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The expressions for entropy production, free energy, and entropy extraction rates are derived for a Brownian
particle that walks in an underdamped medium. Our analysis indicates that as long as the system is driven out
of equilibrium, it constantly produces entropy at the same time it extracts entropy out of the system. At steady
state, the rate of entropy production ėp balances the rate of entropy extraction ḣd . At equilibrium both entropy
production and extraction rates become zero. The entropy production and entropy extraction rates are also
sensitive to time. As time progresses, both entropy production and extraction rates increase in time and saturate
to constant values. Moreover, employing microscopic stochastic approach, several thermodynamic relations for
different model systems are explored analytically and via numerical simulations by considering a Brownian
particle that moves in overdamped medium. Our analysis indicates that the results obtained for underdamped
cases quantitatively agree with overdamped cases at steady state. The fluctuation theorem is also discussed.
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I. INTRODUCTION

Exploring the thermodynamic feature of equilibrium sys-
tems is vital and recently has received significant attention
since these systems serve as a starting point to study the
thermodynamic properties of systems which are far from
equilibrium. Because most physically relevant systems are far
from equilibrium, it is vital to explore the thermodynamic
properties of systems which are driven out of equilibrium.
However, such systems are often challenging since their ther-
modynamic relations such as entropy and free energy depend
on their reaction rates. Despite the challenge, the thermody-
namic relations of systems which are far from equilibrium are
explored in the works in [1–4]. Particularly, the Boltzmann-
Gibbs nonequilibrium entropy along with the entropy balance
equation serve as an important tool to explore the nonequilib-
rium thermodynamic features [1–3].

In the past, microscopic stochastic approach has been used
by Schnakenberg to derive various thermodynamic quantities
such as entropy production rate in terms of local probability
density and transition probability rate [3]. Later, many theo-
retical studies were conducted; see, for example, the works in
[4–16]. Recently, we presented an exactly solvable model and
studied the factors that affect the entropy production and ex-
traction rates [17–19] for a Brownian particle that walks on a
discrete lattice system. More recently, using Boltzmann-Gibbs
nonequilibrium entropy, we derived the general expressions
for the free energy, entropy production, and entropy extraction
rates for a Brownian particle moving in a viscous medium
where the dynamics of its motion is governed by the Langevin
equation. Employing Boltzmann-Gibbs nonequilibrium en-
tropy as well as from the knowledge of local probability
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density and particle current, it is shown that as long as the
system is far from equilibrium, it constantly produces entropy
and at the same time extracts entropy out of the system. Since
many biological problems such as intracellular transport of
kinesin or dynein inside the cell can be studied by considering
a simplified model of particles walking on lattice as discussed
in works by Bameta et al. [20], Oriola et al. [21], and Campas
et al. [22], the model considered will serve as a starting
point to study the thermodynamics features of two or more
interacting particles hopping on a lattice. At this point, it
is important to stress that most of our studies are focused
on exploring the thermodynamic property of systems that
operate in the classical regimes. For systems that operate at
quantum realm, the dependence of thermodynamic quantities
on the model parameters is studied in the works in [23–25].
Particularly, Boukobza et al. investigated the thermodynamic
feature of a three-level maser. Not only the entropy production
rate is defined in terms of the system parameters but it is
shown that the first and second laws of thermodynamics are
always satisfied in the model system [25].

In this work, using Langevin equation and Boltzmann-
Gibbs nonequilibrium entropy, the general expressions for the
free energy, entropy production ėp, and entropy extraction
rates ḣd are derived in terms of velocity and probability
distribution considering a Brownian particle that moves in
underdamped medium. Moreover, after extending the results
obtained by Tome et al. [26] to a spatially varying temperature
case, we further analyze our model systems. We show that
the approximation performed based on Tome et al. [26] and
our general analytic expression agree exactly. The analytic
results also justified via numerical simulations. The main
results obtained in this work depict that in the absence of load,
the entropy production rate decreases as time increases and,
in the long time limit, it approaches zero while the entropy
extraction rate always approaches zero regardless of time
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t . The above shown results can be explained intuitively on
physical bases. As one can note that, for the isothermal case,
in the long time limit the system reaches stationary state. If
the change in entropy �S(t ) is taken while the system is at the
stationary state, then �S = 0 or �ep = 0. However, since the
system operates irreversibly while operating at a finite time
(far from the quasistatic limit), the second law of thermody-
namics states that �S(t ) > 0. In fact, the results of this work
depict that when the particle relaxes to its equilibrium state,
it produces entropy and, if the change in these parameters is
taken between t = 0 and any time t , always the inequality
�S(t ) = S(t ) − S(0) > 0 holds true and as time progresses
the change in these parameters increases. Moreover, it is
found that, at stationary state, the entropy production and
extraction rates approach zero either the particle operates in
underdamped or overdamped medium.

To explore how the various thermodynamic relations be-
have when the system does work against the load f , the
dependence of the thermodynamic relations on the load f is
explored. In the presence of nonzero force, it is shown that
the entropy production and extraction rates increase in time
and saturate to a constant value. The fact that the entropy
production and extraction rates are greater than zero indicates
that the system is out of equilibrium since the system does
work at a finite time. At small t , ėp(t ) > ḣd (t ) revealing that,
even if at steady state ėp(t ) = ḣd (t ), the system produces an
enormous amount of entropy at initial time and in latter time
or any time t , �ep(t ) > �hd (t ), revealing �S(t ) > 0 which
is a vivid indication that the second law of thermodynamics is
always preserved.

Furthermore, we discuss the nonequilibrium thermody-
namic features of a Brownian particle that hops in a ratchet
potential where the potential is coupled with a spatially vary-
ing temperature. It is shown that the operational regime of
such a Brownian heat engine is dictated by the magnitude of
the external load f . The steady state current or equivalently
the velocity of the engine is positive when f is smaller and
the engine acts as a heat engine. In this regime ėp = ḣd > 0.
When f increases, the velocity of the particle decreases and,
at stall force, we find that ėp = ḣd = 0 showing that the
system is reversible at this particular choice of parameter.
For large load, the current is negative and the engine acts
as a refrigerator. In this region ėp = ḣd > 0. Here we first
study the underdamped case via simulations and then, for the
overdamped case, the thermodynamic feature for the model
system is explored analytically. The main result indicates
that, in the regime where the velocity is high, the entropy
production and extraction rates are also significantly high.

The rest of paper is organized as follows. In Sec. II,
we present the model system as well as the derivation of
entropy production and free energy. In Sec. III, we explore
the dependence for the entropy production, entropy exaction,
and free energy rates on the system parameters for a Brownian
particle that freely diffuses in an isothermal underdamped
medium. In Sec. IV, the dependence for various thermody-
namic quantities on system parameters is explored consider-
ing a Brownian particle that undergoes a biased random walk
in a spatially varying thermal arrangement in the presence
of external load. In Sec. V, we consider a Brownian parti-
cle walking in rachet potential. The fluctuation theorem is

discussed in Sec. VI. Section VII deals with summary and
conclusion.

II. FREE ENERGY AND ENTROPY PRODUCTION

In the work in [26], the expressions for entropy produc-
tion and entropy extraction rates were presented in terms
of particle velocity and probability distribution considering
underdamped and isothermal medium. For a spatially vary-
ing thermal arrangement, next we derive the thermodynamic
quantities by considering a single Brownian particle that hops
in underdamped medium along the potential U (x) = Us(x) +
f x, where Us(x) and f are the periodic potential and the
external force, respectively.

For a single particle that is arranged to undergo a random
walk, the dynamics of the particle is governed by the Langevin
equation

m
dv

dt
= −γ

dx

dt
− dU (x)

dx
+

√
2kBγ T (x)ξ (t ). (1)

The Boltzmann constant kB is assumed to be unity. The ran-
dom noise ξ (t ) is assumed to be Gaussian white noise satis-
fying the relations 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). The
viscous friction γ is assumed to be constant while the tem-
perature T (x) varies along the medium. For the underdamped
Langevin case neither Ito nor Stratonovich interpretation is
needed as discussed by Sancho et al. [27] and Jayannavar
et al. [28].

For the overdamped case, the above Langevin equation can
be written as

γ (x)
dx

dt
= −∂U (x)

∂x
− (1 − ε)

γ (x)

∂

∂x
[γ (x)T (x)]

+
√

2kBγ (x)T (x)ξ (t ). (2)

Here the Ito and Stratonovich interpretations correspond to
the case where ε = 1 and ε = 1/2, respectively, while the
case ε = 0 is called the Hänggi postpoint or transform-form
interpretation [27,29,30].

The Fokker-Plank equation for the underdamped case is
given by

∂P

∂t
= −∂ (vP)

∂x
− 1

m

∂ (U ′(x)P)
∂v

+ γ

m

∂ (vP)

∂v
+ γ T (x)

m2

∂2P

∂v2
,

(3)

where P(x, v, t ) is the probability of finding the particle at
particular position, velocity, and time. The Gibbs entropy is
given by

S(t ) = −
∫

P(x, v, t ) ln P(x, v, t )dx dv. (4)

The entropy production and dissipation rates can be derived
via the approach stated in the work [7]. The derivative of S
with time leads to

dS(t )

dt
= −kB

∫
∂P(x, v, t )

∂t
ln[P(x, v, t )]dx dv. (5)

Equation (5) can be rewritten as

dS(t )

dt
= ėp − ḣd , (6)
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where ėp = dep

dt and ḣd = dhd
dt are the entropy production and

extraction rates.
In order to calculate ḣd , let us first find the heat dissipation

rate Ḣd via stochastic energetics that are discussed in the
works in [31,32]. Accordingly the energy extraction rate can
be written as

Ḣd = −〈(−γ (x)ẋ +
√

2kBγ (x)T (x)).ẋ〉

= −
〈
m

vdv

dt
+ vU ′(x)

〉
. (7)

Once the energy dissipation rate is obtained, based on our
previous works [17–19], the entropy extraction rate ḣd then
can be found as

ḣd = −
∫ (

m vdv
dt + vU ′(x)

T (x)

)
P dx dv. (8)

At this point we want to stress that Eq. (8) is exact and does
not depend on any boundary condition (as it can be seen in the
next sections). Since dS(t )

dt and ḣd are computable, the entropy
production rate can be readily obtained as

ėp = dS(t )

dt
+ ḣd . (9)

In the high friction limit, Eq. (8) converges to

ḣd = −
∫ [

J
U ′(x)

T (x)

]
dx, (10)

where the probability current

J (x, t ) = −
[
U ′(x)P(x, t ) + T (x)

∂P(x, t )

∂x

]
. (11)

At steady state dS(t )
dt = 0, which implies that ėp = ḣd > 0. For

the isothermal case, at stationary state (approaching equilib-
rium), ėp = ḣd = 0.

Moreover, for the case where the probability distribution
is either periodic or vanishes at the boundary, Tome et al.
[26] derived the expressions for the entropy production and
entropy extraction rates for the isothermal case. Following
their approach, let us rewrite Eq. (3) as

∂P

∂t
= k + ∂J ′

∂v
, (12)

where

k = v
∂P

∂x
+ 1

m
(U ′)

∂P

∂v
(13)

and

J ′ = − γ

m
vP − T (x)

m2

∂P

∂v
. (14)

The expression k vanishes after imposing a boundary condi-
tion. After some algebra one gets

ėp = −
∫

m2J ′2

PT (x)γ
dx dv (15)

and

ḣd = −
∫

mvJ ′

T (x)
dx dv, (16)

respectively. In the next sections we show that indeed Eqs. (8)
and (16) as well Eqs. (9) and (15) agree as long as a periodic
boundary condition is imposed.

In general, since the expressions for Ṡ(t ), ėp(t ), and ḣd (t )
can be obtained at any time t , the analytic expressions for
the change in entropy production, heat dissipation, and total
entropy can be found analytically via

�hd (t ) =
∫ t

0
ḣd (t )dt,

�ep(t ) =
∫ t

0
ėp(t )dt, (17)

�S(t ) =
∫ t

0
Ṡ(t )dt,

where �S(t ) = �ep(t ) − �hd (t ).
Derivation for the free energy. The free energy dissipation

rate Ḟ (t ) can be expressed in terms of Ėp(t ) and Ḣd (t ). Ėp(t )
and Ḣd (t ) are the terms that are associated with ėp(t ) and
ḣd (t ). Let us now introduce Ḣd (t ) for the model system we
considered. The heat dissipation rate is either given by Eq. (7)
(for any cases) or, if a periodic boundary condition is imposed,
Ḣd (t ) is given by

Ḣd = −
∫

mvJ ′dx dv. (18)

Equation (18) is notably different from Eqs. (8) and (16), due
to the term T (x). On the other hand, the term Ėp is related to
ėp and it is given by

Ėp = −
∫

m2J ′2

Pγ
dx dv. (19)

The new entropy balance equation

dST (t )

dt
= Ėp − Ḣd (20)

is associated to Eq. (6) except the term T (x). Once again,
because the expressions for ṠT (t ), Ėp(t ), and Ḣd (t ) can be
obtained as a function of time t , the analytic expressions for
the change related to the rate of entropy production, heat
dissipation, and total entropy can be found analytically via

�Hd (t ) =
∫ t

0
Ḣd (t )dt,

�Ep(t ) =
∫ t

0
Ėp(t )dt, (21)

�S(t )T =
∫ t

0
Ṡ(t )T dt,

where �S(t )T = �Ep(t ) − �Hd (t ).
On the other hand, the internal energy is given by

Ėin =
∫

[K̇ + vU ′
s (x)]P(x, v, t )dv dx, (22)

where K̇ = m v dv
dt and U ′

s denote the rate of kinetic and poten-
tial energy, respectively. For a Brownian particle that operates
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due to the spatially varying temperature case, the total work
done is then given by

Ẇ =
∫

v f P(x, v, t )dv dx. (23)

The first law of thermodynamics can be written as

Ėin = −Ḣd (t ) − Ẇ . (24)

The change in the internal energy reduces to �Ein =
− ∫ t

0 [Ḣd (t ) + Ẇ ]dt
As discussed in the work in [17–19], the rate of free energy

is given by Ḟ = Ė − T Ṡ for the isothermal case and Ḟ = Ė −
ṠT for the nonisothermal case, where ṠT = Ėp − Ḣd . Hence
we write the free energy dissipation rate as

Ḟ = Ėin − ṠT = Ėin − Ėp + Ḣd . (25)

The change in the free energy is given by

�F (t ) = −
∫ t

0

(
Ẇ + Ėp(t )

)
dt . (26)

For the isothermal case, at quasistatic limit where the velocity
approaches zero v = 0, Ėp(t ) = 0, and Ḣd (t ) = 0 and far
from quasistatic limit Ep = Ḣd > 0, which is expected as the
particle operates irreversibly.

III. ISOTHERMAL CASE

In this section we discuss the thermodynamic properties
for a Brownian particle moving freely without any boundary
condition in an underdamped medium under the influence
of a force f in the absence of a potential U ′

s . The general
expression for the probability distribution P(v, t ) is calculated
as

P(v, t ) =
e
− m

(
−(1−e−

γ t
m ) f

γ +v

)2

2(1−e−
2γ t
m )T

√
m

(1−e− 2γ t
m )t√

2π
. (27)

The average velocity has the form

〈v(t )〉 =
(

1 − e− γ t
m

γ

)
f . (28)

At steady state (the long time limit), the velocity approaches
v = f /γ as expected.

A. Free particle diffusion

For a Brownian particle that moves in an underdamped
medium without an external force, f = 0, next let us explore
how the entropy production and extraction rates behave. From
now on, whenever we plot any figures, we use the following
dimensionless load f̄ = f L0/Tc, Ū = U/Tc, and temperature
τ̄ = T (x)/Tc, where Tc is the reference temperature. We also
introduced dimensionless parameters x̄ = x/L0, v̄ = vm/γ L0,
and t̄ = tγ /m. Hereafter the bar will be dropped. From now
on all the figures will be plotted in terms of the dimensionless
parameters.

S
h d
e p

FIG. 1. (a) Entropy S(t ) as a function of t evaluated analytically
by substituting Eq. (27) in Eq. (4). For the isothermal case where τ =
1, S(t ) monotonously increases and saturates to a constant value as t
further increases. (b) ėp(t ) (black solid line) is analyzed analytically
by substituting Eq. (27) in Eq. (9) while ḣd (t ) (red solid line) is
calculated by plugging Eq. (27) in Eq. (10). The figure exhibits
that ėp(t ) decreases as time increases and, in the long time limit, it
approaches its stationary value ėp(t ) = ḣd (t ) = 0 as long as τ = 1.

The expression for the entropy can be readily calculated by
substituting Eq. (27) in Eq. (4). Figure 1 exhibits that the en-
tropy S(t ) increases with time and saturates to a constant value
which agrees with the results shown in the works [18,19]. On
the other hand, the entropy production and extraction rates are
explored via Eqs. (6), (8), and (9) (see Fig. 2). The plot ėp(t )
(red solid line) and ḣd (t ) (black solid line) as a function of t
for parameter choice τ = 1 is depicted in Fig. 2. The figure
exhibits that ėp(t ) decreases as time increases and, in long
time limit, it approaches its stationary value ėp(t ) = 0. On
the other hand, ḣd (t ) = 0 regardless of t . In the limit t → ∞,
dS(t )

dt = 0 since ėp(t ) = ḣd (t ) = 0 in the long time limit. The
above shown results can be explained intuitively on physical
grounds. As one can note that for the isothermal case, in
the long time limit the system reaches the stationary state.
If the change in these parameters are taken at this particular
state, then �hd = 0, �S = 0, or �ep = 0. However, since
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S

h d
e p

FIG. 2. (a) Entropy Ṡ(t ) is determined analytically via Eq. (27)
and Eq. (6). S(t ) monotonously increases and saturates to a constant
value as t increases for fixed τ = 1. At stationary state Ṡ(t ) = 0,
which implies ėp(t ) = ḣd (t ). (b) ėp(t ) (red solid line) as a function of
t is plotted using Eq. (27) and Eq. (9), while ḣd (t ) (black solid line)
as a function of t is evaluated by plugging Eq. (27) in Eq. (10). The
figure exhibits that ėp(t ) and ḣd (t ) increase as time increases and in
the long time limit ėp(t ) = ḣd (t ) > 0 as expected.

the system operates irreversibly at a finite time (far from the
quasistatic limit), the second law of thermodynamics states
that �S(t ) > 0. In reality, when the particle relaxes to its
equilibrium state, it produces entropy and, once the motor
starts operating, entropy will be accumulated in the system
starting from t = 0 and, as time progresses, more entropy
will be stored in the system even though some entropy is
extracted out of the system. Hence if the change in these
parameters is taken between t = 0 and any time t , always
the inequality �hd (t ) = hd (t ) − hd (0) > 0, �S(t ) = S(t ) −
S(0) > 0, or �ep(t ) = ep(t ) − ep(0) > 0 holds true and as
time progresses the change in this parameters increases. In
fact, in small t regimes, ėp(t ) becomes much larger than ḣd (t ),
revealing that the entropy production is higher (than entropy
extraction) in the first few periods of time. As time increases,
more entropy will be extracted ḣd (t ) > ėp. Overall, since the

h d
e p

FIG. 3. Dependence of ėp(t ) (black solid line) and ḣd (t ) (red
solid line) on t is explored without imposing a periodic boundary
condition. The results shown in Fig. 2 are identical to Fig. 3 except
that Fig. 3 is plotted via Eqs. (6), (15), and (16), while in plotting
Fig. 2, Eqs. (6), (8), and (9) are used.

system produces an enormous amount of entropy at the initial
time, in latter time or any time t , �ep(t ) > �hd (t ) and hence
�S(t ) > 0.

B. Particle diffusion in the presence of force

In order to explore how the various thermodynamic rela-
tions behave when the system does work against the load f at
a finite time, next we will explore the effect of the load f . In
the presence of nonzero force, the particle diffuses under the
influence of the external load. Exploiting Eqs. (6), (8), and (9),
the dependence Ṡ(t ), ėp(t ), and ḣd (t ) on model parameters is
explored. In Fig. 2(a), Ṡ(t ) as a function of t is depicted for
fixed values of τ = 1 and f = 1.0. The figure clearly depicts
that at small t , the entropy production rate is much greater than
the entropy extraction rate. As time increases, the difference
between ėp(t ) and ḣd (t ) decreases and, in the limit t → ∞,
S(t ) saturates to zero showing that the system approaches its
steady state. Figure 2(b) shows the plot ėp(t ) as a function of t
(red solid lines). In the same figure, the plot of ḣd (t ) versus t is
shown (black solid line). The fact that ėp(t ) > 0 or ḣd (t ) > 0
indicates that the system is out of equilibrium since the system
does work at a finite time. Clearly at small t , ėp(t ) > ḣd (t ).
As time progresses, ėp(t ) and ḣd (t ) step up and, in long time
limit, they approach their steady state values ḣd (t ) = ėp(t ) >

0 revealing, in the presence of symmetry breaking fields such
as external force, the system is driven out of equilibrium.

Even if no periodic boundary condition is imposed, the
results shown in Fig. 2 can be also reproduced by employing
Eqs. (6), (15), and (16). In fact Fig. 3 is identical to Fig. 2
except that Fig. 3 is plotted via Eqs. (6), (15), and (16) while,
in plotting Fig. 2, Eqs. (6), (8), and (9) are used. Our analysis
also indicates that the free energy dissipation rate Ḟ is always
less than zero Ḟ < 0. As time steps up, it increases with
time and approaches zero in the long time limit. All of the
results shown in this work also agree with our previous results
[17–19]. As before �hd (t ) = hd (t ) − hd (t0) > 0, �S(t ) =
S(t ) − S(t0) > 0, or �ep(t ) = ep(t ) − ep(t0) > 0.
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IV. NONISOTHERMAL CASE

A. Periodic boundary condition

Now let us consider an important model system where a
colloidal particle undergoes a biased random walk in a spa-
tially varying thermal arrangement in the presence of external
load f with no potential. The load is also coupled with a heat
bath that decreases from Th at x = 0 to Tc at x = L0 along the
reaction coordinate in the manner

T (x) =
{

x(Tc − Th)

L0
+ Th

}
. (29)

Here L0 denotes the width of the ratchet potential. Th and Tc

denote the temperature of the hot and cold baths.
Solving Eq. (3) at steady state and imposing a periodic

boundary condition, the general expression for the probability
distribution is obtained as

P(x, v) = e
− L0m( f −γ v)2

2γ 2L0[L0Th+(Tc−Th )x]

√
L0m

2L0πTh + 2πTcx − 2πThx
.

(30)

The average velocity is found to be

v = f

γ
. (31)

In the absence of force, the velocity approach zero.
Employing Eqs. (6), (8), and (9), the entropy production

and extraction rates are calculated as

ḣd (t ) = ėp(t ) = (2 f L0)2ln[Tc/Th]

4γ L0(Tc − Th)
. (32)

We reproduce the above result (using Tome et al.’s [26]
approach) via Eqs. (6), (15), and (16) as

ḣd (t ) = ėp(t ) = (2 f L0)2ln[Tc/Th]

4γ L0(Tc − Th)
. (33)

Surprisingly, in the limit where the load approaches the stall
force, ḣd (t ) = ėp(t ) = 0.

The rate of heat dissipation is calculated using Eq. (7) [or
Eq. (18)] and it converges to

Ḣd (t ) = Ėp(t ) = ( f L0)2

γ L0
. (34)

In the limit where the load approaches zero, Ḣd (t ) = Ėp(t ) =
0, showing that at quasistatic limit the system is reversible. On
the other hand, the rate of work done is given by

Ẇ (t ) = Ėp(t ) = ( f L0)2

γ L0
. (35)

For isothermal case Th = Tc one gets v = f /γ , ḣd (t ) =
ėp(t ) = f 2L0/γ Tc, and Ḣd (t ) = Ėp(t ) = f 2L0/γ .

All of the results shown in this section are justified via
numerical simulations by integrating the Langevin equation
(1) (employing Brownian dynamics simulation). In the sim-
ulation, a Brownian particle is initially situated in one of
the potential wells. Then the trajectories for the particle are
simulated by considering different time steps �t and time
length tmax. In order to ensure the numerical accuracy 109

ensemble averages have been obtained. Figure 4 depicts the

FIG. 4. Velocity v as a function of load f . The dotted line is
plotted via Brownian dynamic simulation, while the solid line is
plotted using the analytic Eq. (31). The figure depicts that, as the
strength of force steps up, the velocity of the particle increases.

plot v as a function of load f . The dotted line is plotted via
Brownian dynamic simulation while the solid line is plotted
using the analytic Eq. (31). The figure shows the velocity
steps up linearly with the load f . This is feasible since the
unbiased random walk is due to the applied load f . The plot
ėp(t ) and ḣd (t ) as a function of f is depicted in Fig. 5(a) for
parameter choice τ = 2. The figures show that ėp(t ) and ḣd (t )
have a nonlinear dependence on the load. As the load steps up,
ėp(t ) and ḣd (t ) increase, showing the entropy production and
extraction rates intensify with load.

In order to investigate the effect of the temperature dif-
ference between the hot and cold baths, next we study the
system as a function of the rescaled temperature τ = Th/Tc.
Figure 5(b) exhibits the plot ėp(t ) and ḣd (t ) as a function
of τ for fixed f = 2. The figure depicts that ėp(t ) and ḣd (t )
decrease as the temperature increases.

B. Nonisothermal case without boundary condition

All the discussed thermodynamic quantities are quite sen-
sitive to the choice of the boundary condition. For instance,
when no boundary condition is imposed, we find the velocity
for the underdamped case as

v = 2 f L0 + (Tc − Th)

2γ L0
, (36)

showing the particle stalls when

fs = (Th − Tc)

2γ L0
. (37)

When f < fs, the particle velocity v > 0 and, if f > fs, the
particle velocity v < 0. At stall force f = fs, v = 0. The
entropy production and extraction rates are given as

ḣd (t ) = ėp(t ) = (2 f L0 + Tc − Th)2ln[Tc/Th]

4γ L0(Tc − Th)
, (38)

while

Ḣd (t ) = Ėp(t ) = (2 f L0 + Tc − Th)2

4γ L0
. (39)
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h d
e p

h d
e p

FIG. 5. (a) Dependence of ėp(t ) and ḣd (t ) on the load f is
evaluated analytically via Eq. (32) or Eq. (33). (b) The plot ėp(t )
and ḣd (t ) as a function of τ for parameter choice f = 2.

Exploiting Eq. (38), one can see that, in the limit f → fs,
ḣd (t ) → 0 and ėp(t ) → 0. All of these results indicate that,
in the absence of boundary conditions, most of the thermo-
dynamic quantities have a functional dependence on �T =
Th − Tc, which agrees with the work by Matsuo et al. [33].

V. BROWNIAN PARTICLE WALKING IN A RATCHET
POTENTIAL WHERE THE POTENTIAL IS COUPLED

WITH A SPATIALLY VARYING TEMPERATURE

In this section, let us consider a Brownian particle that
moves along the potential U (x) = Us(x) + f x, where f and
Us(x) denote the load and ratchet potential, respectively. (See
Fig. 6.) The ratchet potential Us(x)

Us(x) =
{

2U0[ x
L0

], if 0 < x � L0/2,

2U0[−x
L0

+ 1], if L0/2 < x � L0
(40)

is coupled with a heat bath that decreases from Th at x = 0 to
Tc at x = L0 along the reaction coordinate in the manner

T (x) =
{

x(Tc − Th)

L0
+ Th

}
. (41)

FIG. 6. Schematic diagram for a Brownian particle in a piece-
wise linear potential in the absence of external load. Due to the
thermal background kicks, the particle ultimately attains a steady
state current (velocity) as long as a distinct temperature difference
between the hot and the cold reservoirs is retained.

Here U0 denotes the barrier height. The ratchet potential has a
potential maxima at x = L0/2 and potential minima at x =
0 and x = L0. The potential profile repeats itself such that
Us(x + L0) = Us(x). Next let us consider the underdamped
case.

UO

UO

(a)

(b)

FIG. 7. (a) v versus U0 for fixed τ = 2, f = 0.0, m = 1, and
γ = 1. (b) v as a function of U0 for fixed τ = 2 and f = 0.5. In
both figures, the velocity is determined via numerical simulations by
integrating Eq. (1).
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FIG. 8. Numerical simulation result depicts that the velocity
monotonously decreases as the load increases. At stall force, the
particle velocity is zero and, as the load further increases, the particle
velocity gets reversed. In the figure, the parameters are fixed as
τ = 2, UO = 2.0 (top), and UO = 1.0 (bottom).

A. Underdamped case

Let us now explore the dependence of thermodynamic
quantities via numerical simulations by integrating Eq. (1).
As one can note, a Brownian motor that is exposed to operate
in such a model system exhibits a unidirectional motion even
in the absence of a load as long as the height of potential
U0 is nonzero. This shows that U0 is an important model
parameter that dictates the operation of the motor and next
we explore how the different thermodynamic relations behave
as U0 varies.

In Fig. 7(a), the plot of v as a function of U0 is depicted for
fixed τ = 2, f = 0.0, m = 1, and γ = 1. The figure shows
that the velocity peaks at a certain U0. On the other hand, the
plot of v as a function of U0 is shown in Fig. 7(b) for fixed
τ = 2, f = 0.5, m = 1, and γ = 1. The figure shows that the
velocity is negative below a certain U0. As U0 steps up the
velocity steps up and attains an optimum value. The velocity
decreases monotonously when the load steps as shown in
Fig. 8. At stall force the velocity becomes zero. Further
increases in the load lead to a current reversal. The plot ėp(t )
and ḣd (t ) as a function of U0 for parameter choice f = 2 is
determined via simulations as shown in Fig. 9. The main result
indicates that, in the regions where the motor moves fast,
the entropy production and extraction rates are significantly
high.

B. Overdamped case

In the high friction limit, as discussed before, the dynamics
of the particle is governed by the Langevin equation

γ (x)
dx

dt
= −∂

[
U (x) + T (x)

2

]
∂x

+
√

2kBγ (x)T (x)ξ (t ). (42)

U

h d
e p

U

h d
e p

FIG. 9. (a) Plot ėp(t ) and ḣd (t ) as a function of U0 for parameter
choice τ = 12 and f = 0.5. (b) The plot ėp(t ) and ḣd (t ) as a function
of U0 for parameter choice f = 2.0 (solid line) and τ = 2.0.

Assuming γ to be unity, the corresponding Fokker Planck
equation is given by

∂P(x, t )

∂t
= ∂

∂x

[
U ′(x)P(x, t ) + T ′(x)

2
P(x, t )

+ T (x)
∂

∂x
P(x, t )

]
, (43)

where P(x, t ) is the probability density of finding the particle
at position x at time t , U ′(x) = d

dxU . The current is given by

J (x, t ) = −
[
U ′(x)P(x, t ) + T ′(x)

2
P(x, t ) + T (x)

∂P(x, t )

∂x

]
.

(44)

In long time limit, the expression for the constant current, J ,
is given in Appendix. The change in entropy is given as [19]

dS(t )

dt
= ėp − ḣd

=
∫

J2

P(x, t )T (x)
+ J

U ′(x)

T (x)
+ J

T ′(x)

2T (x)
dx, (45)

012131-8



ENTROPY PRODUCTION AND ENTROPY EXTRACTION … PHYSICAL REVIEW E 101, 012131 (2020)

where the entropy production rate ėp and dissipation rate ḣd

are given as

ėp =
∫

J2

P(x, t )T (x)
dx (46)

and

ḣd =
∫ (

J
U ′(x)

T (x)
+ JT ′(x)

2T (x)

)
dx, (47)

respectively. Here, unlike the isothermal case, we have the
additional term J T ′(x)

2T (x) dx. At steady state dS(t )
dt = 0, which

implies that ėp = ḣd > 0. At stationary state (approaching
equilibrium), J = 0, since a detailed balance condition is
preserved. Hence ėp = ḣd = 0.

In order to relate the free energy dissipation rate with Ėp(t )
and Ḣd (t ) let us now introduce Ḣd (t ) for the model system we
considered. The heat dissipation rate is given by

Ḣd =
∫ (

JU ′(x) + JT ′(x)

2

)
dx. (48)

Ėp is the term related to ėp and it is given by

Ėp =
∫ (

J2

P(x, t )

)
dx. (49)

We have now a new entropy balance equation

dS(t )T

dt
= Ėp − Ḣd

=
∫ (

J2

P(x, t )
+ JU ′(x) + JT ′(x)

)
. (50)

Since the analytic expressions for J (x, t ) and P(x, t ) are
given in Appendix, all of the above expressions are exact but
lengthy.

If one considers a periodic boundary condition at steady
state in the absence of ratchet potential U0 = 0, the results
obtained quantitatively agree with the underdamped case
(Sec. IV) and one gets

ḣd (t ) = ėp(t ) = (2 f L0)2ln[Tc/Th]

4L0(Tc − Th)
(51)

and

Ḣd (t ) = Ėp(t ) = ( f L0)2

L0
. (52)

The steady state current is zero at stall load

fs = 2U0

L

ln
[

4τ
(1+τ )2

]
ln

[
1
τ

] , (53)

which implies the particle velocity v > 0 when f < fs and at
stall force v = 0. When f > fs, v < 0. In the quasistatic limit
v → 0 (J → 0), the system is reversible.

On the contrary, in the absence of any boundary condition,
the calculated thermodynamic quantities are quantitatively the
same as the result shown in Sec. IV B. For instance, in the
absence of potential, the velocity can be calculated as v = JL.
Alternatively, we can also find v by taking the time average of

Eq. (42) as

γ v =
〈

∂ ( f x + T (x)
2 )

∂x
+

√
2kBγ (x)T (x)ξ (t )

〉
,

γ v = f + (Th − Tc)

2L0
, (54)

v = 2 f L0 + (Tc − Th)

2γ L0
.

Equation (54) is the same as Eq. (36). At this point, we want to
stress that, at steady state, most of the derived physical quan-
tities are similar both quantitatively and qualitatively whether
the particle is in underdamped or overdamped medium.

Derivation for the free energy. Next assuming a periodic
boundary condition where the term T ′(x) vanishes, let us
further explore the model system. The expressions for the
work done by the Brownian particle as well as the amount
of heat taken from the hot bath and the amount of heat
given to the cold reservoir can be derived in terms of the
stochastic energetics discussed in the works in [31,32]. The
heat taken from any heat bath can be evaluated via [31,32]
Q̇ = 〈(−γ (x)ẋ + √

2kBγ (x)T (x)) · ẋ〉, while the work done
by the Brownian particle against the load is given by Ẇ =
〈 f ẋ〉. We can also find the expression for the input heat Qs

in
and W s as

Q̇in =
∫ L0/2

0
(−γ (x)ẋ +

√
2kBγ (x)T (x))J dx

=
∫ L0/2

0

[(
2U0

L0

)
+ f

]
J dx

= U0J + f L0J

2
. (55)

Here the integral is evaluated in the interval of (0, L0/2) since
the particle has to get a minimal amount of heat input from
the heat bath located in the left side of the ratchet potential to
surmount the potential barrier. The work done is also given by

Ẇ =
∫ L0

0
f dx = f L0J. (56)

The first law of thermodynamics states that Qs
in − Qs

out = W s,
where Qs

out is the heat given to the colder heat bath. Thus

Q̇out = Q̇in − Ẇ = U0J − f L0J

2
. (57)

The second law of thermodynamics can be rewritten in
terms of the housekeeping heat and excess heat. For the model
system we consider, when the particle undergoes a cyclic
motion, at least it has to get f LJ amount of energy rate from
the hot reservoir in order to keep the system at steady state.
Hence f LJ is equivalent to the housekeeping heat Qhk and we
can rewrite Eq. (25) as

Ḟ (t ) + Ėp(t ) = Ėin(t ) + Ḣd (t ) = − f LJ = −Q̇hk, (58)

while the expression for the excess heat Q̇ex is given by

Qex = Ḣd − Q̇hk . (59)
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For the isothermal case, we can rewrite the second law of
thermodynamics as

ṠT (t ) = Ėp − Ḣd = −Ḟ − Q̇ex (60)

and

Ḟ = Q̇hk − Ėp. (61)

At this point we want to stress that such kind of Brownian
motor is inherently irreversible. This can be more appreciated
by calculating the efficiency of the engine. The efficiency is
given as

η = W/Qin. (62)

In the quasistatic limit (J → 0), we find

η = 1 − ln
[

1+τ
2τ

]
ln

[
2

τ+1

] , (63)

which is approximately equal to the efficiency of the endore-
versible heat engine ηCA

ηCA = 1 −
√

1/τ , (64)

as long as the temperature difference between the hot and the
cold reservoirs is not large. In order to appreciate this let us
Taylor expand Eqs. (63) and (64) around τ = 1 and after some
algebra one gets

η = ηCA = τ − 1

2
− 3

8
(τ − 1)2 + · · ·

= ηCAR

2
+ η2

CAR

8
+ η3

CAR

96
+ · · · , (65)

which exhibits that both efficiencies are equivalent in this
regime. Here ηCAR is the Carnot efficiency ηCAR = 1 − 1/τ .

Next we study how the rate of entropy production ėp(t )
and the rate of entropy extraction ḣd (t ) behave. The plot of
ėp(t ) and ḣd (t ) as a function of f is depicted in Fig. 10(a)
for fixed values of U0 = 2.0 and τ = 12.0. Once again the
figure indicates that the entropy production and extraction
rates take nonzero values as long as the system is driven out of
equilibrium. At stall force (zero velocity), ėp(t ) = ḣd (t ) = 0,
which implies that at the stall force the system is reversible.

The plot ėp(t ) and ḣd (t ) as a function of τ is depicted in
Fig. 10(b) for parameter choice f = 2.0 and U0 = 2.0. The
figure indicates, as τ steps up, both the entropy production
and extraction rates decrease but still ėp(t ) > 0 and ḣd (t ) >

0 and, at a certain τ , ėp(t ) = ḣd (t ) = 0. This is because at
this particular rescaled temperature τ , the particle stalls. As τ

further increases, the entropy production and extraction rates
increase.

VI. FLUCTUATION THEOREM

As discussed in our previous work [19], the phase space
trajectory is defined as x(t ) = x0, x1, xτ , where xs signifies the
phase space at t = ts. Whenever the sequence of noise terms
for the total time of observation ξ = ξ0, ξ1, ξs1 is available,
from the knowledge of the initial point x0, x(t ) will be then
determined. The probability of obtaining the sequence ξ is
given as

P[ξ (t )] ∝ e[− 1
2

∫ τ

0 ξ 2(t )dt]. (66)

h d
e p

h d
e p

FIG. 10. (a) Dependence of ėp(t ) and ḣd (t ) on the load f and
τ is examined analytically using Eqs. (46) and (47). In (a), we fix
τ = 12 and U0 = 2. (b) The plot ėp(t ) and ḣd (t ) as a function of τ

for parameter choice f = 2.0 and U0 = 2.0.

Since the Jacobian for reverse and forward process is the
same, P[x(t )|x0] is proportional:

P[x(t )|x0] ∝ e[− 1
2

∫ τ

0 ξ 2(t )dt]

∝ e[− 1
4

∫ τ

0 dt
(m dv

dt +U+ T
2 +ẋ)2

T ]. (67)

Because the Jacobian for reverse and forward process is the
same, P[x(t )|x0] is proportional, and one gets

P[x(t )|x0]

P[̃x(t )|̃x0]
= e[− 1

4

∫ τ

0 dt
(m dv

dt +U+ T
2 +ẋ)2

T ]

e[− 1
4

∫ τ

0 dt
(m dv

dt +U+ T
2 −ẋ)2

T ]

= e[− ∫ τ

0 dt
(m dv

dt +U+ T
2 )ẋ

T ]

= e−�h∗
d (t ). (68)

Here h∗
d (t ) is related with Eq. (8). This implies ln[ P[x(t )|x0]

P[̃x(t )|̃x0] ] =
−�h∗

d (t ). For the Markov chain, since P[x(t )|x(0)] =
P[x(t ),x(0)]

P[x(0)] , ln[ P[x(t )|x0]
P[̃x(t )|̃x0] ] = ln[ P[x(t )]

P[̃x(t )] ] − ln[ P[x0]
P[̃x0] ] = −�h∗

d (t ).
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This also implies that ln[ P[x(t )]
P[̃x(t )] ] = −�e∗

h(t ) and ln[ P[x0]
P[̃x0] ] =

−�s∗(t ). Clearly the integral fluctuation relation

〈e−�e∗
h (t )〉 = 1. (69)

VII. SUMMARY AND CONCLUSION

In this work, via Langevin equation and using Boltzmann-
Gibbs nonequilibrium entropy, the general expressions for the
free energy, entropy production rate ėp, and entropy extrac-
tion rate ḣd are derived in terms of velocity and probability
distribution considering the underdamped Brownian motion
case. After extending the results obtained by Tome et al. to
the spatially varying temperature case, we further analyze our
model systems. We show that the entropy production rate ėp

increases in time and at steady state (in the presence of load),
ėp = ḣd > 0. At stationary state (in the absence of load), ėp =
ḣd = 0. When the particle hops on nonisothermal medium
where the medium temperature is linearly decreasing (in the
presence of load), the exact analytic results exhibit that the
velocity approach is zero only when the load approaches zero.
We show that the approximation performed based on Tome
et al. and our general analytic expression agrees quantitatively.
The analytic results also justified via numerical simulations.

Furthermore, we discuss the nonequilibrium thermody-
namic features of a Brownian particle that hops in a ratchet
potential where the potential is coupled with a spatially vary-
ing temperature. It is shown that the operational regime of
such Brownian heat engine is dictated by the magnitude of
the external load f . The steady state current or equivalently
the velocity of the engine is positive when f is smaller and
the engine acts as a heat engine. In this regime ėp = ḣd > 0.
When f increases, the velocity of the particle decreases and,
at stall force, we find that ėp = ḣd = 0, showing that the
system is reversible at this particular choice of parameter. For
large load, the current is negative and the engine acts as a
refrigerator. In this region ėp = ḣd > 0.

In conclusion, several thermodynamic relations are derived
for a Brownian particle moving in underdamped medium by
considering different relevant model systems. The present
theoretical work not only serves as an important tool to
investigate thermodynamic features of the particle but also
advances the physics of nonequilibrium thermodynamics.
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APPENDIX: DERIVATION OF STEADY STATE CURRENT

For a Brownian particle that moves along the ratchet po-
tential [Eq. (40)] with load Us(x + L0) = Us(x), in the high
friction limit, the dynamics of the particle is governed by the
Langevin equation

γ (x)
dx

dt
= −∂

[
U (x) + T (x)

2

]
∂x

+
√

2kBγ (x)T (x)ξ (t ),

(A1)

where T (x) is given in Eq. (41). The corresponding Fokker
Planck equation is given by

∂P(x, t )

∂t
= ∂

∂x

[
U ′(x)P(x, t ) + T ′(x)

2
P(x, t )

+ T (x)
∂

∂x
P(x, t )

]
, (A2)

where P(x, t ) is the probability density of finding the particle
at position x at time t , U ′(x) = d

dxU . The current is given by

J (x, t ) = −
[
U ′(x)P(x, t ) + T ′(x)

2
P(x, t ) + T (x)

∂P(x, t )

∂x

]
.

(A3)

The general expression for the steady state current J for any
periodic potential with or without load is reported in the works
in [34]. Following the same approach, we find the steady state
current J as

J = −F

G1G2 + HF
, (A4)

where the expressions for F , G1, G2, and H are given as

F = −1 + e− 2U2ln[ 2
1+τ

]

1−τ
+ 2U1ln[ 1+τ

2τ
]

1−τ , (A5)

G1 = 1 − 4
U1
1−τ

(
τ

1+τ

) 2U1
1−τ

2U1

+ 2−1+ 2U1
1−τ

(
1+τ
τ

)− 2U1
1−τ

[ − 1 + 4
U2
1−τ

(
1

1+τ

) 2U2
1−τ

]
U2

, (A6)

G2 = 1

2

⎛⎝ 2τ

−1 + τ − 2U1
− 4

U1
−1+τ

(
1 + 1

τ

)− 2U1
−1+τ (1 + τ )

−1 + τ − 2U1

⎞⎠
+1

2

⎛⎝4
U1

−1+τ

(
1 + 1

τ

)− 2U1
−1+τ

[
1 + τ − 21+ 2U2

−1+τ

(
1

1+τ

) 2U2
−1+τ

]
−1 + τ + 2U2

⎞⎠,

(A7)

H = T1 + T2(T3 + T4 + T5), (A8)

T1 = τ
[ − 1 + 4

U1
1−τ

(
τ

1+τ

) 2U1
1−τ

] + U1

2U1(1 − τ + 2U1)
, (A9)

T2 = 2−2+ 2(U1+U2 )
1−τ

(
1 + τ

τ

)− 2U1
1−τ

, (A10)

T3 = 2
1−τ−2(U1+U2 )

1−τ

(
1+τ
τ

) 2U1
1−τ

1 − τ − 2U2
+ 2τ

[ − 4− U2
1−τ + (

1
1+τ

) 2U2
1−τ

]
(−1 + τ − 2U1)U2

,

(A11)

T4 = 2− 2U1
1−τ (1 + τ )

(
1+τ
τ

) 2U1
1−τ

[ − 2− 2U2
1−τ + (

1
1+τ

) 2U2
1−τ

]
(1 − τ + 2U1)U2

, (A12)

T5 = −2− 2U1
1−τ (1 + τ )

(
1+τ
τ

) 2U1
1−τ

[ − 2− 2U2
1−τ + (

1
1+τ

) 2U2
1−τ

]
(1 − τ − 2U2)U2

.

(A13)

Here U1 = U0 + f /2 and U2 = U0 − f /2. The expression for
the velocity is then given by V = LJ .
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