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Probing large deviations of the Kardar-Parisi-Zhang equation at short times with an importance
sampling of directed polymers in random media
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The one-point distribution of the height for the continuum Kardar-Parisi-Zhang equation is determined
numerically using the mapping to the directed polymer in a random potential at high temperature. Using an
importance sampling approach, the distribution is obtained over a large range of values, down to a probability
density as small as 10−1000 in the tails. The short-time behavior is investigated and compared with recent
analytical predictions for the large-deviation forms of the probability of rare fluctuations, showing a spectacular
agreement with the analytical expressions. The flat and stationary initial conditions are studied in the full space,
together with the droplet initial condition in the half-space.
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I. INTRODUCTION

We study the continuum Kardar-Parisi-Zhang (KPZ) equa-
tion [1] in 1 + 1 dimensions, which describes the stochastic
growth of an interface parametrized by a height field h(x, t ),

∂t h(x, t ) = ν∂2
x h(x, t ) + λ0

2
(∂xh(x, t ))2 +

√
D ξ (x, t ), (1)

starting from an initial condition h(x, 0). Here, ξ (x, t ) is a cen-
tered Gaussian white noise with E[ξ (x, t )ξ (x′, t ′)] = δ(x −
x′)δ(t − t ′), and we use from now on units of space, time and
heights such that λ0 = D = 2 and ν = 1 [2]. We consider here
the Cole-Hopf solution, such that Z (x, t ) = eh(x,t ) satisfies the
stochastic heat equation (SHE)

∂t Z (x, t ) = ∂2
x Z (x, t ) +

√
2ξ (x, t )Z (x, t ). (2)

Then, Z (x, t ) equals the partition sum of a continuum di-
rected polymer in the d = 1 + 1 random potential ξ , with
one end point at (x, t ). In some cases we will consider
the KPZ equation in a half-space x � 0, with the Neumann
boundary condition ∂xh(x, t )|x=0 = A for all time t , that is,
∂xZ (x, t )|x=0 = AZ (0, t ), where A is the boundary parameter.
The choice A = 0 corresponds to a symmetric (reflective) wall
at x = 0, while A = +∞ corresponds to an infinitely repulsive
wall (hard wall, or absorbing wall) imposing Z (0, t ) = 0 for
all t .

Exact solutions for the probability distribution function
(PDF) of the height h(0, t ) of the KPZ equation, valid at
all times t , have been obtained for several initial condi-
tions [3–12], notably flat, droplet, and Brownian (also called
stationary). They showed convergence to Tracy-Widom and

*Present address: SISSA and INFN, via Bonomea 265, 34136
Trieste, Italy.

Baik-Rains distributions at large time for the typical fluc-
tuations, depending on the class of initial condition. Exact
solutions valid at all times have also been obtained for the
half-space geometry [13–16].

Recently, the large deviations away from the typical behav-
ior have been studied. At short time, a number of results have
been obtained for a variety of initial conditions. While the
typical height fluctuations are Gaussian and of scale δh ∼ t1/4,
it was shown that the PDF of the shifted random variable H =
H (t ) = h(0, t ) − 〈h(0, t )〉 enjoys the large-deviation principle
in the regime H = O(1) and t � 1:

P(H, t ) ∼ exp

(
−�(H )√

t

)
(3)

with �(0) = 0. The rate function �(H ) exhibits some uni-
versal properties: it behaves as ∼H2 for small |H | � 1, in
agreement with the Gaussian form of the typical fluctuations,
and has asymmetric tails, |H |5/2 on the negative side and H3/2

on the positive side, with amplitudes depending on the initial
condition (see Table I).

There are two complementary methods to study the short-
time large deviations. The first one uses the known exact
solutions to the KPZ equation and allows to obtain the rate
function �(H ) completely analytically (see Refs. [17–21]).
It is, thus, at this stage, restricted to the initial conditions
where exact solutions are available. The second method, the
weak noise theory (also called optimal fluctuation theory) (see
Refs. [22–32]) is more versatile but leads to differential equa-
tions which can only be solved numerically, although exact
results have been obtained concerning the tails |H | → +∞,
in good agreement with the first method. The first method was
later extended to obtain higher order corrections in the small
time expansion in Ref. [33].

Having determined analytically the large-deviation func-
tion �(H ), one can ask whether it is possible to match the
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TABLE I. Tails of the large-deviation function �(H ) in (3)
for various initial conditions. In half-space, we use the shorthand
notations: reflective wall for A = 0, repulsive hard wall for A = +∞.
These results have been obtained in Refs. [17–21] and [22–31].

Initial condition Left tail Right tail

Full space
Droplet 4

15π
|H |5/2 4

3 H 3/2

Brownian-stationary 4
15π

|H |5/2 2
3 H 3/2

Flat 8
15π

|H |5/2 4
3 H 3/2

Half space
Droplet with reflective wall 2

15π
|H |5/2 2

3 H 3/2

Droplet with repulsive hard wall 2
15π

|H |5/2 4
3 H 3/2

Brownian with repulsive hard wall 2
15π

|H |5/2 2
3 H 3/2

theoretical predictions with numerical simulations [34]: this
is an outstanding problem as large deviations are by definition
extremely hard to probe. In the context of the KPZ equation,
a previous work [35] has investigated this question for the
droplet initial condition in full space, showing a very good
agreement over hundreds of decades in probability.

The aim of this paper is to extend the previous numerical
effort to obtain a similar quality of agreement with analytic
predictions for other initial conditions of the KPZ equation
(i) the flat and stationary, i.e., Brownian, initial conditions in
full space and (ii) the droplet initial condition in half-space
with an infinite hard wall. In addition, we aim to confirm
the existence of a phase transition for the stationary initial
condition. This transition, unveiled in [25,27,28], was further
analyzed and confirmed in [18] where analytic formulas were
obtained for the critical height Hc2 and the two branches for
�(H ) which coexist beyond the transition. Here, we aim to
confirm both branches, and in particular that the “analytic
branch” obtained in Ref. [18] (which does not show any phase
transition) corresponds indeed to the flat initial condition, as
argued in Ref. [28].

The outline is as follows. In Sec. II we explain the fol-
lowing methods: (i) the use of a lattice directed polymer in
the high temperature limit to simulate the continuum KPZ
equation, and (ii) the importance sampling method which
allows to explore the deep tails of the large-deviation regime.
In Sec. III we study first the flat and stationary initial con-
ditions (since their large deviations are related) and, second,
the half-space KPZ with an infinitely repulsive wall. We take
the opportunity to summarize in each case the analytical
predictions for the rate function �(H ). Next, we specify how
the directed polymer mapping is implemented. Finally, we
show and comment the numerical results.

II. METHODS

A. Directed polymer on a lattice

Define a directed polymer on the rotated square lattice
(y, τ ) (see Fig. 1), which is allowed to grow according to the
following rule:

(y, τ ) → (
y ± 1

2 , τ + 1
)
. (4)

FIG. 1. Representation of a directed polymer on a square lattice.
The square is rotated by 45◦ and the path of the polymer starts from
one of the corners of coordinate (0,0).

For each site of the square lattice, define a quenched
random variable Vy,τ , a temperature T , and an associated
Boltzmann weight exp(−Vy,τ

T ). For a path γ : (0, 0) →
(y f , L), we define its weight by

wγ =
∏

(y,τ )∈γ

e− Vy,τ
T . (5)

For paths of length L with a starting point (0,0) and an
end point (y f , L), the partition sum over all possible polymers
is given by the sum of the weight of all paths joining these
points:

Zy f ,L =
∑

γ

wγ . (6)

With these definitions, the partition sum verifies a natural
recursion formula which constitutes a discretized version of
the stochastic heat equation [36,37]

Zy,τ+1 = (
Zy− 1

2 ,τ + Zy+ 1
2 ,τ

)
e−βVy,τ+1 . (7)

Numerically, this problem is solved by the transfer matrix
method and the complexity to compute the partition sum up
to some discrete time τ is of order O(τ 2). It is interesting to
investigate the extreme regimes of zero temperature and high
temperature.

At zero temperature T → 0, the free energy defined
as Fy,τ = −T ln Zy,τ verifies the optimization and recursion
equation

Fy,τ+1 = min
(
Fy− 1

2 ,τ , Fy+ 1
2 ,τ

) + Vy,τ+1. (8)

In the high temperature regime T → ∞, the lattice poly-
mer converges to the continuum one. The continuum polymer,
whose partition function is the solution of the SHE (2), is ob-
tained from the lattice one using the following parametrization
[3,36]:

x = 4y f

T 2
, t = 2L

T 4
. (9)

The proper convergence of the partition function is expressed
as

lim
L → +∞
T → +∞

t fixed

2−LZy f ,L = Z (x, t ). (10)
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If the random variables Vy,τ are chosen as independent unit
Gaussian (which is the choice made everywhere in this paper),
then Z (x, t ) is solution of the SHE (2).

The coordinates (x, t ) are associated to the continuum
model. From this parametrization, we see that taking the limits
of infinite temperature T and infinite lattice length L, while
keeping the time t fixed and small, allows to access the short-
time dynamics of the SHE, equivalently of the KPZ equation,
which is our present aim.

Having defined the temperature regime, we now need to
choose the geometry of the polymer problem. We consider
two types of configurations.

(i) The point to point polymer whose starting and ending
points are fixed.

(ii) The point to line polymer whose starting point is fixed,
but the ending point is arbitrary on some line. In that case,
the partition sum is obtained by summing over all ending
points on this line, with possibly an additional weight. In
the limit of large temperature T and the large lattice size L,
this sum will be viewed as a Riemann sum approaching an
integral.

We recall that if we want to evaluate the final KPZ height
at x = 0, then its formal expression at time t is given by

eh(0,t ) =
∫
R

dx′ Z (0, t | x′, 0)eh(x′,t=0), (11)

where Z (x, t | x′, 0) = Z (x, t ) denotes the solution of the SHE
with initial condition Z (x, t = 0| x′, 0) = δ(x − x′), which
corresponds to the so-called droplet initial condition (at
position x′) for the KPZ equation. From the above, we
thus need to encode the initial condition of the KPZ
equation in the configuration of the polymer using the
correspondence

Z (0, t | x, 0) ←→ 2−LZy f ,L. (12)

The usual initial conditions will be encoded as follows:
(i) The droplet initial condition is eh(x,t=0) = δ(x) so

eh(0,t ) = Z (0, t |0, 0); this is precisely the point to point poly-
mer.

(ii) The flat initial condition is eh(x,t=0) = 1 so eh(0,t ) =∫
R dx′ Z (0, t |x′, 0). This integral would be obtained on the

discrete lattice by summing over all points over the initial line.
It is, however, fully equivalent (and more convenient for our
study) to flip the figure upside down, and sum over all points
over the final line: this is precisely the point to line polymer
as represented in Fig. 1, where the notion of final line is made
clear (we will use the same notion for the Brownian initial
condition below).

(iii) The Brownian initial condition is eh(x,t=0) = eB(x) so
eh(0,t ) = ∫

R dx′ Z (0, t |x′, 0)eB(x′ ) where B(x′) is the unit two-
sided Brownian motion with B(0) = 0. This integral will be
obtained on the discrete lattice by summing over all points
over the final line (see discussion above) with an additional
weight representing the Brownian contribution, hence, this
is another type of point to line polymer. The exact method
and scaling to introduce the Brownian contribution will be
discussed later.

The analytical predictions being for the centered one-point
KPZ height, we also need to center the distribution of the
height obtained in the simulations. Calling Zτ the discrete

partition function up to time τ (whatever configuration), we
will compare our theoretical predictions to the distribution of
the quantity H (t ) defined by

H (t ) = ln
ZL

ZL
, (13)

where ZL is the average value of the partition function over
many realizations.1

B. Introduction to importance sampling

For the purpose of the introduction of the idea of impor-
tance sampling, we retain some elements of the presentation
made in Ref. [35]. In principle, one could obtain an estimate of
the probability distribution P(H, t ) numerically from simple
sampling. For this, one generates many disorder realizations
and calculates the partition function for each. Then, ZL is
estimated by averaging over all samples, and the distribution
is the histogram of the values of H according to Eq. (13).
Nevertheless, this limits the smallest probabilities which can
be resolved to the inverse of the number of samples, hence,
reaching probabilities as small as 10−1000 is strictly impossi-
ble. Hence, a different approach is required.

To estimate P(H, t ) for a much larger range, where proba-
bility densities as small as 10−1000 may appear, we use a more
powerful approach, called importance sampling as discussed
in Refs. [39,40]. This approach has been successfully applied
to many problems in statistical physics and mathematics to
obtain the tails of distributions arising in equilibrium and
nonequilibrium situations [41–50]. The idea behind impor-
tance sampling is to sample the different disorder realizations
with a suitable additional bias [51]. Here, we use the bias
exp[−θH (V )] where θ is an adjustable parameter interpreted
as a fictive inverse temperature. Varying the value of θ allows
one to sample the distribution in different regions. In partic-
ular, if θ > 0 the configurations with a negative H become
more likely, conversely if θ < 0 the configurations with a
positive H are favored. A standard Markov-chain Monte Carlo
simulation is used to sample the biased configurations [52,53].
At each time step, a new disorder realization V ∗ is proposed
by replacing on the current realization V a certain fraction
r of the random numbers Vy,τ by new random numbers.
The new disorder realization is then accepted with the usual
Metropolis-Hastings probability

pMet = min{1, e−θ[H (V ∗ )−H (V )]}, (14)

otherwise the old configuration is kept [54]. Note that the
average partition function ZL appearing in the definition of H
(13) drops out of the Metropolis probability. By construction,
the algorithm fulfills detailed balance and is ergodic since
within a sufficient number of steps, each possible realization
may be constructed. Thus, in the limit of infinitely long
Markov chains, the distribution of biased disorder realizations

1An additional centering to impose �(0) = 0 will be applied on the
numerical data (see below). It corresponds to corrections which are
subdominant at small t in the continuum model [i.e., the difference
between ln Z (0, t ) and ln Z (0, t ) [3,38]].
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will follow the probability

qθ (V ) = 1

Q(θ )
Pdis(V )e−θH (V ), (15)

where Pdis(V ) is the original disorder distribution and Q(θ ) =∑
V Pdis(V )e−θH (V ) is the normalization factor. Note that Q(θ )

also depends on L and T because of finite size and temperature
effects. Q(θ ) is generally unknown but can be determined
from the numerical results (see Appendix B). The output of
this Markov chain allows to construct a biased histogram
Pθ (H, t ). In order to get the correct empirical probability
density P(H, t ), one should debias the result so that

P(H, t ) = eθH Q(θ )Pθ (H, t ). (16)

Hence, the target distribution P(H, t ) can be estimated, up to a
normalization constant Q(θ ). For each value of the parameter
θ , a specific range of the distribution P(H, t ) will be sampled
and using a positive (respectively, negative) parameter allows
to sample the region of a distribution at the left (respectively,
at the right) of its center.

III. COMPARISON OF THE THEORETICAL
PREDICTIONS WITH THE SIMULATIONS

We now compare the theoretical predictions for the prob-
ability distribution of the solutions to the Kardar-Parisi-
Zhang equation with the numerical simulations of the di-
rected polymer on a lattice for each initial condition. We
start with the stationary (i.e., Brownian) and flat initial con-
ditions since their analytical expressions are related. Then, we
address the half-space geometry. We proceed as follows. In
each case, we first recall and give explicitly the analytical
predictions for the large-deviation rate function �(H ). Then,
we provide details on how to encode the random weights on
the lattice model to account for the particular initial condi-
tions. Finally, we present the numerical data and compare
with the predictions. The large-deviation function �(H ) has
been constructed so that it is centered around 0 and hence,
for a fair comparison, the probability densities obtained in
the simulations will be shifted so that their maximum is also
reached at 0. Finally, we insist on the fact that the comparison
will be done without any fitting parameter.

A. The flat and stationary initial conditions in full space

1. Recall of the analytical result for �(H )

We first recall the results of Ref. [18] (see also Ref. [19])
for the two branches of �(H ). As discussed below, they
provide the short-time probability distribution for the flat and
the stationary (i.e., Brownian) initial condition in full space.
Let us first define the critical height Hc2 = 2 ln(2e − I ) −
1 � 1.853 16 with

I =
∫ +∞

0

dy

π

[
1 + 1

y

] √
y

e−1 + yey
(17)

together with the function (z) expressed as

(z) = −
∫
R

dk

2π
Li2

(
− ze−k2

k2

)
, (18)

and its reduced version ψ (z) = (z) − 2z ′(z). We further
denote the intervals

I1 = [0,+∞[, I2 = [0, e−1], I3 =]0, e−1],

J1 = ] − ∞, 0], J2 = [0, Hc2], J3 = [Hc2,+∞[. (19)

We define a large-deviation function �(H ) given in a para-
metric form by

eH =
{

z ′(z)2, z ∈ I1, H ∈ J1

z
[
 ′(z) − 2z−1[−W0(−z)]

1
2
]2
, z ∈ I2, H ∈ J2

�(H ) =
{

ψ (z), z ∈ I1

ψ (z) + 4
3 [−W0(−z)]

3
2 , z ∈ I2.

(20)

For z ∈ I3, H ∈ J3, we define two continuations of �(H ):
a symmetric analytic one (respectively, asymmetric nonana-
lytic) denoted �A (respectively �NA) such that their paramet-
ric representations read{

eH = z
[
 ′(z) − 2z−1[−W−1(−z)]

1
2
]2

,

�A(H ) = ψ (z) + 4
3 [−W−1(−z)]

3
2

and{
eH = z

[
 ′(z) − z−1

(
[−W−1(−z)]

1
2 + [−W0(−z)]

1
2
)]2

,

�NA(H ) = ψ (z) + 2
3 [−W−1(−z)]

3
2 + 2

3 [−W0(−z)]
3
2 .

(21)

The large-deviation solutions for the flat and the Brownian
initial conditions are by far the most difficult to study, as
two successive continuations are required (while only one is
required for the droplet initial condition [17]). Indeed, the
large-deviation functions for the stationary and flat initial
conditions in full space are given for all H in R by

�Brownian(H ) = �NA(H ), �flat (H ) = 2− 3
2 �A(2H ). (22)

The indices A and NA are explicitly indicated for the region
H ∈ [Hc2,+∞[ where the two continuations are distinct and
can be omitted for the region where H ∈ ] − ∞, Hc2] where
the two functions are the same, i.e., �NA(H ) = �A(H ) for
H ∈ ] − ∞, Hc2]. We further recall that W0 and W−1 are the
two real branches of the Lambert function (see Appendix A).

The result (22) for the Brownian initial condition which
follows the NA branch was obtained in Ref. [18]. The result
(22) for the flat initial condition arises from (i) the identifi-
cation made in the context of the weak noise theory (WNT)
in Ref. [28] of the analytic branch and the large-deviation
function of the flat initial condition (the rationale being that no
phase transition is expected for the flat initial initial condition)
and (ii) the analytic result for the A branch in Eq. (21)
obtained in Ref. [18]. The verification of (22) will be an
important point to seek in numerical simulations. Before we
introduce the results of the simulations obtained through the
importance sampling method, we will explain in some details
the lattice construction of these initial conditions.

2. Point to line directed polymer mapping

We first introduce the mapping of the flat initial condition
of the KPZ equation to the directed polymer model on the
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FIG. 2. Probability distribution P(H, t ) for a short time t = 1
16 for three different polymer lengths L = {32, 64, 128} and (a) flat initial

conditions, (b) Brownian (stationary) initial conditions. In both plots, the solid lines indicate the analytical prediction displayed in Eq. (22),
together with Eqs. (20) and (21).

lattice and then extend the discussion to the Brownian initial
condition. As mentioned earlier, contrary to the droplet initial
condition, the flat initial condition requires to perform a sum-
mation of the partition sum over the final line of the lattice,
i.e.,

ZL =
L∑

k=−L

Zyk ,L. (23)

where the points {yk} are all the points over the final line of
the lattice ordered from left to right. Note that this amounts
to set a uniform weight over the final line. Comparatively, for
the droplet initial condition, all the weight was concentrated at
k = 0 (the above sum with a Kronecker delta at k = 0 would
yield the droplet initial condition).

Recalling the continuum parametrization of Eq. (9), the
infinite temperature limit (up to a proportionality constant)

Zyk ,L ←→ Z

(
x = 4yk

T 2
, t = 2L

T 4

)
(24)

by a Riemann summation using a step of size �x = 4
T 2 � 1

we obtain the partition function of the flat condition (up to a
proportionality constant)

4

T 2

L∑
k=−L

Zyk ,L −→
T �1

∫ 4L/T 2

−4L/T 2
dx Z (x, t ). (25)

We emphasize that because of our construction of the
height (13), the proportionality constants are irrelevant. As
we renormalize the partition sum by its average according to
Eq. (13), the prefactor 4/T 2 can be discarded and will play
strictly no role in the numerics. To approximate the integral as
being over the full real line, the factor 4L/T 2 should be taken
as large as possible: its finiteness might induce additional
finite size and discretization effects as compared to the point
to point continuum polymer. To provide orders of magnitude,
some of the simulations will have a time t = 1

16 and the factor
4L/T 2 is then in the range [4,8] for the different lattice sizes
used.

The extension of this mapping to the stationary initial
condition is obtained by adding Brownian weights eB(x) on the

final line on the lattice

Zyk ,LeB(
4yk
T 2 ) → Z

(
x = 4yk

T 2
, t

)
eB(x). (26)

By self-similarity, we have B( 4yk

T 2 ) ≡ 2
T B(yk ) and hence B(yk )

can be easily sampled by a random walk with Gaussian
increments with unit variance. Note that the final partition
function assumes an additional average over the Brownian
motion compared to a deterministic initial condition, hence,
this provides an extra challenge on the numerical side.

3. Presentation of the simulations

The numerical simulations for the flat and Brownian initial
conditions in full space were run for polymers of length
L = {32, 64, 128} and temperature T chosen so that the
corresponding time for the Kardar-Parisi-Zhang equation is
fixed at t = 1

16 . Convergence to the analytic predictions is
expected for L → +∞. We present the simulations in Figs. 2
and 3. We observe for the flat and Brownian initial conditions
that the agreement between the numerics and the theory is
fairly good and improves as L increases. We should note that
there are additional sources of finite size effects and statistical
errors since for the flat and the Brownian initial conditions we
need to perform a summation of the partition function over
the final line in both cases and an additional average over
the Brownian weights in the second case. Nonetheless, the
simulations are able to probe both tails of the distribution of
P(H, t ) for quite a range of values for both initial conditions
as can be seen in Fig. 3. A very good agreement of analytical
and numerical results is visible here and on this scale only
very small finite size corrections are visible. The numerical
results even extend to the regime below P(H ) ∼ e−1000 where
the leading tails behavior starts to be dominant.

4. Discussion around the choice of branch �A/�AN for flat
and Brownian initial conditions

We now turn to the crucial discussion of the choice of
branch �A/�AN for both flat and Brownian initial conditions.
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FIG. 3. Top: blowup of the left (a) and right (b) tails of the data shown in Fig. 2(a) for the flat initial condition. Bottom: blowup of the left
(c) and right (d) tails of the data shown in Fig. 2(b) for the Brownian initial condition. In all four plots, the solid line is the analytical prediction
given in Eq. (22), together with Eqs. (20) and (21). The leading tails at large |H | given in Table I are also plotted in each case.

We recall that considerations coming from weak noise
theory [28], together with the precise study of the Fredholm
determinant associated to the solution for the Brownian
initial condition [18], concluded that for all H in R the
prediction (22) holds, where the two branches coincide
�NA(H ) = �A(H ) for H < Hc2, but differ for H > Hc2. This
implies that if we rescale the simulation data for the flat initial
condition, they should coincide pointwise up to the critical
height Hc2 and then separate to the symmetric and asymmetric
branches. We emphasize that the choice of branch is critical
as it determines the tails of the distribution and the existence
of a singularity in the large-deviation function.

We present in Fig. 4 the comparison in a region around
Hc2 between the exact expression of the different branches
of �(H ) given in Eqs. (20) and (21) and the directed poly-
mer simulations of length L = 128 at a time t = 1

16 for the
Brownian and the flat initial conditions. Note that we rescaled
the distribution for the flat initial condition according to the
scaling predicted in Eq. (22) for a fair comparison. Figure 4
confirms in a remarkable way that each initial condition
corresponds to the one of the two branches that we have
obtained analytically. The coincidence of the two distributions
before the point H = Hc2 is also quite spectacular.

B. Droplet initial condition in half-space with a hard wall
A = +∞

We now consider the KPZ equation in the half-space x � 0
with the boundary condition ∂xh(x, 0)|x=0 = A, equivalently,
∂xZ (x, t )|x=0 = AZ (0, t ) for the continuum polymer, with
droplet initial conditions, i.e., Z (x, t = 0) = δ(x − ε) with
ε → 0+. The large-deviation function �(H ) was obtained in
[21] for several values of A (respectively, − 1

2 , 0, and +∞).
Here, we will test only the analytical prediction of Ref. [21]
for A = +∞, which corresponds to the infinitely repulsive
hard wall [i.e., Z (0, t ) = 0 for all t].

1. Recall of the analytical result for �(H )

To provide the short-time probability distribution for the
droplet initial condition in a half-space in presence of a
hard wall, let us first define the branching height Hc =
ln(8

√
π I ) � 0.9795 with

I =
∫ +∞

0

dy

π

[
1 − 1

y

] √
y

ey/y − e
. (27)

012134-6



PROBING LARGE DEVIATIONS OF THE … PHYSICAL REVIEW E 101, 012134 (2020)

FIG. 4. The analytic expression of �(H ) obtained in Eqs. (20)
and (21) is compared with the simulation data obtained for the flat
and for Brownian initial conditions. In the case of the flat initial
condition, the data are rescaled according to Eq. (22) for a fair
comparison. The blue line corresponds to the function �(H ) before
the critical point Hc2 � 1.853 16 which position is indicated by
a vertical gray dotted line. The green dashed line corresponds to
the symmetric analytic branch �A and the red dotted-dashed line
corresponds to the asymmetric nonanalytic branch �NA. The square
markers represent the Brownian initial condition simulation data and
the triangle markers represent the rescaled flat initial condition data.

We also define the functions (z), �(z), and its derivative
�′(z) as

(z) = −
∫
R

dk

4π
Li2

( − zk2e−k2)
,

�(z) = 2

3

[
W0

(
1

z

)] 3
2

+ 2

3

[
W−1

(
1

z

)] 3
2

+ 2

[
W0

(
1

z

)] 1
2

+ 2

[
W−1

(
1

z

)] 1
2

,

�′(z) = −1

z

[
W0

(
1

z

)] 1
2

− 1

z

[
W−1

(
1

z

)] 1
2

(28)

and we define their reduced versions ψ and δ:

ψ (z) = (z) − z ′(z), δ(z) = �(z) − z�′(z). (29)

We further denote the intervals

I1 = [−e,+∞[, I2 = [−e, 0[,

J1 = ] − ∞, Hc], J2 = [Hc,+∞[. (30)

The associated large-deviation function �(H ) is expressed by
the parametric system

eH =
{

8
√

π ′(z), z ∈ I1, H ∈ J1

8
√

π [ ′(z) + �′(z)], z ∈ I2, H ∈ J2

�(H ) =
{
ψ (z), z ∈ I1

ψ (z) + δ(z), z ∈ I2.
(31)

Before we introduce the results of the simulations obtained
through the importance sampling method, we will explain in
some details the lattice construction of the half-space problem
in the presence of a wall.

(0,0)

t

x

(−l,l) (l,l)

(0,2l)

FIG. 5. Square lattice designed for the half-space problem with
a hard wall. The dashed lines are forbidden edges for the polymer
constraining it to stay on the right of the lattice. An example of a
polymer realization is drawn on the blue line. In this representation,
we have L = 2�.

2. Point to point directed polymer mapping in a half-space
with a hard wall A = +∞

To mimic a hard-wall type problem, one can forbid the
polymer to visit some edges and introduce a list of those
forbidden edges, which are close to the diagonal of the lattice.
Indeed, the partition function should be strictly zero on the
diagonal so that the probability of crossing the diagonal
is strictly zero. We introduce this idea of forbidden edges
in Fig. 5. Finally, let us mention that an extension of this
construction to a generic value of A would be interesting.

3. Presentation of the simulations

The numerical simulations for the droplet initial condition
in half-space in the presence of a hard wall were run for
polymers of length L = {64, 128, 256} and temperature T
chosen so that the corresponding time for the Kardar-Parisi-
Zhang equation is fixed at t = 1

16 . Convergence to the analytic
predictions is expected for L → +∞. We present the simu-
lations in Figs. 6 and 7 and we observe that the agreement
between numerical and analytic results is remarkable in the
tails (for H � −25 and all H � 0), but nonetheless there
is an intermediate region for negative H (−20 � H � −10)
where the matching is not entirely perfect: this could possibly
come from finite size effects but it still needs to be further
investigated.

IV. CONCLUSION AND OUTLOOK

To summarize, a large-deviation sampling approach has
been used to measure the probability distribution P(H, t ) of
the centered height H solution the KPZ equation, for various
initial conditions: flat and stationary in full space and droplet
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FIG. 6. Blowup of the (a) left and (b) right tails of the data shown of Fig. 7. The solid lines indicate the analytical prediction displayed in
Eq. (31) obtained in [21]. The data are also compared with the leading behavior of each tail as displayed in Table I.

in half-space in presence of an infinitely repulsive wall. This
was achieved using a lattice directed polymer model, whose
free energy converges, in the high-temperature limit, to the
height of the continuum KPZ equation. This allowed to de-
termine numerically the probability distribution of the height
over a large range of values, leading to a precise comparison
with the analytical predictions. We find that the agreement
with the short-time large-deviation function �(H ) predicted
by the theory, which differs according to the geometry and the
initial condition, is spectacular, even very far in the tails. The
existence and location of a phase transition for the stationary
initial condition are fully confirmed, as well as the close
connection of the rate function for the flat and stationary initial
conditions.

10-700
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10-300

10-200

10-100

10  0

-30 -20 -10  0  10  20  30  40  50

hard wall initial conditions

p(
H

)

H

theory
L=64

L=128
L=256

FIG. 7. Probability distribution P(H, t ) for a short time t = 1
16

for three different polymer lengths L = {64, 128, 256} for the droplet
initial condition in a half-space with an infinite hard wall at the
origin. The solid line indicates the analytical result displayed in
Eq. (31) obtained in [21].

It would be interesting to extend this study in several
directions. First, multipoint distributions of the height field
could be investigated. Recently, the optimal profile at time
t/2, i.e., h(x, t/2), conditioned to a large value of |H | (at time
t), predicted by the weak noise theory was successfully tested
in a similar numerical simulation [55]. Although this provides
information about the height profile at a given time, one
could ask more detailed questions about the configurations
in real space of the polymer corresponding to the tails, e.g.,
its roughness. One expects that the polymer configurations
contributing to the left tail of the distribution of H will be
quite different from the ones which contribute to the right tail.
It would be interesting to determine the roughness of these
atypical polymers, both at short time and at large time. The
knowledge of the shape of such polymers could be of great
benefit to get some insight on how to sample from atypical
polymer distributions.
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APPENDIX A: LAMBERT FUNCTION W

We introduce the Lambert W function [56] which we
use extensively throughout this paper. Consider the function
defined on C by f (z) = zez, the W function is composed of all
inverse branches of f so that W (zez ) = z. It does have two real
branches W0 and W−1, defined respectively on [−e−1,+∞[
and [−e−1, 0[. On their respective domains, W0 is strictly
increasing and W−1 is strictly decreasing. By differentiation
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FIG. 8. The Lambert function W . The dashed red line corre-
sponds to the branch W0 whereas the blue line corresponds to the
branch W−1.

of W (z)eW (z) = z, one obtains a differential equation valid for
all branches of W (z):

dW

dz
(z) = W (z)

z[1 + W (z)]
. (A1)

Concerning their asymptotics, W0 behaves logarithmically for
large argument W0(z) �z→+∞ ln(z) − ln ln(z) and is linear
for small argument W0(z) �z→0 z − z2 + O(z3). W−1 behaves
logarithmically for small argument W−1(z) �z→0− ln(−z) −
ln[− ln(−z)]. Both branches join smoothly at the point z =
−e−1 and have the value W (−e−1) = −1. These remarks are
summarized on Fig. 8. More details on the other branches, Wk

for integer k, can be found in [56].

APPENDIX B: TECHNICAL DETAILS OF THE
IMPORTANCE SAMPLING ALGORITHM

To sample a wide range of values of H , one chooses a
suitable set of parameters {θ−Nn , θ−Nn+1, . . . , θNp−1, θNp}, Nn

and Np being the number of negative and positive parameters,
to access the large-deviation regimes (left and right). The

normalization constants Q(θ ) are obtained by first comput-
ing the histogram using simple sampling, i.e., the bulk of
the distribution, which is well normalized and corresponds
to θ = 0. Then, for θ+1, one matches the right part of the
biased histogram with the left tail of the unbiased one. For
a perfect matching, with a suitable chosen partition function
Q(θ+1), the two distributions would agree in the overlap-
ping region, i.e., eθH Q(θ )Pθ (H, t ) = eθ+1H Q(θ+1)Pθ+1 (H, t )
∀ H overlapping [with eθH Q(θ ) = 1 for θ = 0]. Due to sta-
tistical fluctuations, this is never exactly fulfilled, thus, we
determine Q(θ+1) such that the squared difference between
the two rescaled distributions in the overlapping regime is
minimized. In the same way for θ−1 one matches the left part
of the biased histogram with the right tail of the unbiased
one. Similarly, one iterates for the other values of θ and
the corresponding normalization constants can be obtained.
Note that in the end, the resulting distribution is slighlty
non-normalized because the tails were added to the bulk of
the distribution, but this is easily repaired by a final global
normalization.

The main drawback of our method is that as for any
Markov-chain Monte Carlo simulation, it has to be equili-
brated and this may take a large number of steps. To speed
the simulation up, parallel tempering was used [57]. Here,
a parallel implementation using the message passing inter-
face (MPI) was applied, such that each computing core was
responsible in parallel for an independent realization Vi(s)
at a given θi. After 1000 Monte Carlo steps, one parallel-
tempering sweep was performed and the parameters θi and
θi+1 were exchanged between two computing cores. The
number and values of the inverse temperatures are determined
by some preliminary test simulations with the criterion that the
empirical acceptance rate of the parallel-tempering exchange
steps is about 0.5 for all pairs of θi, θi + 1 of neighboring
inverse temperatures. This resulted in a few hundred different
values of the inverse temperature where the systems were
simulated in parallel. For each case considered here, a cor-
responding cluster was used for a few weeks. A pedagogical
explanation and examples of this sampling procedure can be
found in Ref. [58].
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