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Phase transitions in atypical systems induced by a condensation transition on graphs
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Random graphs undergo structural phase transitions that are crucial for dynamical processes and cooperative
behavior of models defined on graphs. In this work we investigate the impact of a first-order structural transition
on the thermodynamics of the Ising model defined on Erdős-Rényi random graphs, as well as on the eigenvalue
distribution of the adjacency matrix of the same graphical model. The structural transition in question yields
graph samples exhibiting condensation of degrees, characterized by a large number of nodes having degrees
in a narrow interval. Although the condensed graph samples have correlated degrees, we demonstrate that the
equations determining the thermodynamics of the Ising model and the eigenvalue distribution of the adjacency
matrix both display their usual forms, characteristic of locally treelike ensembles. By solving these equations,
we show that the condensation transition induces distinct thermodynamic first-order transitions between the
paramagnetic and the ferromagnetic phases of the Ising model. The condensation transition also leads to an
abrupt change in the global eigenvalue statistics of the adjacency matrix, which renders the second moment of
the eigenvalue distribution discontinuous. As a side result, we derive the critical line determining the percolation
transition in Erdős-Rényi graph samples that feature condensation of degrees.
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I. INTRODUCTION

Random graphs are formidable tools to tackle problems
in various disciplines, including physics, biology, and infor-
mation science [1,2]. Informally speaking, a random graph
is a collection of points or nodes interconnected by edges
following a random prescription. In one of the simplest ran-
dom graph models, each pair of nodes is connected (or not)
according to a fixed probability, independently of the other
nodes in the graph. This model is referred to here as the Erdős-
Rényi (ER) random graph model, since it became popular
after the seminal works by Paul Erdős and Alfréd Rényi [3,4].

There are essentially two main reasons why ER ran-
dom graphs are useful mathematical models. On the one
hand, due to their finite coordination number, ER random
graphs arise naturally in problems that are described in terms
of sparse interacting elements, where one unit is coupled to a
finite number of others, such as in network theory [1] or in the
solution of optimization problems [2]. On the other hand, ER
random graphs can be seen as the infinite dimensional limit of
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Euclidean lattices. This property has led to analytic progress
in the study of certain phase transitions that are otherwise
very difficult to tackle in a finite-dimensional Euclidean space,
such as the spin-glass transition [5–7] and the Anderson
localization transition [8–11]. The absence of short loops and
of any notion of Euclidean distance are distinctive features
that allow for a mean-field description of systems interacting
through the edges of ER random graphs.

Interestingly, random graphs undergo structural phase tran-
sitions when certain global statistical properties characterizing
the graph structure change as a function of the model parame-
ters [12–29]. The percolation and the condensation transitions
are emblematic examples in this context [12,13]. In the first
case, the largest connected component of a graph increases
as a function of the mean number c of neighbors per node.
The graph percolates at a critical value c = c∗, which means
that, for c � c∗, the largest connected component contains a
finite fraction of the total number of nodes. Percolation is
a powerful notion to analyze the resilience of networks to
random or targeted attacks [14–17], since the survival of the
giant component with respect to the removal of a fraction of
nodes is taken as an indication of network robustness. Random
graphs undergo a condensation transition when a large number
of subgraphs clump together to form a densely connected
cluster. Different types of condensed graph configurations are
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possible, depending on the elementary structures composing
the cluster. The simplest type of aggregate is formed through
a phenomenon referred to as condensation of edges [18–20],
when a finite fraction of the total number of edges attaches
to a single node. Other examples include condensation of
two-stars [21–23] and triangles [24–26], where the elementary
structures forming the cluster are paths of length two and
cycles of length three, respectively.

More recently, reference [30] has reported a novel type of
structural phase transition in ER random graphs, characterized
by an abrupt change in the degree statistics of the graph.
The degree Ki of a node i is a random variable that counts
the number of nodes connected to i. By varying a control
parameter that allows to probe rare regions of the graph
ensemble space, the degree distribution changes discontinu-
ously from a Poisson-like form, typical of ER random graphs,
to a distribution exhibiting a pronounced peak. This peaked
distribution identifies a novel type of condensed state, where
the degrees assume values in a narrow domain of its available
configuration space. The formation of such condensed config-
urations has been coined condensation of degrees. These are
large deviation events triggered by atypical fluctuations in the
graph structure, similar to other random systems that exhibit
condensation transitions driven by rare fluctuations [31,32].

The influence of the graph structure on dynamical pro-
cesses and on the cooperative behavior of models defined on
random graphs is a key topic in network theory, which has
been attracting a huge interest in recent decades [12,33–46].
The degree statistics plays a pivotal role on the long-time be-
havior of random walks on graphs [37], on the critical thresh-
old for epidemic spreading [33,34], on the linear stability of
large interacting systems [44,45], and on the critical properties
of cooperative systems defined on random graphs, such as the
Ising model [35,36], the Kuramoto model [38,41–43,46], and
the classical Heisenberg model [42,46]. Since condensation
of degrees emerges through a discontinuous transition in the
degree distribution, it is therefore compelling to ask how
this structural transition impacts the macroscopic behavior of
systems interacting through the edges of random graphs.

Building on previous works on the large deviation theory
of observables defined on graphs [47–49], here we investigate
how condensation of degrees influences two different prob-
lems: the thermodynamic phase transitions of the Ising model
on an ER random graph and the eigenvalue distribution of the
adjacency matrix of the graph. Despite the fact that in our
graph ensemble the degrees K1, . . . , KN and the elements of
the adjacency matrix are sets of correlated random variables,
we show explicitly that the ensemble averaged equations
describing the thermodynamics of the Ising model and the
spectral density of the adjacency matrix both have the same
form as in the configuration model of networks [35,50,51],
with the degree distribution replaced by the expression pre-
sented in Ref. [30]. In the study of the Ising model, large
deviations in the graph structure, leading to condensation of
degrees, induce different thermodynamic phase transitions,
which are otherwise absent if one is limited to small, typical
graph fluctuations. In fact, by computing the magnetization,
the internal energy, and the magnetic susceptibility, we show
that the Ising model displays three additional first-order tran-
sitions: a transition between ferromagnetic phases, a transition

between paramagnetic phases, and a transition between a fer-
romagnetic and a paramagnetic phase. All these transitions are
caused by the discontinuous change of the degree statistics. In
our second example, we show that the eigenvalue statistics
of the adjacency matrix of ER random graphs exhibits a
discontinuous behavior across the condensation transition.
In particular, the second moment of the eigenvalue distribu-
tion drops abruptly, indicating a concentration of eigenvalues
around zero. These results are in contrast, for instance, with
the percolation transition, where the eigenvalue distribution
is insensitive to the formation of a giant component [52].
Incidentally, we also derive the percolation transition of atyp-
ical configurations of ER random graphs characterized by
condensation of degrees, complementing the phase diagram
presented in [30].

The paper is organized as follows. In Sec. II we define the
ER random graph model and we introduce the main quantities
to characterize the condensation transition in the graph struc-
ture. Section III presents the results for the thermodynamics of
the Ising model defined on rare samples of ER random graphs.
The results for the eigenvalue distribution of the adjacency
matrix of atypical configurations of ER random graphs are
discussed in Sec. IV. We summarize our work and discuss
some open problems in Sec. V. Finally, two appendices pro-
vide detailed explanations of the analytical calculations for the
Ising model and for the eigenvalue distribution.

II. CONDENSATION OF DEGREES

Erdős-Rényi random graphs [4] are simple undirected
graphs with N nodes, where the probability that two nodes
are connected is c/N , with c = O(1) independent of N . A
single graph instance is completely defined through its N × N
adjacency matrix C. The entry ci j of C is one if node i is
connected to node j, and zero otherwise. The elements of
C are independent and identical distributed random variables
drawn from the joint distribution

PER(C) =
∏
i< j

[
c

N
δci j ,1 +

(
1 − c

N

)
δci j ,0

]
. (1)

The degree Ki of a node i, defined as Ki =∑N
j=1( �=i) ci j , is a

random variable that counts the number of nodes connected to
i. In the limit N → ∞, the distribution of degrees K1, . . . , KN

becomes Poissonian with mean c:

pc(k) = e−cck

k!
. (2)

To understand the meaning of condensation of degrees, it
is useful to picture the nodes as particles and the different
possible values of the degrees as energy levels. Thus, it is
natural to ask how the total number of particles is distributed
among the different energy levels. Condensation of degrees
occurs when a large fraction of nodes (particles) is distributed
over a few degrees (energy levels). Such a phenomenon is
captured by considering the random variable F[a,b](C) that
counts the fraction of nodes having degrees in a certain
interval [a, b]

F[a,b](C) = 1

N

N∑
j=1

I[a,b](Kj ), (3)
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where I[a,b](x) is an indicator function, that is, I[a,b](x) = 1
if x ∈ [a, b], and zero otherwise. By computing the cumulant
generating function of F[a,b](C)

G(y) = lim
N→∞

1

N
ln 〈eyNF[a,b] (C)〉ER, (4)

with 〈(· · · )〉ER denoting the average with the distribution
PER(C), Ref. [30] has shown that the degree distribution
changes abruptly from its typical Poissonian behavior, given
by Eq. (2), to a peaked distribution. The latter distribution
characterizes the formation of a condensed state, since a large
fraction of nodes has similar degrees. The condensation tran-
sition is marked by a discontinuity of the first derivative dG(y)

dy ,
which is the signature of a first-order phase transition in the
parameter space (c, y). The formation of the condensed state
is a rare statistical event, triggered by large deviations in the
graph structure, which produces two nonanalytic points in the
rate function controlling the large deviation probability [30].

There is an alternative way to interpret the problem that
sheds light on the role of the parameter y. Instead of looking
at the condensation transition from the viewpoint of large
deviation theory, one can introduce a modified or constrained
ER ensemble, in which the standard distribution PER(C) is
deformed by an exponential weight that couples the external
control parameter y to the random variable F[a,b](C). In this
setting, the probability of drawing a graph with adjacency
matrix C is

Py(C) = PER(C)eyNF[a,b] (C)

〈eyNF[a,b] (C)〉ER

. (5)

The role of y becomes clear from Eq. (5). If y = 0, then
the weighted distribution Py(C) coincides with PER(C). For
positive (negative) values of y, the exponential weight favors
graphs where F[a,b](C) is larger (smaller) than its typical value.
Thus, y is an external control parameter that biases the graph
configurations and enables to probe the ensemble space of ER
random graphs away from the typical configurations gener-
ated by Eq. (1). We can also interpret a change in y as resulting
from an external protocol to modify the graph structure: an
increase (decrease) of y corresponds to a rewiring of the links
such that more (less) nodes have degrees in [a, b]. Different
from the configuration model of networks [1], Eq. (5) defines
a graph ensemble where the matrix elements {ci j} and the
degrees K1, . . . , KN are correlated random variables.

The average of any observable A(C) over atypical ER graph
configurations, conditioned by the value of y through Eq. (5),
is thus obtained from

〈A(C)〉y = lim
N→∞

〈A(C)eyNF[a,b] (C)〉ER

〈eyNF[a,b] (C)〉ER

. (6)

Our aim here is to study the impact of the first-order conden-
sation transition on two paradigmatic problems defined on ER
random graphs: the magnetic properties of the Ising model
and the eigenvalue distribution of the adjacency matrix. Since
in both examples we need to evaluate the ensemble average
of certain observables that depend on C, Eq. (6) provides
a suitable starting point to obtain the typical properties of
these systems constrained to rare sectors of the ER graph
configuration space.

III. ISING MODEL ON CONSTRAINED RANDOM GRAPHS

A. Model definitions and the free energy

The Ising model is a mathematical model to study the
magnetic properties of a system. Here we are interested in
the behavior of the Ising model on an ER random graph, i.e.,
the spin variables interact ferromagnetically through the edges
of the graph. In particular, we will discuss the effect of the
condensation transition, summarized in the previous section,
on the magnetic properties of the Ising model.

Given a graph generated from the weighted ensemble
defined by Eq. (5), the energy of a configuration of binary
spins σ = (σ1, . . . , σN ), with σi ∈ {−1, 1}, is given by

HC (σ) = −J
∑
i< j

ci jσiσ j − h
∑

i

σi, (7)

where J > 0 is the ferromagnetic coupling between any pair
of adjacent spins, and h is an external magnetic field. In
the canonical ensemble, the thermodynamical properties are
captured by the intensive free energy

f (C) = − 1

βN
ln Z (C), (8)

where β = 1/T is the inverse temperature of the system (the
Boltzmann constant is equal to one), and Z (C) is the partition
function of the Ising model for a single realization of the graph

Z (C) =
∑

σ

e−βHC (σ )
. (9)

Given a single realization of the adjacency matrix C, the con-
figurations of the spins σ1, . . . , σN are sampled according to
the Boltzmann distribution. By assuming that, for a fixed value
of y, the intensive free energy is a self-averaging quantity
in the limit N → ∞, the thermodynamics of the model is
determined by the ensemble average of f (C) over the graph
configurations in the constrained ensemble

f = − lim
N→∞

1

βN

〈ln Z (C)eyNF[a,b] (C)〉ER

〈eyNF[a,b] (C)〉ER

. (10)

Note that we have simply employed Eq. (6), valid for an arbi-
trary function A(C) of the adjacency matrix. To calculate the
average 〈(· · · )〉ER of the logarithm of the partition function,
we use the replica method [53]

f = − lim
n→0

lim
N→∞

1

βNn
ln

(
〈ZneyNF[a,b] (C)〉ER

〈eyNF[a,b] (C)〉ER

)
, (11)

in which we have exchanged the order of the limits n → 0 and
N → ∞. This assumption, although it has been proved only
for some specific models [54,55], allows us to compute the
free energy in the thermodynamic limit by solving a saddle-
point integral. The general strategy of the replica approach
consists first in evaluating the ensemble average in Eq. (11)
for a positive integer n. After the thermodynamic limit is
taken, one considers n ∈ R and then continues n analytically
to n → 0. Even though the replica method is generally a
nonrigorous approach, it has a long tradition in the statistical
physics of disordered systems as a correct heuristic method
to evaluate ensemble averages, leading to exact results in
problems ranging from the study of spin-glasses and neural
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networks to optimization problems and random matrix theory
[7,35,47,50,56,57].

Since all pairwise couplings in our model are ferro-
magnetic, exact results for the thermodynamics of the sys-
tem are obtained by simply restricting ourselves to the

replica symmetric solutions for the order parameter [7,56].
All the details of the replica calculation are explained
in Appendix A. Here we just present the final analyti-
cal expression for the replica symmetric free energy per
spin

β f = − cμ2
y ln 2 − cμ2

y

2

∫
dθdθ ′W (θ )W (θ ′) ln

[
cosh(βJ )

1 + tanh(βθ ) tanh(βθ ′) tanh(βJ )

]

−
∞∑

k=0

py(k)
∫ [ k∏

l=1

dθlW (θl )

]
ln

[
cosh

(
β
{
h + β−1∑k

l=1 arctanh[tanh(βJ ) tanh(βθl )]
})

2k−1
∏k

l=1 cosh{arctanh[tanh(βJ ) tanh(βθl )]}

]
, (12)

where W (θ ) is the distribution of effective local fields [7],
obtained from the solution of the self-consistent distributional
equation

W (θ ) =
∞∑

k=0

qy(k)
∫ [ k∏

l=1

dθlW (θl )

]

× δ

{
θ − h − 1

β

k∑
l=1

arctanh[tanh(βJ ) tanh(βθl )]

}
.

(13)

The quantity μy in Eqs. (12) and (13) encodes the microscopic
graph structure of the constrained ensemble of ER graphs. The
parameter μy is obtained from [30]

μy = arg max
μ

{Fy(μ)} =
∑∞

k=0 μk
y pc(k)eyI[a,b] (k+1)∑∞

k=0 μk
y pc(k)eyI[a,b] (k)

, (14)

where the function Fy(μ) reads

Fy(μ) − c

2
− cμ2

2
+ ln

( ∞∑
k=0

eyI[a,b] (k)μk pc(k)

)
. (15)

The quantities py(k) and qy(k), appearing in Eqs. (12) and
(13), are computed from the following equations:

py(k) = μk
y pc(k)eyI[a,b] (k)∑∞

q=0 μ
q
y pc(q)eyI[a,b] (q)

, (16)

qy(k) = μk
y pc(k)eyI[a,b] (k+1)∑∞

q=0 μ
q
y pc(q)eyI[a,b] (q+1)

, (17)

with k ∈ {0, 1, 2, . . . }. The quantity py(k) is the probability
that a randomly chosen node has degree k, while qy(k) is the
probability that a node at one of the extremes of a randomly
chosen edge has degree k + 1 [1]. Both quantities depend
on y, since they refer to the constrained ensemble of graphs

generated from Eq. (5). By combining Eqs. (14) and (16), one
obtains that cμ2

y = 〈k〉y, where

〈k〉y =
∞∑

k=0

kpy(k) (18)

is the mean degree in the constrained ensemble. Equations
(12) and (13), which form the core of the analytical solution
of the Ising model, have the same form as in the configuration
model of networks [35]. We point out that Eq. (13) has no
closed analytical solution in the general case and one has to
resort to the population dynamics algorithm [58] to obtain a
numerical solution to the distribution W (θ ).

Our aim is to characterize the different phases of the
Ising model and the nature of the transitions between them.
Thus, it is interesting to calculate the intensive magnetization,
obtained from the derivative of the free energy with respect to
the external field h,

m =
∫

dθW̃ (θ ) tanh(βθ ), (19)

where the distribution W̃ (θ ) is determined from

W̃ (θ ) =
∞∑

k=0

py(k)
∫ [ k∏

l=1

dθlW (θl )

]

× δ

{
θ − h − 1

β

k∑
l=1

arctanh[tanh(βJ ) tanh(βθl )]

}
.

(20)

The derivative of m with respect to h yields the magnetic
susceptibility

χ =
∫

dθ
∂W̃ (θ )

∂h
tanh(βθ ), (21)

while the analytical expression for the intensive internal en-
ergy u reads

u = −hm − Jc μ2
y

2

[
tanh(βJ ) −

∫
dθdθ ′W (θ )W (θ ′) tanh(βθ ) tanh(βθ ′) sech2(βJ )

1 + tanh(βθ ) tanh(βθ ′) tanh(βJ )

]
. (22)

An important feature of the phase diagram of the Ising
model is the critical inverse temperature βc where the system

changes its behavior from ferromagnetic to paramagnetic in
a continuous way. Since the moments of the order parameter
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2.5

5

Percolation

c

y

k∗ = 2
k∗ = 3
k∗ = 4

FIG. 1. Phase diagram illustrating the second-order percolation
transition and the first-order condensation transition for the con-
strained ER graph ensemble generated from Eq. (5), where the
degrees are conditioned to lie in the interval [k∗ − 1, k∗ + 1]. The
percolation transitions are indicated on the figure. The condensation
transitions are those which terminate at critical points (circles). For
k∗ = 2, the second-order percolation transition terminates at a given
value y < 0, below which it becomes discontinuous, coinciding with
the condensation transition. There is no condensation transition for
k∗ � 5 in the region of small c (see Fig. 3).

distribution W (θ ) vary continuously across this transition, we
can use bifurcation analysis and derive the following equation
for βc (see Appendix A for details):

〈k〉qy tanh(βcJ ) = 1, (23)

with

〈k〉qy =
∞∑

k=0

qy(k)k.

Random graph models usually undergo a second-order per-
colation transition as a function of the average degree c [1].
In particular, the largest connected component of ER random
graphs contains a total number of O(N ) nodes provided c > 1.
Since the T → 0 limit of the magnetization of the Ising model
on a random graph gives the fraction of nodes belonging to the
giant connected component [35], the limit T → 0 of Eq. (23)
yields the critical line marking the continuous percolation
transition in the constrained ensemble defined by Eq. (5).

B. Numerical results

We start by discussing the phase diagram for the struc-
tural transitions in the constrained ensemble for different
intervals [a, b] controlled by a single parameter k∗, de-
fined through a = k∗ − 1 and b = k∗ + 1. Figure 1 shows
the critical lines for the second-order percolation transition
and for the first-order condensation transition in the plane
(c, y) for different values of k∗. The continuous percola-
tion transition is obtained by solving the equation 〈k〉y =
1, derived from the limit T → 0 of Eq. (23), while the

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

k

p
y
(k

)

|y| < |yc|
|y| > |yc|
Poisson

FIG. 2. Degree distribution for c = 2, a = 1, b = 3, and two
different values of y: y = −1 (green circles) and y = −2.5 (brown
squares). One value of y lies in the condensed phase (|y| > |yc|),
while the other lies in the Poisson-like phase (|y| < |yc|). As a
comparison, we also show the Poisson degree distribution for c = 2.

condensation transition is obtained by finding the discontinu-
ity of the fraction f of nodes having degrees in [a, b].

For fixed c, the critical values yc identify the condensa-
tion transition: For |y| > |yc|, the degree distribution py(k) is
peaked on a few degrees, while py(k) exhibits a Poisson-like
behavior for |y| < |yc| [30]. For fixed values of y, the critical
values cp mark the percolation transition: For c < cp, the
graph is solely composed of finite connected components,
whereas a giant connected component containing O(N ) nodes
emerges for c > cp. As shown in Fig. 1, for k∗ = 2, the contin-
uous percolation transition meets the condensation transition
at a certain value of y, below which the percolation transition
becomes first-order. Thus, in the case of k∗ = 2, the solid line
appearing for low c identifies both the percolation and the
condensation transition.

The behavior of py(k) across the condensation transi-
tion for large c has been discussed in Ref. [30]. Here we
complement these results by characterizing the condensation
transition for small c. Figure 2 depicts py(k) for c = 2 and two
different values of y corresponding to each phase. As can be
noted, py(k) has a peak at k = 0 when y lies in the condensed
phase, since negative values of y yields graph samples with
degrees outside [a, b]. For c = 2, we have checked numer-
ically that py(0) → 1 as y → −∞. For small c, the choice
of the lower limit of [a, b] has important consequences for
the condensation transition. For instance, the choice a = 1
enforces graph configurations with zero degrees when y < 0,
and one may wonder about the effect of increasing a. Figure 3
shows the behavior of the average degree 〈k〉y as a function
of c for y = −5 and different intervals [k∗ − 1, k∗ + 1]. For
increasing k∗, the degrees become gradually less confined
around k = 0, until the first-order transition disappears at
k∗ = 5. We have checked that there is no first-order transition
for other values of y when k∗ = 5.

Figure 4 shows the critical temperature Tc for the second-
order phase transition between the paramagnetic and the
ferromagnetic phases as a function of y. For sufficiently large
c, Tc drops discontinuously when y crosses the condensation
transition, which is a consequence of the abrupt decrease of
the average degree 〈k〉y in the condensed phase.
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0 1 2 3 4 5 6
0

2

4

6

c

〈k
〉 y

k∗ = 2
k∗ = 3
k∗ = 4
k∗ = 5

FIG. 3. Average degree 〈k〉y of the constrained ER ensemble as
a function of c for fixed y = −5 and different intervals [k∗ − 1, k∗ +
1]. The first-order condensation transition disappears at k∗ = 5.

Finally, we study the effect of condensation of degrees
on the thermodynamics of the Ising model. As we approach
the first-order condensation transition in the plane (c, y) (see
Fig. 1), the function Fy(μ) displays two maxima, one of them
being metastable.

Figure 5 exhibits the magnetization, the internal energy,
and the susceptibility for c = 13. All quantities are shown
as a function of y, for three different values of T , using
Fig. 4 as a guide. For T = 15, even though the magnetization
is always zero, the system exhibits a first-order transition
between two paramagnetic phases at y = yc, since the suscep-
tibility and the internal energy display a jump at y = yc. For
T = 8, the magnetization drops to zero at yc, while u and χ

increase discontinuously. Such behavior characterizes a first-
order transition between a ferromagnetic and a paramagnetic
phase. Finally, for T = 2, the Ising model undergoes two
different phase transitions as a function of y. First, m, u,

and χ vary discontinuously at y = yc, with the magnetization
changing between two finite values, which characterizes a
first-order phase transition between ferromagnetic states. By
further increasing y in the regime y > yc, we notice that m van-
ishes continuously, while the magnetic susceptibility seems to

0 1 2 3 4 5
0

5

10

15

yc

yc

yc

y

T
c

c = 13
c = 12
c = 11
c = 10

FIG. 4. Critical temperature Tc [see Eq. (23)] identifying the
continuous phase transition between the paramagnetic and the fer-
romagnetic phases. The results for Tc are shown as a function of
y for different values of the average degree c. The vertical part
of the curves mark the critical values yc at which the constrained
ER ensemble undergoes a first-order structural transition to a phase
exhibiting condensation of degrees (see Fig. 1).

0 1 2 3 4 5
0

0.25

0.5

0.75

1 (a)

y

m

0 1 2 3 4 5

−6

−4

−2

0
(b)

y

u

T = 2
T = 8
T = 15

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
(c)

y

χ

4 4.5 5 5.5
0

20

40

60

80

y

χ

FIG. 5. Magnetization m, internal energy u, and magnetic sus-
ceptibility χ of the Ising model as a function of y for average
degree c = 13, zero external magnetic field (h = 0), and different
temperatures T . The theoretical results (solid lines) are derived from
the numerical solution of Eq. (13) using the population dynamics
algorithm, while the different symbols are results obtained from
Monte Carlo simulations of the model by considering 500 samples
of the system with a total number of N = 1000 spins. The inset
shows the behavior of χ around the second-order phase transition
between the paramagnetic and the ferromagnetic phases for T = 2.

diverge at a certain y. The latter behavior is typical of the
usual second-order phase transition between ferromagnetic
and paramagnetic states occurring in the Ising model.

IV. SPECTRAL PROPERTIES OF CONSTRAINED
RANDOM GRAPHS

A. The eigenvalue distribution

In this section we analyze the impact of the condensa-
tion transition on the eigenvalue distribution of ER random
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graphs drawn from Eq. (5). By defining the eigenvalues
λ1(C), . . . , λN (C) of a single instance of the symmetric ad-
jacency matrix C, the empirical spectral distribution reads

ρN (λ) = 1

N

N∑
i=1

δ[λ − λi(C)]. (24)

Here we are interested in the average eigenvalue distribution
corresponding to rare graph configurations labeled by y. Thus,
following the prescription of Eq. (6), we perform the ensemble
average of ρN (λ) over atypical regions of the ensemble space
as follows:

ρy(λ) = lim
N→∞

〈
ρN (λ)eyNF[a,b] (C)

〉
ER〈

eyNF[a,b] (C)
〉
ER

. (25)

The calculation of 〈.〉ER in the above equation can be recasted
in a problem analogous to the computation of the average free
energy in a spin-glass model [59],

ρy(λ) = − 2

Nπ
lim

η→0+
Im

[ 〈
∂z ln Z (z)eyNF[a,b] (C)

〉
ER〈

eyNF[a,b] (C)
〉
ER

]
, (26)

where Z (z) is the analogous of a partition function,

Z (z) =
∫ ∞

−∞

(
N∏

i=1

dxi

)
e− i

2

∑N
i, j=1 xi (zδi j−ci j )x j ,

with z = λ − iη and ∂z ≡ ∂
∂z . The behavior of ρy(λ) as a

function of y will allow us to characterize the effect of
condensation of degrees on the global spectral properties
of C.

The average spectral density ρy(λ) can be computed using
both the replica and the cavity methods, as developed in
the context of sparse random matrix theory [50,51,59]. Here
we compute the ensemble average in Eq. (26) by using the
replica approach, whose main technical details are explained
in Appendix B. The analytical expression for ρy(λ) is given
by

ρy(λ) = − lim
η→0+

1

π

∫
d� Q̃(�) Im�, (27)

where � ∈ C and d� ≡ dRe� dIm�. The joint distribution
Q̃(�) of the real and imaginary parts of the complex variable
� is determined from

Q̃(�) =
∞∑

k=0

py(k)
∫ [ k∏

l=1

d�lQ(�l )

]

× δ

(
� + 1

z +∑k
l=1 �l

)
, (28)

where Q(�) obeys the self-consistent equation

Q(�) =
∞∑

k=0

qy(k)
∫ [ k∏

l=1

d�lQ(�l )

]

× δ

(
� + 1

z +∑k
l=1 �l

)
. (29)

Equations (27)–(29) have the same form as the equations for
the spectral density of the configuration model of networks

[50,51,60]. The only difference lies in the degree distributions
py(k) and qy(k), determined respectively by Eqs. (16) and
(17), which encode the statistical properties of the degrees in
the constrained ensemble of graphs. The quantity Q̃(�) can be
easily identified as the distribution of the diagonal elements of
the resolvent matrix associated to C [60].

To characterize the fluctuations of the eigenvalue distribu-
tion, it is interesting to consider the second moment of the
spectral density,

〈λ2〉ρy =
∫

dλρy(λ)λ2. (30)

One can easily show that

〈λ2〉ρy = 〈k〉y, (31)

where 〈k〉y follows from Eq. (18). Since 〈λ〉ρy = 0 due to the
symmetry ρy(λ) = ρy(−λ), the variance of the distribution
ρy(λ) is fully determined by the average degree in the con-
strained ensemble.

B. Numerical results

Here we discuss the outcome of solving Eqs. (27)–(29)
numerically for different values of y using the population
dynamics method. The results are presented in Fig. 6 for
two fixed values of c, to capture the effect of the first-order
condensation transition occurring at small and large average
degrees (see Fig. 1).

For large c, ρy(λ) is approximately given by the Wigner
semicircle law when y = 0. By increasing y, ρy(λ) gradu-
ally develops a bump at λ = 0, until the eigenvalue distri-
bution suddenly becomes more concentrated around λ = 0
for y > yc, which reflects the large fraction of degrees ly-
ing in the interval [a, b] within the condensed phase. Ac-
cordingly, the variance of ρy(λ) drops discontinuously as y
crosses the critical point y = yc, as illustrated in the inset of
Fig. 6(a).

For low values of c, the distribution ρy(λ) corresponding
to typical graph configurations (y = 0) is composed of many
δ peaks, most of them located at the eigenvalues of finite trees
[52]. The δ peaks gradually disappear for decreasing y < 0,
until the distribution ρy(λ) abruptly collapses into a few δ

peaks when |y| > |yc|. In particular, Fig. 6(b) suggests that,
when |y| > |yc|, the peak at λ = 0 has the largest weight in
comparison to the others. This feature is consistent with the
degree distribution py(k) characterizing the condensed phase
appearing in this specific region of the phase diagram, where
py(k) displays a large peak at k = 0 [30].

Overall, Fig. 6 shows that the condensation transition leads
to a dramatic change of the eigenvalue statistics. This is in
contrast, for instance, to the standard second-order perco-
lation transition, which does not bring about any qualita-
tive changes in the moments of the spectral density [52],
even though the structure of the graph changes in a striking
way.

V. FINAL REMARKS

Random graphs undergo structural transitions when certain
control parameters are changed. Here we have studied the
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FIG. 6. Theoretical results (different line styles) for the spectral
density of constrained ER random graphs for different values of y
[see Eq. (5)], interval [1,3], and average degrees (a) c = 13 and
(b) c = 2. Panels (a) and (b) show the behavior of the eigenvalue
distribution as we cross the condensation transition for high and low
c, respectively. The theoretical results are obtained from the numer-
ical solution of Eq. (29) using the population dynamics algorithm.
The square symbols are obtained from the direct diagonalization of
1000 independent realizations of the 1000 × 1000 adjacency matrix
characterizing atypical graph configurations generated through a
reweighted Monte Carlo method [30]. To present the comparison
between theory and numerical diagonalization in a clear way, we
have chosen to display numerical diagonalization results only for
two values of y in each graph. The eigenvalues have been rescaled
as λi → λi/

√
c in panel (a). The inset shows the second moment of

the spectral density ρy(λ) for c = 13.

effect of a discontinuous transition in the topology of Erdős-
Rényi (ER) random graphs on two different problems: the
thermodynamic behavior of the Ising model defined on ER

random graphs, and the eigenvalue statistics of the adjacency
matrix of ER graphs. This structural transition identifies the
discontinuous appearance of rare graph samples having a large
number of nodes with similar degrees, following from an
abrupt change in the degree statistics. We have shown that
this condensation transition has a profound impact on the
equilibrium properties of the Ising model as well as on the
spectral properties of random graphs.

Graph samples generated through Eq. (5) have correlations
in the matrix elements {ci j} and in the degree sequence
K1, . . . , KN . Therefore, it is not clear beforehand whether the
thermodynamic limit of interacting models defined on the
constrained ER ensemble is governed by the same equations
as in configuration models of networks [35,50,51]. Here we
have shown that, for the Ising model and for the spectral
density of the adjacency matrix, the equations remain the
same (see the appendices), and the only effect introduced by
the ensemble of Eq. (5) comes through the change in the
degree distribution. This can be seen as a strong evidence that
the constrained ER ensemble has a local tree-like structure.
We also point out that Eqs. (12), (13), and (27)–(29) are valid
for arbitrary functions of a single degree, i.e., we can replace
the indicator function I[a,b](ki ) by any other function of a
single degree, with the proviso that the sums in Eq. (14) are
convergent.

In the case of the Ising model, the condensation transition
leads to a rich phase diagram, including additional first-order
phase transitions between the paramagnetic and the ferromag-
netic phases, which are absent in the typical equilibrium be-
havior of the Ising model without an external magnetic field.
We have characterized the transitions among the different
phases in terms of the magnetization, the internal energy, and
the magnetic susceptibility. Concerning the spectral properties
of ER random graphs, we have shown that the condensation
transition in the graph structure leads to a discontinuous be-
havior of the eigenvalue statistics of the adjacency matrix. In
particular, the variance of the eigenvalue distribution displays
a jump at the condensation transition, which characterizes the
abrupt change in the total number of edges. The exactness of
our main theoretical results have been supported by Monte
Carlo simulations.

The first-order phase transitions discussed here are de-
tected by varying a control parameter y, which is coupled to
a random variable that counts how many degrees lie in an
arbitrary interval [a, b]. Thus, y enables to probe rare sectors
of the graph ensemble space, since this parameter essentially
controls the “distance” from the regime of typical fluctuations
(y = 0). Therefore, from the perspective of large deviation
theory, the condensation transition in the degree statistics
is triggered by large deviations in the graph structure. The
parameter y has a more concrete meaning when we interpret
the generation of rare graph samples in the original model
[see Eq. (1)] as the generation of typical graph samples in
a constrained ER ensemble [see Eq. (5)]. In this setting,
we can picture a variation in y as a change in the graph
topology, where some edges are rewired to comply with a
certain average fraction of degrees in [a, b]. This is indeed
one of the main ideas underlying the reweighted Monte Carlo
approach to generate atypical ER graph samples [30,61].
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Here we have illustrated the impact of condensation of
degrees in a paradigmatic model of cooperative behavior, i.e.,
the Ising model, and on an important spectral observable for
dynamical processes on graphs, i.e., the eigenvalue distri-
bution of the adjacency matrix. Although the condensation
transition is a statistically rare event, from the results reported
here we expect that condensation of degrees has a striking
effect on the macroscopic behavior of other large interacting
systems modelled through random graphs. Thus, we hope our
work stimulates the research towards a better understanding of
the effects of condensation of degrees in different topics, such
as synchronization phenomena on networks [36], diffusion
processes on graphs [37], the linear stability of sparse interact-
ing systems [44,45], and the dynamics of network formation
[1].

Finally, we point out that condensation of degrees is driven
by weak correlations between the degrees of ER random
graphs. Since the eigenvalues of a sparse random matrix
are weakly correlated random variables [47–49], it would
be interesting to study whether these eigenvalues undergo a
similar condensation transition.
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APPENDIX A: ANALYTICAL CALCULATIONS FOR THE
ISING MODEL

In this Appendix we derive in detail the thermodynamical
properties of the Ising model on random graphs generated by
Eq. (5).

1. The replica symmetric free energy

First, we discuss how to compute the ensemble average
〈ZneyNF[a,b] (C)〉ER appearing in Eq. (11). By taking n to be a
positive integer we write

〈
ZneyNF[a,b] (C)

〉
ER

=
N−1∑

k1,...,kN =0

∑
σ1,...,σn

exp

(
N∑

i=1

Hi

)

×
〈

exp

⎛
⎝βJ

∑
i< j

ci j

n∑
a=1

σiaσ ja

⎞
⎠ N∏

i=1

δKi,ki

〉
ER

, (A1)

where σa for a = 1, . . . , n is the Ising vector for the ath
replica, Ki =∑N

j=1( �=i) ci j , and

Hi = hβ

n∑
a=1

σia + yI[a,b](ki ). (A2)

By rewriting the Kronecker δ functions in the Fourier repre-
sentation, we obtain, after some algebra,

〈
exp

⎛
⎝βJ

∑
i< j

ci j

n∑
a=1

σiaσ ja

⎞
⎠ N∏

i=1

δKi,ki

〉
ER

=
∫ ( N∏

i=1

dui

2π

)
exp

⎛
⎝i

N∑
i=1

uiki

+ c

2N

∑
i, j

{
exp

[
βJ

n∑
a=1

σiaσ ja − i(ui + u j )

]
− 1

}⎞⎠,

(A3)

where we have already dropped subextensive terms, which
are unimportant in the thermodynamic limit. Next, we define
the spin vectors in the replica space σ i = (σi1, . . . , σin ) for
i = 1, . . . , N , and we introduce the following order parameter
function:

P(σ ) = 1

N

N∑
i=1

e−iuiδσ,σ i
. (A4)

After some algebra we are left with the following expression:

〈ZneyR[a,b]〉ER =
∫

D{P, P̂} eNS(P,P̂), (A5)

where
∫

D{P, P̂} denotes a path integral over the pair {P, P̂},
and

S(P, P̂) = ln

⎧⎨
⎩
∑

σ

ehβ
∑n

a=1 σa

∞∑
k=0

(−i)k

k!
[P̂(σ )]keyI[a,b] (k)

⎫⎬
⎭

− c

2
+ c

2

∑
σ ,τ

P(τ )P(σ )eβJσ ·τ + i
∑

σ

P̂(σ )P(σ ).

(A6)

In the thermodynamic limit, this path integral can be evalu-
ated by using the saddle-point method, at which the pair of
functions {P, P̂} obeys the following saddle-point equations:

− iP̂(σ ) = c
∑

τ

P(τ )eβJσ ·τ , (A7)

P(τ ) =
ehβ

∑n
a=1 τa

∑∞
k=1

(−iP̂(τ ))k−1

(k−1)! eyI[a,b] (k)∑
σ ehβ

∑n
a=1 σa

∑∞
k=0

(−iP̂(σ ))k

k! eyI[a,b] (k)
. (A8)

2. Replica symmetric ansatz

Within replica symmetric ansatz we assume the functions
P and P̂ to take the following form:

P(σ ) = μy

∫
dθ W (θ )

n∏
a=1

eβθσa

2 cosh(βθ )
,

−iP̂(σ ) = cμy

∫
du H (u)

n∏
a=1

eβuσa

2 cosh(βu)
,

(A9)
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where W (θ ) and H (u) are densities yet to be determined.
Notice that the constant μy in Eq. (A9) also needs to be de-
termined, but fairly naturally, this will turn out to be precisely
the factor μy given by Eq. (14).

By using the replica symmetric ansatz in Eqs. (A7) and
(A8) we obtain, after some algebra,

H (u) =
∫

dθW (θ )δ

{
u − 1

β
arctanh[tanh(βJ ) tanh(βθ )]

}
,

(A10)

and

W (θ ) =
∞∑

k=0

qy(k)
∫ [ k∏

l=1

dulH (ul )

]
δ

(
θ − h −

k∑
l=1

ul

)
,

(A11)

where qy(k) follows Eq. (17). This gives back Eq. (13) in the
main text.

Similarly, we can evaluate the expression of S(P, P̂) within
the replica symmetric ansatz, yielding

F̃ (W, H ) = −F (y, μy) − ncμ2
y

2
ln[cosh(βJ )] + n

(
cμ2

y

∫
dθduW (θ )H (u) ln

{
cosh[β(u + θ )]

2 cosh(βu) cosh(βθ )

}

− cμ2
y

2

∫
dθdθ ′W (θ )W (θ ′) ln(1 + tanh βθ tanh βθ ′ tanh βJ )

−
∞∑

k=0

py(k)
∫ [ k∏

l=1

dul H (ul )

]
ln

{
cosh

[
β
(
h +∑k

l=1 ul
)]

2k−1
∏k

l=1 cosh(βul )

})
+ O(n2). (A12)

As shown in Ref. [30], py(k) is the effective probability
distribution for the degree of a node, which can be used to
rewrite Eq. (14) as follows:

μy = 1

cμy

∞∑
k=0

(k + 1)py(k + 1) = 1

cμy
〈k〉y,

that is, cμ2
y is the average of the degree of a node. The

derivation of expressions for magnetization, internal energy,
and bifurcation analysis to obtain the critical temperature
follow the standard route.

APPENDIX B: DERIVATIONS FOR THE SPECTRAL
DENSITY

We start by noticing that the expression for the spectral
density given by Eq. (24) is mathematically similar to the one
in Eq. (10), corresponding to the Ising model. By using the
replica method we write

ρy(λ) = − lim
n→0

lim
η→0+

2

Nnπ
Im ∂z ln

( 〈Zn(z)eyNF[a,b]〉ER

〈eyNF[a,b]〉ER

)
,

(B1)

where the numerator can be worked out to obtain

〈Zn(z)eyNF[a,b]〉ER

=
∑

k1,...,kN

∫ [ n∏
a=1

dxN
a

]
exp

⎛
⎝ N∑

j=1

H j

⎞
⎠

×
∫ [ N∏

i=1

dui

2π

]
exp

(
i

N∑
i=1

uiki

+ c

2N

∑
i, j

{
exp

[
i

n∑
a=1

xiax ja − i(ui + u j )

]
− 1

}⎞⎠,

(B2)

with the definition

H j = − iz

2

n∑
a=1

x2
ja + yI[a,b](k j ). (B3)

Next, we introduce the following functional order parameter

P(x) = 1

N

N∑
i=1

δ(x − xi )e
−iui ,

with xi = (xi1, . . . , xin ). This allows us to write the following
path integral

〈Zn(z)eyR[a,b]〉ER =
∫

D{P, P̂}eNS(P,P̂), (B4)

with

S(P, P̂) = ln
∫

dx e− iz
2

∑n
a=1 x2

a

∞∑
k=0

(−iP̂(x))k

k!
eyI[a,b] (k)

− c

2
+ c

2

∫
dxdy P(x)P(y)eix·y

+ i
∫

dx P(x)P̂(x).

(B5)

The asymptotic behavior of the path integral is evaluated by
the saddle point method, which yields a set of couple saddle-
point equations for P and P̂.

In this case the replica symmetric ansatz can be written as
follows:

P(x) = μy

∫
d�Q(�)

n∏
a=1

√
1

2π i�
ei x2

a
2� ,

−iP̂(x) = cμy

∫
d��(�)

n∏
a=1

√
�

2π i
ei� x2

a
2 , (B6)
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where the densities Q(�) and �(�) are determined by plug-
ging this ansatz into the saddle-point equations. The latter
become

�(�) =
∫

d�W (�)δ(� + �),

Q(�) =
∞∑

k=0

qy(k)
∫ [ k∏

l=1

d�l�(�l )

]
δ

(
� + 1

z −∑k
l=1 �l

)
,

(B7)

which, when combined, yield Eq. (27) reported in the main
text.

Finally, one can show that using the replica symmet-
ric ansatz in Eq. (B5), the spectral density ρy(λ) given by

Eq. (B1) becomes

ρy(λ) = lim
η→0+

1

π
Im

∞∑
k=0

ipy(k)

×
∫ [ k∏

l=1

d�l�(�l )

]∫
dx x2e− i

2 x2(z−∑k
l=1 �l )∫

dx e− i
2 x2(z−∑k

l=1 �l )

= lim
η→0+

1

π
Im
∫

d�

∫
dx ix2ei x2

2�∫
dx ei x2

2�

×
∞∑

k=0

py(k)
∫ [ k∏

l=1

d�l�(�l )

]
δ

(
�+ 1

z −∑k
l=1 �l

)
,

(B8)
where py(k) is defined in Eq. (16).
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