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Extinction risk of a metapopulation under bistable local dynamics
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We study the extinction risk of a fragmented population residing on a network of patches coupled by
migration, where the local patch dynamics includes deterministic bistability. Mixing between patches is shown
to dramatically influence the population’s viability. We demonstrate that slow migration always increases
the population’s global extinction risk compared to the isolated case, while at fast migration synchrony
between patches minimizes the population’s extinction risk. Moreover, we discover a critical migration rate
that maximizes the extinction risk of the population, and identify an early-warning signal when approaching
this state. Our theoretical results are confirmed via the highly efficient weighted ensemble method. Notably,
our theoretical formalism can also be applied to studying switching in gene regulatory networks with multiple
transcriptional states.
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I. INTRODUCTION

Extinction of a metapopulation—a network of interact-
ing spatially separated populations (patches) of the same
species—is of key interest in various scientific disciplines
such as ecology, evolutionary biology and genetics [1]. Here
a major challenge is finding the optimal interaction strategy
among the individual patches in such a fragmented popu-
lation, that maximizes the metapopulation lifetime. Under
certain conditions, it has been found that interactions between
the patches decrease the extinction risk of the metapopulation,
while in other cases the opposite may occur, i.e., isolation of
the individual patches minimizes the population’s extinction
risk [2,3].

Previous studies of metapopulation dynamics have mostly
dealt with the deterministic aspect of the dynamics, using
various versions of the Levins model [1,4]. Other approaches,
from a more physical point of view, can be found in [5–7].
Several of these models incorporated the so-called Allee effect
– a group of effects in population biology which give rise to a
negative per capita growth rate at small population sizes. For
an isolated patch, this effect yields a colonization threshold—
a critical population density below which extinction occurs
deterministically [8]. Thus, under the Allee effect each local
patch experiences bistable dynamics at the deterministic level.
However, in most studies bistability has been modeled only
at the metapopulation level [9–13], despite the fact that in
many realistic examples of metapopulations, the Allee effect
has been shown to play a crucial role in the dynamics of the
population [1,14–16].

Incorporating the Allee effect at the individual patch level
can greatly impact the population’s extinction risk, and thus
affects population management and preservation [17,18]. In-
deed, the Allee effect strongly influences both extinction and
colonization of individual patches, and thus it is vital to take
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it into account when dealing with metapopulation extinction
[1,19]. Yet, while recent studies provided an explicit calcula-
tion of the mean time to extinction (MTE) in such systems
[19–23], none of these works has conducted a systematic
study of the metapopulation’s extinction risk, while incorpo-
rating bistable dynamics at the individual patch level.

In this paper, by coupling the local demographic noise
to stochastic migration between patches, we investigate the
metapopulation behavior when the local birth-death dynamics
on each patch exhibit the Allee effect in the form of bistable
dynamics. At slow migration the system displays multiple
routes to extinction, and we find that counterintuitively weak
migration always reduces the metapopulation’s stability. This
indicates that isolation is preferable to weak mixing. In partic-
ular, our result challenges the long-standing “rescue effect,”
which states that the rescue of local patches necessarily in-
creases the metapopulation viability [1,21]. At fast migration,
we show that migration gives rise to synchronization between
patches and the extinction risk is minimized when the typical
flux across patches is comparable. In extreme cases where
such synchrony cannot be achieved, one observes source-sink
dynamics, where one patch becomes a sink to the others. Our
theoretical results are tested against highly efficient numerical
simulations based on the weighted-ensemble (WE) method.
Importantly, our analysis provides the exact conditions for
which mixing (at some migration rate) or complete isolation
is optimal for the population’s viability, which may have
important consequences on real-life populations.

The paper is organized as follows. In Sec. II we ana-
lyze the deterministic dynamics of interconnected patches. In
Sec. III we incorporate demographic noise and analyze the
corresponding master equation using the Wentzel-Kramers-
Brillouin (WKB) method. In Sec. III A we show that for
slow migration there exist multiple routes to extinction, and
compute the global MTE, as well as local extinction and
colonization rates. Here we also identify a critical migration
rate that maximizes the global extinction risk. In Sec. III B we
compute the MTE for fast migration, up to subleading-order
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corrections, where we also find an optimal migration rate that
maximizes the population’s lifetime. In Sec. IV we describe
the WE simulation, while in Sec. V we summarize our results
and discuss additional applications of our model in other
scientific disciplines.

II. MODEL AND DETERMINISTIC DYNAMICS

We consider M patches, where migration between patch i
and j occurs at a rate μi j . To locally account for the Allee
effect on each patch i = 1, . . . , M, we choose a simple birth-
death process, 2A ↔ 3A and A → 0, that gives rise to bistable
dynamics [22]. As a result, on each patch we have a single-
step birth-death process [19]:

ni
Bni−→ ni + 1, ni

Dni−→ ni − 1, ni
μi j ni−−→ n j,

Bni = 2ni(ni − 1)

Ni
(
1 − δ2

i

) , Dni = ni + ni(ni − 1)(ni − 2)

N2
i

(
1 − δ2

i

) , (1)

where ni denotes the population size on patch i, and the
reaction ni → n j denotes migration from patch i to patch
j. In addition, 0 < δi < 1 determines the distance between
the local colonized state and colonization threshold, while
Ni � 1 is the local carrying capacity; see below. Denoting
κi = Ni/N1, αi j = μi j/μ, and xi = ni/N1 as the population
density on patch i, the deterministic rate equation for the
average population density x̄i, reads

˙̄xi = bi(x̄i ) − di(x̄i ) + μ

M∑
j=1

(α jix̄ j − αi j x̄i ). (2)

Here μ is the characteristic migration rate, while bi(xi ) =
Bni/N1 and di(xi ) = Dni/N1, such that

bi(xi ) = 2x2
i

κi
(
1 − δ2

i

) , di(xi ) = xi + x3
i

κ2
i

(
1 − δ2

i

) , (3)

where O(N−1) terms were neglected.
While most of the analysis below can be generalized for M

patches; see Appendix B, here we focus on the dynamics of
two connected patches, which capture most of the interesting
features in this problem. Thus, henceforth we have M = 2
and denote α12 ≡ 1 and α21 ≡ α, where α = O(1) is the ratio
between the migration rates, while κ1 = 1 and κ2 ≡ κ is the
carrying capacities ratio. We also denote N ≡ N1 such that
N2 = κN . For two patches, rate equations (2) become

˙̄x1 = b1(x̄1) − d1(x̄1) + αμx̄2 − μx̄1,

˙̄x2 = b2(x̄2) − d2(x̄2) + μx̄1 − αμx̄2. (4)

At zero migration, μ = 0, each patch has three fixed points
(FPs). Putting ˙̄x1 = ˙̄x2 = 0 in Eqs. (4) we find

x(0)
i,0 = 0, x(0)

i,± = κi(1 ± δi ), (5)

where x(0)
i,0 and x(0)

i,+ are stable FPs, respectively corresponding

to the extinction and colonized states, and x(0)
i,− is unstable

and corresponds to the colonization threshold [8]. Thus, there
are nine FPs for zero migration. Note that the relaxation
time in the vicinity of the colonized state, which equals
(1 − δi )/(2δi ), determines the typical timescale of the local
patch dynamics, where in general it is O(1); see below.

FIG. 1. (a) and (b) Dynamical trajectories of Eqs. (4) in the case
of two patches, with κ = 1, α = 1, δ1 = δ2 = 0.3, and (a) μ = 0.01,
(b) μ = 1. Stable and unstable FPs are denoted by full and open
circles, respectively. (c) and (d) Bifurcation diagram of Eqs. (4),
as a function of μ, with α = 1, δ1 = 0.5, δ2 = 0.4, and (c) κ = 1,
(d) κ = 0.2. Here the blue and red lines correspond to stable and
unstable FPs, respectively. (e) Number of stable FPs as function of
both κ and μ, for α = 1, δ1 = δ2 = 0.5. (f) x̄1 and αx̄2 as a function
of time by numerically solving Eqs. (4) (upper blue and lower red
lines), compared to the numerical solution of Eq. (11) for ξ (dashed
line). Here κ = 1, δ1 = 0.5, δ2 = 0.6, μ = 10, α = 0.5.

A. The case of slow migration

For slow migration, μ � 1, i.e., when the typical time
scale of migration is slow compared to that of the local patch,
Eqs. (4) give rise to a maximum of nine FPs, four of which
are stable; see Figs. 1(a) and 1(c)–1(e). Here, the FPs are
shifted by O(μ) compared to the case where the patches
are isolated. To find the shift in the FPs, we look for the
solution as xs ≡ [(xs)1, (xs)2] = (x(0)

1,s1
+ μη1,s, x(0)

2,s2
+ μη2,s)

[24] for s = (s1, s2) with si = {0,+,−} representing the pos-
sible states. Here x(0)

i,si
are given by Eqs. (5) and ηi,s are the

yet unknown shifts. Substituting this solution into Eqs. (4),
putting ˙̄x1 = ˙̄x2 = 0 and keeping terms up to O(μ), we find
ηi,s, which yields the FPs up to O(μ):

(xs)1 = x(0)
1,s1

+ μ t relax
1,s1

(
αx(0)

2,s2
− x(0)

1,s1

)
,

(xs)2 = x(0)
2,s2

+ μ t relax
2,s2

(
x(0)

1,s1
− αx(0)

2,s2

)
. (6)
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Here we have defined t relax
i,si

= [b′
i(x

(0)
i,si

) − d ′
i (x

(0)
i,si

)]
−1

, as the

relaxation time to the FP x(0)
i,si

, at the level of the isolated
patch. This result [Eq. (6)] can be intuitively understood as
follows: in the leading order the average population density
in each patch is determined by the outgoing flux from itself
and incoming flux from the second patch. The magnitude of
the correction depends on the migration rate as well as on the
relaxation time to the relevant FP. Note that since s = (s1, s2)
can receive nine different values, Eq. (6) represents nine FPs.
It can be shown via linear stability analysis that four of these
FPs are stable while five of them are unstable. The former cor-
respond to scenarios where either both patches are colonized,
one patch is colonized and the other is close to extinction, and
both patches are extinct. This can be observed in the different
panels of Fig. 1. In Fig. 1(a) we plot dynamical trajectories
of Eqs. (4) for slow (μ = 0.01) migration. Furthermore, in
Figs. 1(c)–1(e) one can see a total of four stable and five
unstable FPs at small μ.

For concreteness we present two examples of the FPs given
by Eqs. (6). When patch 1 is colonized and patch 2 is close to
extinction, the stable FP is given by

x+,0 = [(x+,0)1, (x+,0)2]

= [1 + δ1 − μ
(
1 − δ2

1

)/
(2δ1) , μ(1 + δ1)

]
, (7)

while in the opposite case where patch 2 is colonized and
patch 1 is close to extinction, the stable FP is given by

x0,+ = [(x0,+)1, (x0,+)2]

= [μακ (1 + δ2) , κ (1 + δ2) − μακ
(
1 − δ2

2

)/
(2δ2)

]
.

(8)

Here we have used the fact that t relax
i,+ = (1 − δi )/(2δi ) and

t relax
i,0 = 1; see the definition following Eq. (6). In Eqs. (7)

and (8) it is evident that the correction to the colonized patch
due to slow migration is negative, as deterministically, the
incoming flux from the patch close to extinction contributes
only O(μ2) terms.

B. The case of fast migration

For fast migration, μ � 1, Eqs. (4) give rise to a maximum
of three FPs, two of which are stable; see Figs. 1(b) and 1(e).
Indeed, as μ increases the overall number of FPs decreases
via multiple bifurcations; see Figs. 1(c) and 1(d).

To find the FPs in the leading order in μ, we put ˙̄x1 = ˙̄x2 =
0 in Eqs. (4), and keep only terms proportional to μ. This
yields x̄2 = x̄1/α, meaning that the patches are synchronized
in the leading order. Summing Eqs. (4) and substituting x̄1 =
ξ, x̄2 = ξ/α we find the following FPs in terms of ξ :

ξ0 = 0, ξ± = κ̃ (1 ± δ̃). (9)

These FPs coincide with those in Eqs. (5), upon replacing δ

and κ by their effective counterparts:

κ̃ = ακ
[
α2κ
(
1 − δ2

2

)+ 1 − δ2
1

]
α3κ2

(
1 − δ2

2

)+ 1 − δ2
1

,

δ̃ =
[

1 − α(α + 1)κ
(
1 − δ2

1

)(
1 − δ2

2

)
κ̃
[
α2κ
(
1 − δ2

2

)+ 1 − δ2
1

]
]1/2

. (10)

Here κ̃ and δ̃ are the effective carrying capacity and threshold
parameters, respectively. Note that κ̃ > 0, since δi < 1 for i =
1, 2. Furthermore, we have assumed 0 < δ̃ < 1; otherwise δ̃

is imaginary and the extinction state is the only stable FP; see
below.

In addition to finding the FPs one can also study the
relaxation dynamics by using the definition of ξ and summing
Eqs. (4). As a result, the effective rate equation for ξ becomes
[19]

ξ̇ = −ξ + 2ξ 2

κ̃ (1 − δ̃2)
− ξ 3

κ̃2(1 − δ̃2)
. (11)

In Fig. 1(f) we demonstrate the synchrony between x̄1 and αx̄2

by comparing numerical solutions of Eqs. (4) and Eq. (11).
As can be observed in this panel, synchronization between the
two patches is achieved at times t � O(μ−1), making Eq. (11)
valid at times t � O(μ−1).

A simple example demonstrating bistability, i.e., two stable
FPs in Eq. (11), is when δ1 = δ2 = δ and κ = α−1. This yields
κ̃ = 1 and δ̃ = δ, and thus, the FPs in Eqs. (9) become ξ± =
1 ± δ. This is not a trivial result as it predicts that when α and
κ counter each other such that the typical flux between patches
is approximately equal, the resulting dynamics mimic those of
the original patches. In this case, the system is said to be well
mixed [19].

A transition between bistability and monostability (a single
FP at extinction) can occur, e.g., when the carrying capacities
are very different, κ � 1, where α = O(1). In this case, we
find in the leading order of κ , κ̃ � κα and δ̃ � [δ2

2 − α(1 −
δ2

2 )]1/2 ≡ �2. Since these depend only on the parameters of
patch 2, which has a much smaller carrying capacity, this
entails that the smaller patch dictates the deterministic size
of the metapopulation. Here bistability is obtained as long as
δ2 � [α/(1 + α)]1/2 [25].

The different scenarios of bistability and monostability at
large μ are demonstrated in Figs. 1(c)–1(e). In Figs. 1(c) and
1(d), by numerically solving Eqs. (4) for the entire range
of μ, we demonstrate the multiple bifurcations that occur.
Starting from nine FPs at small μ, as μ is increased the
system ends up with either one or three FPs. In Fig. 1(e)
we map the number of stable FPs as a function of both μ

and κ , displaying a reduction in the number of FPs as μ

increases, and as κ diverges from α−1. Here, as μ is increased,
the number of stable FPs tends either to one or two depend-
ing on the value of κ (see discussion above) and the other
parameters.

Finally, we can compute the subleading O(μ−1) correc-
tions to the FPs [Eqs. (9)] in the limit of μ � 1. While we
do not give the explicit expressions here, these will be used to
compute the subleading-order corrections to the MTE at fast
migration; see Sec. III B.

III. STOCHASTIC FORMULATION

To account for local demographic noise and the stochastic
migration across patches, we write down the master equa-
tion describing the evolution of Pn1,n2 – the probability of
finding n1 and n2 individuals in patch 1 and 2, respectively,
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at time t . Using Eqs. (1), the master equation yields

Ṗn1,n2 =
{

2∑
i=1

[(
E−1

ni
− 1
)
Bni + (E1

ni
− 1
)
Dni

]

+ [(E1
n1
E−1

n2
− 1
)
n1 + (E−1

n1
E1

n2
− 1
)
αn2
]
μ

}
Pn1,n2 , (12)

where E±1
ni

f (n) = f (n ± 1). In the absence of external flux
into either of the patches, starting from any initial condition,
the system ultimately undergoes extinction, where P0,0 grows
in time while all other probabilities decay. Yet, in the limit
of large carrying capacities, the decay rate turns out to be
exponentially small, see below, and one can use the metastable
ansatz Pn1,n2 = πn1,n2 exp(−t/τ ), where πn1,n2 is the quasista-
tionary distribution and τ is the MTE. The latter can be found
by employing the WKB ansatz πn1,n2 ∼ exp[−NS(x1, x2)],
where S is the action function [26], arriving at a stationary
Hamilton-Jacobi equation, H = 0 [26–31], with Hamiltonian

H (x1, p1, x2, p2) =
2∑

i=1

(epi −1)[bi(xi )−e−pi di(xi )]

+ x1μ(ep2−p1 −1) + x2μα(ep1−p2 −1),

(13)

where pi = ∂xi S are the conjugate momenta, and we have
used Eqs. (3). Hamiltonian (13) yields a set of four Hamilton
equations, which can be solved numerically for any set of
parameters, yielding the MTE [32,33]. Analytical progress
can be made in two limiting cases: slow and fast migration.

A. The case of slow migration

For slow migration, μ � 1, in general there are four stable
FPs at the deterministic level. However, when accounting
for demographic noise, these FPs become metastable states,
which means that the system can stochastically switch be-
tween any pair of them. Importantly, the presence of multiple
metastable states gives rise to multiple extinction routes.
To find the MTE of the metapopulation, we apply a simi-
lar method to Ref. [34], and define P1 ≡ P ({x+,+}),P2 ≡
P ({x+,0}),P3 ≡ P ({x0,+}),P4 ≡ P ({x0,0}), as the probabil-
ities to be at the basins of attraction of the FPs where both
patches are colonized (FP1), patch 1 is colonized and patch
2 is extinct (FP2), patch 2 is colonized and patch 1 is exinct
(FP3), and both patches are extinct (FP4); see Fig. 2(a) for an
illustration. Assuming the transition rates ri j between Pi and
P j are known (to be calculated below), the probabilities Pi

(i = 1, 2, 3, 4) satisfy

Ṗi(t ) =
∑
j 
=i

r jiP j (t ) − ri jPi(t ), (14)

where the MTE is given by τ = ∫∞
0 tṖ4 dt [34,35]. While

these equations can be solved for any ri j (see Appendix A)
it turns out that the solution drastically simplifies for any
reasonable choice of parameters, and satisfies

τ � min
{
max

[
r−1

12 , r−1
24 , r21/(r12r24)

]
,

max
[
r−1

13 , r−1
34 , r31/(r13r34)

]}
; (15)

FIG. 2. Phase space and WE simulations. (a) Transitions be-
tween basins of attraction of FPs 1–4 (see Sec. III) drawn over
the quasistationary distribution obtained by the WE simulation (see
Sec. IV). (b) Illustration depicting the two steps we repeat in a WE
simulation, propagation and resampling (see Sec. IV). Parameters in
both panels are N = 100, κ = 1, d1 = 0.5, d2 = 0.4, μ = 10−3.

see Appendix A for details. Here we have assumed that
switches, which involve synchronous transitions of both
patches, occur at an exponentially slower rate than other
transitions; i.e., rates r14, r23, r32, are negligible compared
to all other rates; see Appendix A. The outer minimum in
Eq. (15) chooses the extinction route with the overall minimal
cost, while the inner maximum determines the cost of the
chosen trajectory.

1. Transition rates calculation

We now compute the rates ri j in the limit of μ � 1, while
taking into account the fact that in this limit, extinction occurs
in a serial manner with an overwhelming probability; see
above. Let us start by computing the extinction rates, and
without loss of generality let us consider the extinction of
patch 1 while patch 2 remains colonized. That is, we assume
that x2 and p2 fluctuate around their colonized FP with demo-
graphic noise of order (κN )−1/2, and additional migrational
noise of order μ, where both μ and (κN )−1/2 are small
and uncorrelated. To this end, we substitute x2 = x(0)

2,+[1 +
O(μ) + O(N−1/2)] and p2 = O(μ) + O(N−1/2), into Hamil-
tonian (13), and keep terms up to first order in μ � 1 and
zeroth order in N � 1. After some algebra, this yields an
effective Hamiltonian that accounts for the transition FP1 →
FP3, i.e., the extinction of patch 1, while experiencing patch 2
as constant external flux at its colonized state [see Fig. 2(a)]:

H slow
eff (x1, p1) = (ep1 − 1)[b1(x1) − e−p1 d1(x1)]

+μ(e−p1 − 1)x1 + αμκ (1 + δ2)(ep1 − 1).

(16)

From this Hamiltonian we can compute the optimal path from
FP1 to FP3—a heteroclinic trajectory the system takes with
an overwhelming probability, connecting FP1 and FP3 [26].
This path can be found by equating H slow

eff (x1, p1) = 0 which
yields

p1(x1) = ln

[
d1(x1) + μx1

b1(x1) + μακ (1 + δ2)

]
, (17)
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which, for μ � 1, can be approximated as

p1(x1) � ln

[
d1(x1)

b1(x1)

]
+μ

[
x1

d1(x1)
− ακ (1 + δ2)

b1(x1)

]
. (18)

Therefore, the action satisfies

S13 =
2∑

k=1

∫ (x−,+ )k

(x+,+ )k

pk (xk ) dxk �
∫ (x−,+ )1

(x+,+ )1

p1(x1) dx1, (19)

where the integral limits are given by Eqs. (6), and the integral
over p2(x2) was ignored as it contributes only O(μ2) terms.
Performing the integral in Eq. (19) with p1(x1) given by
(18), we find the action S13 up to first order in μ. Note that,
computing the actions S12, S24, and S34 corresponding to the
transitions between FP1 and FP2, FP2 and FP4. and FP3 and
FP4, respectively [see Fig. 2(a)], can be done in a similar
manner. These calculations yield the following extinction
actions:

S24 = S0(δ1)(1 + μ/2) − μδ1,

S13 = S24 + μακδ1(1 + δ2),

S34 = κS0(δ2)(1 + μα/2) − μακδ2,

S12 = S34 + μδ2(1 + δ1), (20)

where

S0(δi ) = 2
[
δi − (1 − δ2

i

)1/2
arcsin(δi )

]
(21)

is the action of isolated patch i. Having found these actions, in
the leading order in N � 1, the extinction rates are given by
ri j = e−NSi j for i j = {12, 13, 34, 24}.

Finding the colonization rates r21 and r31, can be done in a
similar manner by integrating over optimal path (17) between
the corresponding FPs. For example, the colonization rate of
patch 1 while patch 2 is colonized [transition FP3 → FP1; see
Fig. 2(a)] is found by integrating between (x0,+)1 and (x−,+)1,
given by Eqs. (6), and approximating the result up to O(μ)
[36]. The transition FP2 → FP1 can be found in a similar
manner. This yields the colonization actions

S31 =
{
δ1 + 2

(
1 − δ2

1

)1/2
arcsin

[(
1−δ1

2

)1/2]
− 1
}

−μ1/2 π[κα(1+δ2 )(1−δ2
1 )]1/2

21/2

+μ
{(

1 − δ2
1

)1/2
arcsin

[(
1−δ1

2

)1/2]
+ κα(1+δ2 )(δ1+3)

2

}(22)

and

S21 = κ
{
δ2 + 2

(
1 − δ2

2

)1/2
arcsin

[(
1−δ2

2

)1/2]
− 1
}

−μ1/2 π[(1+δ1 )(1−δ2
2 )κ]1/2

21/2

+μ
{
α
(
1 − δ2

2

)1/2
κ arcsin

[(
1−δ2

2

)1/2]
+ (1+δ1 )(δ2+3)

2

}
.

(23)

The colonization rates are thus given by r21 = exp(−NS21)
and r31 = exp(−NS31).

Notably, Eqs. (15), (20), (22), and (23) show the advan-
tage of our formulation compared to early metapopulation
models, where deterministic bistability was accounted for by
averaging over multiple FPs in the system [1,10,13,23]. Our
approach fully accounts for multiple metastable states, and
may be used to assess the validity of such averaging. Our

FIG. 3. (a) and (b) MTE as a function of μ: theory (solid line)
given by Eq. (15) with Eqs. (20) for slow migration, and Eq. (32)
for fast migration, compared to WE simulations (circles). Here
(a) N = 2300, κ = 0.87, δ1 = 0.25, δ2 = 0.21, α = 1; (b) N = 400,
κ = 0.25, δ1 = 0.45, δ2 = 0.7, α = 1. Inset of (a) shows the sharp
increase in the standard deviation of patch 1 around its stable FP
(normalized by the mean size of both patches) when approaching
μcrit � 1.5 × 10−2. (c) Comparison of the extinction (increasing
black line) and colonization (decreasing red line) rates, for N = 250,
κ = 0.5, δ1 = 0.62, δ2 = 0.6, α = 1. (d) Shown are the MTE (solid
line) [Eq. (15)], the local extinction rates FP1 → FP3 (upper green
dashed line) and FP1 → FP2 (lower red dashed line) [see Eqs. (20)],
and WE simulations (circles) as a function of μ; the dashed vertical
line denotes μcrit [Eq. (24)]. Here N = 2000, κ = 1, δ1 = 0.25, δ2 =
0.21, and α = 1.

analysis also allows for calculating these transition rates from
first principles.

In Figs. 3(a) and 3(b) we compare, for two different pa-
rameter sets, our analytical result for τ versus μ [Eq. (15)],
with highly efficient WE simulations [37–39]; see Figs. 2(b)
and Sec. IV for details. In Fig. 3(c) we compare extinction
and colonization rates of a local patch (when the second
patch is colonized), which are shown to strongly depend on
migration, in contrast to some early metapopulation models
[1]. Importantly, for sufficiently slow migration τ decreases as
μ increases; see Figs. 3(a) and 3(b). That is, as μ is increased
from zero, the metapopulation’s extinction risk increases,
compared to the isolated case.

To understand why this occurs, let us analyze the com-
peting terms in Eq. (15). For μ → 0, the colonization rates
r21, r31 vanish, and thus, at sufficiently slow migration, these
rates can be neglected. Moreover, while at μ = 0 we have
r13 = r24 and r12 = r34, see Eqs. (20), as μ is increased,
r24 and r34 respectively increase at a faster rate than r13

and r12 (which do not necessarily increase at all). Thus, as
μ increases, the minimum in Eq. (15) necessarily chooses
the terms r−1

24 over r−1
13 and r−1

34 over r−1
12 ; i.e., the MTE is

determined by the maximum of r−1
24 and r−1

34 , both of which
decrease as μ is increased.

Why do r−1
24 and r−1

34 decrease? Along the transitions
FP2 → FP4 and FP3 → FP4 there is one patch that is
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FIG. 4. (a) μcrit versus κ as predicted by the exact form of τ

given by Eq. (A7) (solid line) and as given by Eq. (24) (dashed
line). Parameters are δ1 = δ2 = 0.2, α = 1. (b) μcrit as a function
of δ ≡ δ1 = 2δ2. The solid line is the exact result as obtained from
Eq. (A7), the dashed line is Eq. (24), and the dashed-dotted line is
the bifurcation result [Eq. (25)]. Parameters are κ = 1/α = 1/2.

colonized and another, close to extinction. As μ grows, the
colonized patch sends individuals to the patch close to ex-
tinction, while the back flux is negligible. Thus, whereas
the flux from the colonized patch increases its extinction
risk (due to loss of individuals), it cannot rescue the other
patch from extinction, as its population size is below the
colonization threshold. Hence, weak migration increases the
metapopulation’s global extinction risk compared to the iso-
lated case, which is a direct consequence of the Allee effect
and the existence of a colonization threshold; for local logistic
dynamics the opposite is observed [20].

The decrease of τ (μ) at small μ can give rise to another
fascinating phenomenon: the existence of a global minimum
of τ (μ) at a critical (and finite) migration rate μcrit , that
maximizes the extinction risk of the metapopulation; see
Sec. III A 2. In Fig. 3(a) we observe such a global minimum,
while in Fig. 3(b), the minimum is obtained only at μ → ∞.
Empirically, approaching the minimum of τ is accompanied
by a sharp increase in the population’s variance of the colo-
nized patch (in FP2/FP3) as μ approaches μcrit; see inset of
Fig. 3(a). This increase can serve as an early warning signal
for stability deterioration of the entire metapopulation [40].

Notably, our analysis invalidates a long standing claim, that
the rescue of local patches necessarily increases the metapop-
ulation’s viability [1,21], when the local dynamics include the
Allee effect. Indeed, for small μ, as μ increases a single patch
can experience a decrease in its local extinction risk (“rescue
effect”) even though the global extinction risk increases. This
behavior is apparent by comparing the MTE of the global
metapopulation with the MTE of a single patch while the other
patch is colonized; see Fig. 3(d). Here, while each patch is
shown to locally profit from increasing migration, the MTE of
the global metapopulation decreases with increasing μ.

2. Critical migration rate

As specified above, in some cases there exists a critical
migration rate, μcrit , for which the metapopulation’s extinc-
tion risk is maximized. In general, μcrit can be computed
numerically using the exact form of the MTE [Eq. (A7) in
Appendix A]; see Fig. 4. For simplicity, here we find μcrit in
the case of negligible colonization rates [41]. In this case, the
maximum functions in Eq. (15) choose between r−1

24 and r−1
12

or between r−1
34 and r−1

13 . As a result, the critical migration rate
is given by equating S24 = S12 or S34 = S13:

μcrit = S0(δ1) − κS0(δ2)

δ1 − S0(δ1)/2 + C − ακ[δ2 − S0(δ2)/2]
. (24)

Here C is determined by the relative stability of the patches.
For S0(δ1) > κS0(δ2), C = δ2(δ1 + 1). In this case μcrit is a
global minimum as long as the correction in S12 is positive
[see Eqs. (20)], i.e., δ2(δ1 + 1) > ακδ2 − S0(δ2)/2. On the
other hand, for S0(δ1) < κS0(δ1), C = ακδ1(δ2 + 1). In this
case, μcrit is a global minimum as long as the correction in S13

is positive, i.e., ακδ1(δ2 + 1) > δ1 − S0(δ1)/2.
In Fig. 4 we plot μcrit as a function of κ and δ. In Fig. 4(a)

we compare Eq. (24) with the critical migration rate obtained
numerically by finding the minimum of the exact form of τ ,
given by Eq. (A7) in Appendix A. We find that Eq. (24) is a
good approximation as long as κ is not too close to 1; oth-
erwise, the assumption that the transition rates exponentially
differ from each other breaks down, which invalidates Eq. (15)
and Eq. (24).

Equation (24) drastically simplifies close to the bifurcation
limit where δ1, δ2 � 1. To remind the reader, at the bifurca-
tion limit the colonized state and colonization threshold merge
[31]. Taking δ1 ≡ δ and δ2 = uδ, where u = O(1), Eq. (24)
simplifies to

μcrit � max{(2/3)δ2(1 − κu3), [2/(3u)]δ2(κu3 − 1)}, (25)

which agrees well with Eq. (24) for δ � 1; see Fig. 4(b).

B. The case of fast migration

For fast migration, μ � 1, only FPs 1 and 4 remain; see
Figs. 1(b) and 1(c). Thus, extinction can occur only via a
transition between a state where both patches are colonized
and the extinction state, such that the MTE is given by r−1

14 .
Here, the action can be found using the fact that the total
metapopulation size is slowly varying compared to the local
population size on each patch [19].

Dividing Hamiltonian (13) by μ we define

H̃ (x, p) ≡ H0(x, p) + μ−1H1(x, p), (26)

with

H0(x, p) = x1(ep2−p1 − 1) + x2α(ep1−p2 − 1),

H1(x, p) =
2∑

i=1

{(epi − 1)[bi(xi ) − e−pi di(xi )]}. (27)

That is, the local dynamics act as a perturbation to H0, which
includes the migration terms. Assuming that the total popula-
tion size varies much slower than that of each individual patch,
we use the following transformation:

Q=x1 + x2 , q=x2 , P= 1
2 (p1 + p2) , p= p2. (28)

This transformation, which is canonical in the leading or-
der in μ � 1, is motivated by the requirement that both
Q and P are slowly varying compared to q and p. We
now substitute this transformation into Hamiltonian (26)
and write the Hamilton equations, ṗ = −∂qH̃ (Q, q, P, p) and
q̇ = ∂pH̃ (Q, q, P, p). Putting ṗ = q̇ = 0, i.e., assuming the
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fast variables instantaneously equilibrate to some (Q, P)-
dependent functions [42], and solving the resulting algebraic
equations for q and p perturbatively with respect to μ−1,
we find

q = Q

1 + α
+ μ−1q(1)(Q, P), p = P + μ−1 p(1)(Q, P),

(29)

where q(1) and p(1) are (known) functions of Q and P. Using
Eqs. (28) and (29) in Hamiltonian (26) divided by μ−1, and
keeping terms up to O(μ−1), we note that the zeroth-order
term in μ vanishes, and we arrive at an approximate Hamilto-
nian in the fast migration regime:

Heff = H (0)
eff (Q, P) + μ−1H (1)

eff (Q, P) + O(μ−2). (30)

Here H (0)
eff (Q, P) = (eP − 1)[b̃(Q) − e−Pd̃ (Q)] , b̃(x) = 2x2/

[κ̃ (1 + 1/α)(1−δ̃2)], d̃ (x) = x + x3/[κ̃2(1 + 1/α)2(1 − δ̃2)],
while H (1)

eff (Q, P) is a (known) function of Q and P, but too
long to be explicitly presented. To find the action, we equate
Heff [Eq. (30)] to zero, which yields

P(Q) = P(0)(Q) + μ−1P(1)(Q), P(0)(Q) = ln[d̃ (Q)/b̃(Q)].
(31)

As a result, using Eqs. (28) and (29), the action satisfies

Sfast =
∫ ξ−+O(μ−1 )

ξ++O(μ−1 )
p1 dx1 +

∫ ξ−/α+O(μ−1 )

ξ+/α+O(μ−1 )
p2 dx2

�
∫ Q−+O(μ−1 )

Q++O(μ−1 )
P(0)dQ + μ−1

∫ Q−

Q+

(
P(1) + 1−α

1+α
p(1)

)
dQ.

(32)

Here and in Eq. (31) P(1)(Q) is too long to be explicitly
presented, Q± = (1 + 1/α)ξ± is the combined population
size of the two patches for the colonized state (Q+) and for the
colonization threshold (Q−), while ξ± are given by Eqs. (9).

Equation (32) allows computing Sfast up to subleading
order in μ−1. Indeed, the approximation in the second line of
Eq. (32) contains two integrals: in the first we integrate over
the zeroth-order trajectory, P(0), and take into account possible
corrections to the limits, while in the second, we integrate over
the corrections to the trajectory, but neglect corrections to the
limits as these contribute only O(μ−2) terms to the action.
To find the second integrand, we note that P(1) is a known
function of Q, while p(1)(Q, P) must be evaluated at P(0),
given by Eq. (31), as higher-order corrections in P contribute
only O(μ−2) terms to the action. In what follows, we compute
the zeroth-order term of Sfast as well as the O(μ−1) correction
(in particular limits where the result is amenable).

The leading-order contribution to Sfast reads

S(0)
fast =

∫ Q−

Q+
P(0)dQ = (1 + 1/α)κ̃S0

(
δ̃
)
, (33)

where S0(δ) [Eq. (21)] is the action of an isolated patch.
This result provides an indication whether fast migration is
beneficial over isolation for the entire metapopulation. That
is, if S(0)

fast > max {S0(δ1), κS0(δ2)} [43], fast migration has a
positive effect on the population’s viability. In this case, in
addition to μcrit for which the MTE is minimized, there exists
an optimal migration rate, μopt, which globally maximizes

FIG. 5. (a) MTE in the fast migration limit as a function of
α: theory [Eq. (32)] (solid line) versus WE simulations (circles).
Inset shows the values of α and κ that maximize τ ; here N =
300, κ = 2/3, δ1 = 0.56, δ2 = 0.34, μ = 100. (b) MTE in the fast
migration limit as a function of μ: theory [Eq. (32)] (solid line), the
κ � 1 approximation [Eqs. (34)] (dashed line), and WE simulations
(circles). Here N = 105, κ = 0.008, δ1 = 0.4, δ2 = 0.72, and α = 1.

the MTE; see Fig. 3(a) and below. In contrast, in Fig. 3(b)
this condition does not hold, and τ decreases monotonically
for the entire range of μ. Note that, upon replacing the
threshold and carrying capacity parameters by their effective
counterparts [see Eqs. (10)], S(0)

fast coincides with the one-patch
result, up to a factor of (1 + 1/α), entailing the combined
(deterministic) contribution of the two patches (see Sec. II).

Notably, S(0)
fast receives a maximum when α � κ−1 (for

comparable δ1 and δ2); see Fig. 5(a). That is, at μ � 1, the
extinction risk is minimized when the typical flux between
patches is approximately equal, i.e., when typically an equal
number of individuals pass across patches per unit time. This
corresponds to an optimal synchronization of patches. In
contrast, as ακ significantly deviates from 1, synchronization
breaks down and one patch becomes much less stable than the
other resulting in a dramatic decrease of the MTE. In extreme
cases (see below) loss of synchrony may lead to “source-sink”
dynamics where the patch with the large carrying capacity
becomes a sink to the patch with the small carrying capacity.

1. Explicit calculation of correction

We now turn to discuss the correction term, S(1)
fast, such that

Sfast = S(0)
fast + μ−1S(1)

fast. While the full expression for S(1)
fast is

not presented as it is highly cumbersome, our theoretical result
in Figs. 3 and 5(b) includes this correction. In Fig. 6 we plot
S(1)

fast as a function of δ1 and δ2 for two different parameter

FIG. 6. S(1)
fast [the O(μ−1) correction in Eq. (32)] versus δ1 and δ2.

Here α = 2 and κ = α−1 = 0.5 (a) and κ = 1 (b). In (a), along the
line δ1 = δ2, we find that S(1)

fast = 0.
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sets. We find that in most realistic cases S(1)
fast is positive,

which suggests the existence of an optimal migration rate that
maximizes the metapopulation’s lifetime; see below.

In two limiting cases the correction S(1)
fast drastically sim-

plifies. The first and simplest case is of well-mixed patches
[19] κ = 1/α and δ1 = δ2. Here we find that the correction
vanishes; see Fig. 6(a). This occurs since all terms that depend
on μ−1 in Eq. (32), P(1), p(1) and the corrections to the
integral limits, vanish in this special case. Thus, for well-
mixed patches, the MTE rapidly reaches a steady value in the
fast migration regime.

The second limit in which S(1)
fast simplifies is the limit of very

different carrying capacities, κ � 1; here loss of synchrony
may lead to a source-sink dynamics, where the large patch
becomes a sink to the neighboring small patch. In Sec. II
we have shown that deterministically, for κ � 1, the smaller
patch dictates the typical size of the population. Here the
leading and subleading-order terms in Eq. (32) become

S(0)
fast � (α + 1)κS0(�2),

S(1)
fast � ακ[4arctanh(�2) − 3�2 − 9S0(�2)/2], (34)

where S0(δ) is given by Eq. (21) and �2 = [δ2
2 −

α(1 − δ2
2 )]1/2. Thus, for κ � 1, Eqs. (34) indicate that the

MTE is independent on the patch with the higher carrying
capacity, i.e., the smaller patch dictates not only the metapop-
ulation’s typical size, but also its survival probability.

In Fig. 5(b) we compare for κ � 1 the general MTE
[Eq. (32)] and Eqs. (34) and find very good agreement.

2. Optimal migration rate

As discussed above, in general, the optimal migration
rate μopt, which maximizes the global MTE, exists if S(0)

fast >

max {S0(δ1), κS0(δ2)}, and if the correction S(1)
fast is positive.

μopt can be found by a simple calculation, comparing the
solutions for slow and fast migration:

τslow(μopt ) = τfast(μopt ), (35)

where τslow(μopt ) is the slow-migration MTE [Eq. (15)], and
τfast(μopt ) � exp[NSfast] can be found from Eq. (32).

In general, Eq. (35) can only be solved numerically. Yet,
close to the bifurcation limit where δ1, δ2 � 1, Eqs. (15)
and (32) drastically simplify, and we find μopt ∼ 2δ/3 +
O[δ(u − 1)], where we have put δ1 = δ, δ2 = δu and we have
assumed |u − 1| � 1. The general solution of Eq. (35) and its
comparison with the approximate solution close to bifurcation
are shown in Figs. 7(a) and 7(b), respectively as function of κ

and δ. In both panels we made sure that the correction S(1)
fast

is positive such that there exists a maximum, apart from the
special case of κ = 1 in Fig. 7(a) where S(1)

fast = 0.

IV. WEIGHTED ENSEMBLE SIMULATIONS

Here we briefly discuss the weighted ensemble (WE)
algorithm we have used to verify our analytic results and
theoretical assumptions. Throughout this work, WE simula-
tions were used to probe multiple transitions in space, and
their associated probabilities. For example, in Fig. 8 we give
snapshots from a WE simulation at different times. Here one
observes the flow of probability from FP1 to both FP2 and

FIG. 7. (a) μopt given by numerically solving Eq. (35), for δ1 =
δ2 = 0.3, α = 1. (b) μopt given by numerically solving Eq. (35) (solid
line) along with the result close to bifurcation (dashed-dotted line);
see text. Here δ1 = δ2 = δ, κ = α−1 = 7/11.

FP3, and ultimately from FP2 and FP3 to FP4 [see Fig. 2(a)],
where at long times the system reaches a quasi-stationary
distribution of population sizes. As assumed in Sec. III A,
this figure displays that extinction occurs serially, and that
transitions like FP1 → FP4 occur with very low probabilities.

The basic idea of the WE algorithm is to run significantly
more simulations in regions of interest, whereas to compen-
sate for the bias, we distribute the weight of each trajectory
accordingly. To this end, space is divided into bins, which can
be predefined or interactively chosen (on the fly), to ensure
sampling in specific regions of interest. We thus start the
simulation with m trajectories in proximity to a stable fixed
point of the deterministic system. Each of the m trajectories is
given an initial equal weight of 1/m. The simulation consists
of two general steps: (1) Trajectories are advanced in time by
τWE, where the time-propagation method is according to the
Gillespie algorithm [44]; (2) Trajectories are resampled as to
maintain m trajectories in each occupied bin, while bins that
are unoccupied remain so. An illustration of the method is
given in Fig. 2(b), in which the number of bins is four and the
number of trajectories is m = 3. The process of resampling
can be done in various ways, as long as the distribution is
maintained. In our simulation we used the original resampling
method suggested by Huber and Kim [37].

Note that τWE is chosen to be much shorter than the
system’s relaxation time, t relax

i,+ , but much longer than the
typical time between reactions, as to increase efficiency. We
also stress that bins need to be chosen wisely: if chosen too

FIG. 8. Contour plot of the probabilities Pn1,n2 (see Sec. III)
obtained by WE simulations. Parameters are N = 100, κ = 1, δ1 =
0.5, δ2 = 0.4, μ = 10−3, and α = 1.
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FIG. 9. MTE obtained by brute-force Monte Carlo (full trian-
gles) and WE (circles) simulations, as a function of δ1. Parameters
are N = 60, κ = 1, δ2 = 0.45, μ = 2, and α = 1.

far apart, trajectories will not reach remote regions, while
if chosen close together the computational cost will be very
high. Generally, there is a tradeoff between the number of bins
and the trajectories per bin, assuming some memory limit. In
our simulations, to achieve high efficiency we interactively
changed the bins.

Error evaluation in our simulations was conducted numer-
ically: by altering various simulation parameters, such as the
number of bins and trajectories per bin, our estimation of the
maximal error is ∼20%. This error is accounted for via the
symbols’ size in all relevant figures.

Finally, we checked that the results of the WE simulations
coincide with brute-force Monte Carlo (BFMC) simulations
in parameter regimes in which the latter are applicable; see
e.g., Fig. 9. We stress that WE simulations are much more
efficient than BFMC simulations, which are limited in probing
rare events, as simulation times grow exponentially with the
system’s size. In addition, BFMC lacks the ability to easily
separate different routes of extinction, which is at the center
of this study. WE simulations are thus ideal for our pur-
pose: larger system sizes do not require exponentially longer
simulations and additionally, by measuring the flux between
different metastable states, we can easily differentiate between
global extinction and individual routes to extinction.

V. SUMMARY AND REALISTIC MODEL

In this work we have studied the extinction risk of
a metapopulation—a network of interconnected population
patches—where local patch dynamics include the Allee effect.
We have shown that for slow migration the Allee effect gives
rise to multiple routes to extinction, and generally decreases
global survival probability. This may lead to the existence of a
critical migration rate, which maximizes the global extinction
risk of the population. These results are in sharp contrast to the
case of local logistic dynamics [20]. Importantly, our results
challenge the so-called rescue effect, where we have shown
that as the migration rate increases, the global extinction
risk also increases, even though each patch can separately
experience a decrease in its local extinction risk.

In the fast migration regime, we have shown that there
is only one route to extinction and found the MTE up to

FIG. 10. MTE as a function of μ12 = μ21 = μ: results of WE
simulations for the alternative model exhibiting the Allee effect
[Eq. (36)]. (a) N1 = 490, N2 = 480, and n0,1 = n0,2 = 210; (b) N1 =
500, N2 = 70, n0,1 = 211, and n0,2 = 70.

subleading-order corrections. Here, when the typical flux
between patches is comparable, we have shown that migration
is beneficial, and there usually exists an optimal migration
rate that minimizes the extinction risk. Yet, in some cases
isolation is preferred over mixing regardless of the migration
rate, in contrast to local logistic dynamics [20]. This behavior
occurs since under the Allee effect, patches do not always well
mix [19].

All our analytical results were verified using a highly
efficient WE method, which in general is very useful for
studying rare events in stochastic population dynamics.

Notably, the analysis above is not limited to our particular
choice of the birth and death rates [Eq. (1)], and is generic
for any model, locally exhibiting the Allee effect [45]. To give
another example we now present an alternative model which is
more realistic in the biological sense; see, e.g., Refs. [19,45].
Here the Allee effect is locally accounted for by choosing the
following birth-death process:

ni
Bni−→ ni + 1, ni

Dni−→ ni − 1,

Bni = Nin2
i

n2
i + n2

0,i

, Dni = ni, (36)

where Ni > 0 is the carrying capacity, 0 < n0,i < Ni/2 is
the threshold parameter, and migration between patch i and
j occurs at a rate μi j . We have simulated this model for
two patches using the WE simulations; see Sec. IV. Our
results (see Fig. 10) indicate that the analysis done for the
simple model 2A ↔ 3A and A → 0 is generic and holds for
other models exhibiting the Allee effect. In particular, our
simulations demonstrate the existence of μcrit and μopt in
some parameter regimes [Fig. 10(a)], while in other regimes
we observe a monotone decreasing MTE as a function of μ

[Fig. 10(b)], similarly as in Fig. 3.
Notably, our approach may also be useful in analyzing

a multistate gene regulatory network, where each “patch”
corresponds to a distinct DNA state. Here the local Allee-like
dynamics of proteins is supplemented by protein influx such
that instead of extinction, the system switches between dif-
ferent phenotypic states [46–48]. Our method allows rigorous
treatment of such models in the important limits of fast and
slow binding or unbinding of a repressor or promoter to the
DNA states, compared to protein dynamics [49]. Moreover,
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our approach may provide insight into bet-hedging strategies
of a bacterial population under antibiotic stress, where it has
been observed that demographic fluctuations can be reduced
by migration between the two “patches,” corresponding to the
persister and nonpersister phenotypic states [50].
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APPENDIX A

In this Appendix we derive the MTE given in Eq. (15). Our
staring point is Eqs. (14), which explicitly read

Ṗ1(t ) = r21P2(t ) + r31P3(t ) − (r12 + r13 + r14)P1(t ),

Ṗ2(t ) = r12P1(t ) + r32P3(t ) − (r24 + r21 + r23)P2(t ),

Ṗ3(t ) = r13P1(t ) + r23P2(t ) − (r34 + r31 + r32)P3(t ),

Ṗ4(t ) = r14P1(t ) + r24P2(t ) + r34P3(t ), (A1)

where Pi is the probability to be at the basin of attraction
of FP i (see Fig. 2) and ri j is the transition rate between
Pi and P j . Using the last of Eqs. (A1), the MTE, given by
τ = ∫∞

0 tṖ4 dt , reads

τ =
∫ ∞

0
t[r14P1(t ) + r24P2(t ) + r34P3(t )]dt . (A2)

Now, since P4(t ) does not appear explicitly in Eqs. (A1), we
define P (t ) = [P1(t ),P2(t ),P3(t )] and rewrite the first three
of Eqs. (A1) in matrix form:

Ṗ (t ) = ↔
AP (t ), (A3)

with

↔
A ≡

⎛
⎜⎝

−∑4
i 
=1 r1i r21 r31

r12 −∑4
i 
=2 r2i 0

r13 0 −∑4
i 
=3 r3i

⎞
⎟⎠. (A4)

Note that in matrix
↔
A we have neglected the rates r14, r23,

and r32. Since at slow migration extinction occurs in a serial
manner, it can be shown that in the semiclassical limit where
the carrying capacities are large, these rates are negligible
compared to other rates, as they satisfy r14 ∼ r12r24, r23 ∼
r21r13, and r32 ∼ r31r12; see below.

In order to find the MTE we need to solve (A3) with initial
conditions P (0) = (1, 0, 0), i.e., starting from the colonized

state in both patches. Since
↔
A is not necessarily diagonal-

izable, the problem can be generally solved via the Schur

decomposition [51], namely,
↔
A = ↔

U
↔
T

↔
U

−1

, with
↔
U being a

unitary matrix and
↔
T an upper triangular matrix, given by

↔
T ≡

⎛
⎝λ1 T12 T13

0 λ2 T23

0 0 λ3

⎞
⎠. (A5)

Here the diagonal elements λi < 0, are the eigenvalues of
↔
A,

and T12, T13, T23 depend on the chosen (not unique) Schur

decomposition. By decomposing P (t ) = ↔
Uq(t ) we rewrite

Eq. (A3) as q̇(t ) = ↔
T q(t ), with initial conditions q(0) =

↔
U

−1

P (0). Since
↔
T is upper triangular, the solution to q(t ) =

[q1(t ), q2(t ), q3(t )] can be found iteratively by solving for
q3(t ), then q2(t ), and then q1(t ), as follows:

q3(t ) = q3(0)eλ3t ,

q2(t ) = q2(0)eλ2t +
∫ t

0
T23e−λ2(t ′−t )q3(t ′) dt ′,

q1(t ) = q1(0)eλ1t +
∫ t

0
e−λ1(t ′−t )[T12q2(t ′) + T13q3(t ′)] dt ′,

(A6)

where these integrals can be computed in a straightforward
manner. Finally, having found q(t ), Eq. (A2) is solved by

τ = r ᵀ
4

↔
Uc, (A7)

where r4 = (0, r24, r34) and c = ∫∞
0 tq(t ) dt (i = 1, 2, 3).

Note that while the Schur decomposition and the solution for
q are not unique, the solutions for P and τ [Eq. (A7)] are in
fact unique.

While an explicit version of Eq. (A7) exists, it is highly
cumbersome, as it involves solving a cubic equation and
finding a specific schur decomposition. Nonetheless, in one
important case τ drastically simplifies. In general, if the
carrying capacities are large, the transition rates exponentially
differ from each other. This is due to the large parameter N
that multiplies the action in the exponent, and the fact that
the actions are all, in general, different from one another.
In particular, this indicates that one of the transition rates
FP1 → FP2 or FP1 → FP3, respectively given by r12 and r13

(see Fig. 2), is negligible compared to the other. Without loss
of generality, let us assume that r13 is negligible compared to
r12. In this case, the solution to (A7) drastically simplifies and
reads

τ = r12 + r21 + r24

r12r24
� max

{
1

r24
,

1

r12
,

r21

r12r24

}
. (A8)

While this result accounts for only one route to extinction
(assuming the other route is exponentially unlikely), it also
includes a correction to this single route due to possible
recolonization, which depends on the colonization rate r21.
Demanding a posteriori that r13 be negligible compared to the
individual rates comprising this route to extinction, and using
Eq. (20), it can be shown that Eq. (A8) is valid as long as
r13 � r12r24/r21; otherwise we have neglected a term larger
than the rate of extinction. Note that if alternatively r13 � r12

then the equivalent of Eq. (A8) will hold as long as r12 �
r13r34/r31. Also note that these conditions are easily satisfied
when the colonization rates r21 and r31 are negligibly small,
which is the case in most of the parameter space, whereas
Eq. (A8) breaks down only in non-WKB parameter regimes.
These arguments lead to a generic expression for τ , given by
Eq. (15).
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We finally show, by explicitly calculating r14, that for
slow migration extinction occurs in a serial manner with an
overwhelming probability. In the leading order in μ, the action
is the sum of all independent actions [20]:

S14 =
2∑

i=1

∫ (x−,− )i

(x+,+ )i

pi dxi � S0(δ1) + κS0(δ2). (A9)

Since in the limit μ → 0, this expression coincides with the
sum of the actions S12 and S24 or S13 and S34, we find that
r14 ∼ r12r24 ∼ r13r34, which means that r14 is exponentially
smaller than any of the individual rates. Clearly, the same
argument also applies for rates r23 and r32 which include
transitions resulting in changes in both patches. Moreover, the
fact that r14, r23, and r32, are negligibly small compared to all
other rates, was also verified by WE simulations. Note, that
similarly as done in Ref. [20], subleading-order corrections in
μ � 1 can also be computed for r14. Yet we do not give the
corrections here as r14 itself is negligible in the slow migration
regime.

APPENDIX B

Here we generalize our results to M fully connected
patches, for both slow and fast migration.

1. The case of slow migration

The results for two patches [Eqs. (20)] can be generalized
to M connected patches. This is done by defining φin

i =∑
j 
=i α jix

(0)
j,s j

[see Eq. (5)] as the incoming flux to patch i
given by the sum over all zeroth-order stable FPs of patches
migrating into this patch [s j = (0,+)]. Furthermore, defining
φout

i =∑ j 
=i αi j as the magnitude of the outgoing flux from
patch i, and using similar arguments as in the two-patch case,
we find

Si(φ
in
i ) = κiS0(δi )(1 − μφout

i /2) + μδi
(
φin

i − φout
i κi

)
, (B1)

where S0(δi ) is given by Eq. (21). Since φin
i depends on x(0)

j,s j

for j 
= i and s j = (0,+), φin
i can take 2M−1 different values,

as each of the other patches can be either extinct or colonized.
On the other hand, φout

i is determined only by patch i. The
notation Si(φin

i ) is thus intended to emphasize that this action
describes the extinction of patch i, given a specific influx
φin

i , chosen out of 2M−1 possibilities for the deterministic
occupancy of the other patches.

Similarly, the colonization rate of patch i, given by
Eqs. (22) and (23), can also be generalized to M patches:

Si(φ
in
i ) = κi

{
δi + 2

(
1 − δ2

i

)1/2
arcsin

[(
1 − δi

2

)1/2]
− 1

}

−μ1/2 π
[
φin

i

(
1 − δ2

i

)
κi
]1/2

21/2

+μ

{
φout

i

(
1 − δ2

i

)1/2
κi arcsin

[(
1 − δi

2

)1/2]

+ 1

2
φin

i (δi + 3)

}
, (B2)

where in the case of two patches, S31 and S21 are obtained
from this result for i = 1, φout

1 = 1, φin
1 = ακ (1 + δ2) and

i = 2, φout
2 = α, φin

2 = (1 + δ1), respectively. Using similar
arguments to those in the case of two patches, one can show
that our main result—that for sufficiently slow migration,
mixing reduces stability—also holds for the general case of
M patches. To test this claim, we have performed additional
numerical WE simulations (not shown) with up to four inter-
connected patches.

2. The case of fast migration

The zeroth-order result in the fast migration limit, Eq. (33),
can also be generalized to M patches. Here we choose for
simplicity μi j = μ. By conducting a similar calculation to the
two-patch case one finds S(0)

fast = Mκ̃S0(δ̃), where here κ̃ and δ̃

are given by [19]

M

κ̃ (1 − δ̃2)
=

M∑
i=1

1

κi
(
1 − δ2

i

) ,
M

κ̃2(1 − δ̃2)
=

M∑
i=1

1

κ2
i

(
1 − δ2

i

) , (B3)

and it is required that δ̃ be real, as in the two-patch case.
Notably, by numerically analyzing this result one can show
that synchronization maximizes stability also for the general
case of M interconnected patches. Namely, for μi j = μ, the
action receives a maximum when the carrying capacities of all
patches are approximately equal. We have verified this result
by performing numerical WE simulations (not shown) with up
to four interconnected patches.
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