
that H = h/x, we obtain
(O +5)* = (cl])*/2 + O(lw|*)
(A2 4 28) + A(clw])?/2 + O(s3, |w|*)”

In order to ensure the stability of Eq. (34) under Fourier-
Laplace inversion [and, hence, for the existence of a valid
approximation for p(r, t)], it is necessary that the powers of

P, s) = (34)

s and || which appear in the numerator of Eq. (34) be less
than the corresponding powers of the denominator [49]. We,
therefore, write

A2 4245 + O(s2, |@|?)

P S) = o o) + A2 + 0. @)
that is,
R 1245+ 0(2, |w?)
p(@,s) =

s(A/2 +5) + c2w|?/4 + O(s3, |@]*)’
and take as a fluid limit approximation of the PDF the expres-
sion,

s+M1/2
s(s +A/2) + 2lw|? /4

Pw,s) = (35)

V. THE TWO-DIMENSIONAL
TELEGRAPHER’S EQUATION

Equation (35) is the starting point for deriving the two-
dimensional TE. As in the three-dimensional case [10], we
will obtain an associated partial differential equation for
p(r,t) whose solution, in Fourier-Laplace space and with
appropriate initial conditions, is precisely given by Eq. (35).
To this end, we multiply both sides of Eq. (35) by the
denominator and write

22 A a c? 22
s"p(w, s) — s+ E[sp(w, s)— 1= —lel P(w, ).
Recalling that
FHlPhw, ) = =V?pr,s), F {1} =8),

the Fourier inversion yields

2 A Al c? 2
s p(r,s) — sé(r) + E[sp(r, s) —48(r)] = ZV p(r, s).

Let us next address Laplace inversion. With the standard
initial conditions,>
dp(r,1)

p(r,0) = 4(r), e 0, (36)

and the Laplace inversion formulas [47],

2
E*l{szﬁ(r, s) — s8(r)} = %’
L7Ysp(r, s) — 8(r)) = 3p§;,t)’

2In a more standard derivation of the TE similar to that of Goldstein
based on the persistent random walk on the line [6], the initial
condition for the time derivative of p(r,t) comes in a natural way
from the formalism (based on splitting the probability density p in
the sum of two densities, corresponding to the motion to the left or
to the right) and when the walker can initially move to the left or
right with equal probability (which in one dimension corresponds to
the isotropic case). It then turns to be that the time derivative of p
att = 0 is zero (see details in Ref. [51]). Since we are dealing with
a two-dimensional and isotropic walk the initial condition should be
the same as for the isotropic one-dimensional walk.
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we see that p(r, r) satisfies the two-dimensional TE,

Fp  lop L,
—= 4 —— =’V?p, 37
0tz 1 ot vvp 37

with

t=2/A and v=c/2, (38)

as the characteristic time and the characteristic velocity, re-
spectively.

As in one and three dimensions, the TE enjoys both wave
and diffusion characteristics. This duality becomes even more
apparent as time progresses. Thus, ast — 0, Eq. (37) reduces
to the wave equation whereas as t — oo it goes to the diffu-
sion equation. Indeed, scaling time with 7, one can easily see
that [8,10]

¥*p ap

77 = V2V3ip (1 — 0), P DV?p (t — 00),
(D = v*7) which leads to
(k@) ~1* ¢ —0), (r®OP)~t (& — o0),

showing the transition from ballistic motion to diffusive mo-
tion as time increases.

Characteristic function

The solution to the two-dimensional TE (37) with the
initial conditions given by (36) has been, to our knowledge,
scarcely addressed, at least, in the physics literature [52—-54],
moreover, the solutions presented in these references do not
obey the initial conditions given in Eq. (36).> We will not
obtain here the exact expression for the PDF p(r, t), which is
quite a difficult task. However, getting the exact characteristic
function p(w, t) is rather straightforward. Indeed, in Fourier-
Laplace space, the exact solution of the TE (37) with initial
conditions (36) is given by Eq. (35), which we write in the
form (recall that A = 7/2)

s+1/2t+1/27
(s +1/21)? — p*(w)/47%’

P, 5) = (39)

where

p(@) = 1= (ct|@]). (40)

Bearing in mind property (28) and the inversion formulas
(471,

1
El{ i 5 } = cosh at, El{ 5 } = sinh at,
s—a s—a

3We asserted, in Ref. [54], that the solution of the two-dimensional
TE was not positive definite, a fact that somehow invalidated the
TE as a proper equation for the PDF in two dimensions. However,
this conclusion was hasty because the two-dimensional solution
presented in Ref. [54] was ill defined for r = ¢t /2 and did not obey
the initial conditions (36). As a consequence, the question of not
being positive definite is very doubtful (we will discuss this issue
in a future work).

it is a simple matter to obtain from Eq. (39) the characteristic
function,
p(@)t

t
Plw, 1) =e"/*"| cosh + sinh @)
2T p(®) 2T

:|. 41

Looking at Eqs. (40) and (41), we see that p and, conse-
quently, p depend only on the modulus w = |w|. In this case,
the PDF p(r,t) is a function of the distance r = |r| to the
origin (in accordance to the isotropic character of the model).
Indeed, the two-dimensional Fourier inversion is given by

1 —i®T ~ 2
pr,t) = m - e plw, t)d“w
1 00 2 )
= E,/ dwwﬁ(a),t)/ ey
0 0

1 o0 m
= —/ doowp(w, t)f cos(wr cos ¢)dy,
T Jo 0

which shows that p = p(r, ¢) is a function of the distance to
the origin. Taking into account the integral representation of
the Bessel function of zeroth order [cf. Eq. (25)], we have

p(r,t) = /00 wJo(wr)p(w, t)dw. 42)
0

Let us finally note that substituting Eq. (41) into Eq. (42)
results in the following expression for the PDF:

o0
t
p(rt) = e '/* / a)|:cosh @)
0 2t

1 ¢
+ —— sinh M Jo(wr)dw, 43)
o(®) 2t
which, although difficult to integrate analytically, is rather
straightforward for numerical work.

VI. THE FRACTIONAL ISOTROPIC WALK AND THE
FRACTIONAL TELEGRAPHER’S EQUATION
IN TWO DIMENSIONS

We will now derive a two-dimensional fractional telegra-
pher’s equation from a microscopic picture based on two-
dimensional random walks. The procedure is parallel to the
one we used in deriving the three-dimensional TE, and its
fractional generalization [10] and whose first step consists
in obtaining a fractional generalization of the uniform and
isotropic random walk outlined in Secs. III and IV.

A. The fractional isotropic walk

Let us first note that the fluid limit approximation for
p(w, 5) given in Eq. (35) is also achieved by substituting into
the general expression (19) the following expansions in the
fluid limit as s — 0 and || — 0:*

s K s\2 1
h(w, :1___2<_> - el 44
(@, 5) ; ; 2A2lec (44)

“In order to derive Eq. (44), we start from Eq. (33) and follow
the same procedure as detailed in Ref. [10] and similarly for the
derivation of Eq. (45).
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and
2 1 2s
Hw,s)=—(14+—]---. 45)
Indeed, from Eq. (44), we write

2 _ s 52 22
1—h(co,s)_x+2(—) b PP . (46)

A
Dividing the expression for H(w,s) given in Eq. (45) by
Eq. (46) as required by Montroll-Weiss equation (19) and
rearranging terms results in the fluid limit approximation
given in Eq. (35) as the reader can easily check.

We are now ready to get a fractional generalization of the
two-dimensional isotropic random walk. Thus, and looking
at Eq. (44), we first propose the following expansion for the
sojourn density in the fluid limit:

h(w,s)=1—(Ts)* —2(Tsy* — LLIw)? -+ (47)

(s,|w| = 0), where 0 <a <1, 0<y <land T > 0 and
L > 0 are arbitrary parameters. 7 defines a characteristic
time, and L is a characteristic length.

In addition to Eq. (47), we also need to assume a fractional

approximation for the function ﬁ (w,s). To this end, we
average Egs. (6) and (7) over all directions ¢ with the result
(in Laplace space),

/ h(r, s)d’r = ¥ (s), / H(r, s)d’r = W(s),
R2 R2
or in terms of Fourier transforms,

h@=0,5)=i(s), Hw=0,s)=W(s).
But U(s) = [1 — ¥/ (s)]/s [cf. Eq. (5) ], and, hence,

2 1 s
Hw=0,5)=-[1 —h(w=0,s)].
s
Introducing Eq. (47) into this expression yields

ﬁ(w =0,s) = 7% 4272521,

which, as in the three-dimensional case, leads us to conjecture
the following fluid limit approximation:

I:}(w, S) ~ Tasoz—l 4 2T2as2a—1 . (48)

(s = 0, || — 0). Note that this is only a conjecture since
the approximation (48) might have depended on w as well [9].

Substituting Eqs. (47) and (48) into the Montroll-Weiss
equation (19) and reorganizing terms yields

s +1/7)
52 4 5 /T + V2 |@|?

P(w,s) = (49)

where
T=2TY wv= %(LV/T“) (50)

O<a <1, 0<y <1). The parameters T and v can be
considered as a fractional characteristic time and a fractional
characteristic velocity, respectively. This equation describes
a fractional isotropic random walk in two dimensions and
allows us to derive the corresponding FTE.

B. The fractional telegrapher’s equation

Before deriving a fractional generalization of the TE in
two dimensions, we briefly recall the basic definitions of the
necessary fractional derivatives.

The Caputo fractional derivative of order 8 > 0 of a func-
tion ¢(¢) is defined by the functional [21,55-58],

1 t ™ )dr
aﬁd)(t) _ {I‘(n—ﬁ) 0 (?_t/()l}rﬁ—nv n—1<pB<n, 51)

wr o), p=n
(n = 1-3, ...), where ¢™(¢) denotes the nth derivative with

respect to ¢. From this definition, the Laplace transform of the
Caputo derivative is found to be [8,56]

n—1

} = s"$(s) — P71 (0) = Y900y (52)

j=1

(n=1-3,...,n—1 < B <n). Here, L{-} stands for the
Laplace transform and ¢ (s) = L{p(1)}.

The second type of fractional derivative that is needed
is the Riesz-Feller Laplacian of order B8 (0 < 8 < 2) of a
function g(r) such that g(r) — 0 as |r| — oo. There are
several equivalent ways to define it [56], although one of the
simplest and most operative definitions is obtained through
Fourier analysis. We, thus, define [21]

Vie(r) = F ! {—|o/ g(w)} (53)

()
E{ ot

(0 < B < 2), where F~!{.} stands for the inverse Fourier
transform, and

B(w) = / ¢ g(r)d’r
R2

is the direct transform.
From Eq. (49), the FTE is readily obtained as follows. We
rewrite Eq. (49) as:

1 2 1
(SZa 4 -5+ 02|0)|2y>[3(w, 5) = SZutfl + _safll
T T
Fourier inverting and recalling that 7~'{1} = 8(r), we have
20 1 o 2v72 A 20—1 1 a—1
s = — vV ) p(r,s) = s + —s 8(r),
T T

where V% is the two-dimensional fractional Laplacian of
order 2y.

The Laplace inversion of this equation finally results in (see
Refs. [10] and [9] for details)

aZotp laap

2v72
= v2V¥p, 54
ot2e T 9« v p o4)

which is the FTE in two dimensions with 7 as a fractional
timescale and v as a fractional velocity [cf. Eq. (50)].

Such as the ordinary TE (37), the FTE (54) also possesses
both wave and diffusion characteristics. Thus, the joint limits
7 — 0 and v — oo with tv? — D finite turns Eq. (54) into a
two-dimensional fractional diffusion equation,

a%p
ar*

=DV¥p, (55
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whereas the limit T — oo with v finite reduces Eq. (54) into
the fractional diffusion-wave equation,

82ap
atza

= v’V¥p. (56)

Let us finally mention that the FTE (54) leads to the frac-
tional diffusion equation (55) as + — oo and to the fractional
wave equation (56) as + — 0, regardless of the values of the
fractional time t and the fractional velocity v [9].

VII. CONCLUDING REMARKS

Following the approach established in Ref. [10] for the
three-dimensional case, we have here obtained the two-
dimensional telegrapher’s equation (ordinary and fractional)
starting with an isotropic and uniform random walk on the
plane. The model, which is a two-dimensional generaliza-
tion of the persistent random walk on the line, is based on
multistate random walks with a continuous number of states
representing the different directions that the walker can take.
When, at every point, the possible directions are independent
and do not depend on the orientation and position (isotropy
and homogeneity), the general equations for the probability
density function of the random walker can be exactly solved
in Fourier-Laplace space.

We remark once more that the two-dimensional case can-
not be recovered from the three-dimensional walk as a particu-
lar case and, although the two- and three-dimensional models
have many common characteristics, the quantitative results
obtained differ.

Either in two or three dimensions the isotropic and uniform
model is suitable for modeling the transport of particles
experiencing elastic collisions with fixed centers randomly
distributed. Two-dimensional models are particularly appro-
priate in the study of transport properties on surfaces and near
interfaces [30-35].

From the random walk model, we have been able to derive
a two-dimensional telegrapher’s equation in the so-called fluid
limit approximation, which involves long times and long dis-
tances and represents a mesoscopic approximation, halfway
between the microscopic description of the isotropic random
walk and the macroscopic description of any phenomenolog-
ical setting. With this result, we have shown that the telegra-
pher’s equation—in one, two, and three dimensions—can be
derived from a random walk model. In one dimension, this
possibility was proved many years ago by Goldstein [6], who
showed that the persistent random walk on the line leads to the
one-dimensional telegrapher’s equation [6]. As pointed out in
Sec. I, many attempts to extend Goldstein’s result to higher
dimensions in a natural way had failed essentially because of

the great difficulty of generalizing persistence in dimensions
greater than one [17,23-29].
In any number of dimensions (one, two, or three), the
telegrapher’s equation obtained has the standard form
?p 1ap 20
— +——=v"Vp.
912 T ot P
However, the relationship between the characteristic velocity
v with the speed c of the particle between consecutive scatter-
ings differs depending on the dimensionality. We, thus, have
v = ¢ in one dimension [7], whereas

v=c/2 and v= c/\/a,

in two and three dimensions, respectively (see Eq. (38) and
Ref. [10]). In all three cases, the relationship between the
characteristic time t and the average time that the walker
moves along the same direction A ! is given by t = 2A~!.

As we did in one and three dimensions (Refs. [9,10]), we
have also generalized the isotropic walk and, subsequently,
the telegrapher’s equation to account for anomalous transport
in two dimensions. Again, the fractional telegrapher’s equa-
tion formally has the same form regardless the number of
dimensions,

aZa p
are 1 g
O<a<1, 0<y <), although, as before, the relation-
ship between the fractional velocity v and the characteristic
time 7 and length L of the fractional random walk depends

on the dimensionality. We, thus, have v = LY /T“ in one
dimension [9], and

— U2V2yp

<
NG

in two and three dimensions, respectively (cf. Eq. (50) and
Ref. [10]).

Let us finally mention that, as in the one-dimensional case
[9] or for the ordinary telegrapher’s equation [cf. Eq. (41)],
an exact solution for the characteristic function p(w,t) of
the two-dimensional fractional telegrapher’s equation can be
obtained along with some asymptotic and approximate ex-
pressions. However, for the sake of simplicity and brevity, we
have not treated them here, and we refer the interested reader
to the work of Mainardi and collaborators [55,57-59] on
solutions of fractional diffusion and fractional wave-diffusion
equations as well as to Orsingher and collaborators [60—62]
on several kinds of solutions of the fractional telegrapher’s
equation.

V= SWT, = T,
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