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Analysis of earlier times and flux of entropy on the majority voter model with diffusion
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We study the properties of nonequilibrium systems modelled as spin models without defined Hamiltonian as
the majority voter model. This model has transition probabilities that do not satisfy the condition of detailed
balance. The lack of detailed balance leads to entropy production phenomena, which are a hallmark of the
irreversibility. By considering that voters can diffuse on the lattice we analyze how the entropy production
and how the critical properties are affected by this diffusion. We also explore two important aspects of the
diffusion effects on the majority voter model by studying entropy production and entropy flux via time-dependent
and steady-state simulations. This study is completed by calculating some critical exponents as function of the
diffusion probability.
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I. INTRODUCTION

The study of nonequilibrium systems [1,2] can be divided
in two situations: Systems that remain out of thermodynamic
equilibrium even in the stationary regime and systems that are
out of equilibrium because they had not reach equilibrium. In
the latter case, the systems are characterized by obeying, in
the stationary regime, the detailed balance condition [1,3]:

wi(σ )

wi(σ i )
= P(σ i )

P(σ )
. (1)

From this condition we find that in equilibrium the system
is described by the Gibbs distribution. In the former case the
detailed balance condition is not satisfied. In this equation,
σ denotes the collection of the variables σi = ±1, that is,
σ = (σ1, . . . , σN ), and σ i denotes the state obtained from σ

by changing the sign of σi. In addition, wi(σ ) is the transition
rate from σ to σ i and P(σ ) is the stationary probability
distribution. Here N is the number of sites in the lattice. The
equation that governs the time evolution of the probability
distribution P(σ, t ) is the master equation [1,2]

d

dt
P(σ, t ) =

∑
i

[wi(σ
i)P(σ i, t ) − wi(σ )P(σ, t )]. (2)

Irreversible systems are in a process of continuous entropy
production even in the steady steady. The main question to ask
here is how to calculate the entropy production. To answer this
question, we start by writing the rate of change of the Gibbs
entropy

S(t ) = −
∑

σ

P(σ, t ) ln P(σ, t ), (3)

which is split into two parts,

dS

dt
= � − �, (4)

where � is the entropy production rate due to irreversible
processes occurring inside the system and � is the flux of
entropy from inside to outside the system. The expression of
the entropy production rate is [1]

� = 1

2

∑
σ

∑
i

[wi(σ
i )P(σ i ) − wi(σ )P(σ )] ln

wi(σ i )P(σ i )

wi(σ )P(σ )
.

(5)

From Eqs. (2), (3), and (4) we obtain the following expression
for the flux of entropy:

� = 1

2

∑
σ

∑
i

[wi(σ
i)P(σ i ) − wi(σ )P(σ )] ln

wi(σ i )

wi(σ )
(6)

or

� =
∑

i

∑
σ

wi(σ )P(σ ) ln
wi(σ )

wi(σ i )
. (7)

In this form we see that the flux of entropy can be written as
an average over the probability distribution P(σ, t ), that is,

� =
∑

i

〈
wi(σ ) ln

wi(σ )

wi(σ i )

〉
, (8)

an expression that has been used to determine the flux of
entropy by Monte Carlo (MC) simulation [4] and which will
be used here.

We observe in Eq. (5) that � = 0 if the condition given
by Eq. (1), the detailed balance condition, is satisfied, which
happens when the system in the condition of thermodynamic
equilibrium. In a nonequilibrium steady state the entropy pro-
duction rate does not vanish although the rate of the entropy of
the system, dS/dt , vanishes. In this case � = � �= 0 and the
system is in a continuous production of entropy. In this case,
the rate of entropy production rate � can be determined by
Eq. (8) because � = �. The quantity � given by the Eq. (8)
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is calculated as an average over the stationary distribution,
which from numerical point of view can be estimated by an
average over Monte Carlo simulation obtained after a tran-
sient. We point out that the relaxation of the flux of entropy in
some way must be related to the relaxation of magnetization
and its moments.

The relaxation of spin systems toward the steady state has
been considered in the study of the time-dependent Monte
Carlo simulations. This is carried out by changing the average
over Monte Carlo steps at steady state by considering ther-
modynamic quantities in the earlier times of the evolution,
taking the average over different time series that such systems
can follow, considering not only the randomness effects of
the evolution but also the trace of the initial condition of the
system.

The universality and scaling behavior even at the beginning
of the time evolution of such dynamical systems around the
criticality can be resumed by the relation [5,6]

m(t ) ∼ t−β/νz f [(p − pc)t1/νz, t d/zL−d , m0tβ/νz+θ ], (9)

which can be employed in equilibrium or nonequilibrium
systems, considering their respective characteristics, where
β and ν are static exponents while z and θ are dynamic
exponents. In the present case

m(t ) = 1

N

∑
i

〈σi〉 (10)

is the magnetization of the system understood as an average
over a certain number Nrun of runs.

For small initial magnetization m0 << 1, we expect to find
a characteristic initial slip m(t ) ∼ t θ , characterized by the
exponent θ . On the other hand, if the initial magnetization
is not small, for instance m0 = 1, then we expect m(t ) ∼
t−β/νz. However, this power law corresponds actually to an
intermediate regime that occurs before the system reaches the
stationary case. In a more complete point of view we have

m(t ) =
{

m0 t θ , 0 < t < m−z/x0
0

t−β/νz, m−z/x0
0 < t < tst

, (11)

where tst is the time needed to reach the steady state. But
an important question concerns the behavior of the system
related to the flux of the entropy. Thus, in a manner similar
to that employed in short-time studies, we have adapted the
expression (8) by considering the average over different runs
before the steady state is reached, that is, we consider the
following expression:

φ(t, m0) = 1

N

∑
i

〈
wi(σ ) ln

wi(σ )

wi(σ i )

〉
, (12)

where the average is understood to be taken from several runs.
In the following we will see how this quantity is related to the
short-time behavior and to the short-time dynamics (STD).

Questions related to both the entropy production [2,4] and
short-time simulations [7] have already been answered for the
interesting case of the majority voter model (MVM), a model
without Hamiltonian in the kinetic-Ising universality class [8].

In this model the transition rate is given by

wi(σ ) = 1

2

[
1 − (2p − 1)σi S

(∑
δ

σi+δ

)]
, (13)

where σi = ±1 and S(x) = −1, 0, 1, according to x < 0,
x = 0, or x > 0. This model can be interpreted as an Ising
model in contact with two heat baths at different temperatures,
one at zero temperature and other one at infinite temperature.
Grinstein et al. [9] conjectured that systems with up-down
symmetry belong to the universality class of the equilibrium
Ising model for regular square lattices. This model also has an
interpretation within the social dynamics. A voter follows the
majority with probability p and changes his or her vote with
probability q = 1 − p (for a more detailed social exploration
of the model see, for example, Ref. [10]). Whatever the
interpretation, we believe that diffusive effects of the voters
might have important effects on the general behavior of the
model and possibly on its critical behavior of the model.

In this paper we propose to study the majority voter model
with diffusion of the voters focusing on the entropy production
and flux of entropy by employing a time-dependent Monte
Carlo simulations in a two-dimensional lattice by means of
the short-time dynamics. For that, we first propose to use a
recent refinement process based on the short-time dynamics
[11] to determine the critical parameter pc as a function of
the mobility α (probability that a voter randomly chosen in
the lattice changes its place with a nearest neighbor also
randomly chosen). In addition, we also analyze the effects of
such mobility on the dynamic exponents and on the entropy
flux in the steady state by using these parameters previously
calculated via the refinement process.

Before carrying out the present study, we present some pre-
vious results as a preparatory study for α = 0. We explore the
transient of �(t ) under the light of short-time dynamics. For
this purpose, we revisit the mean-field (MF) results obtained
in Ref. [4] in order to adapt them to the present context of
short-time dynamics for the majority voter model and thus to
extract an expression for �(t ) at criticality in the mean-field
regime.

II. MEAN FIELD OF THE MAJORITY VOTER MODEL:
TIME-DEPENDENT ENTROPY FLUX

In Ref. [4] the authors have considered the time evolution
of magnetization:

d〈σi〉
dt

= −2〈σiwi(σ )〉, (14)

and observed that the sign function can be written as

S(σ1 + σ2 + σ3 + σ4)

= 1
8 (3 − σ1σ2σ3σ4)(σ1 + σ2 + σ3 + σ4). (15)

Using an approximation in which 〈σiσ jσk〉 = m3, where m =
〈σi〉, the following equation for m is obtained:

dm

dt
=

(
3

2
γ − 1

)
m − γ

2
m3, (16)
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where the parameter γ is related to the parameter p by γ =
2p − 1. The solution of this equation is

m = (2 − 3γ )1/2

(2e(2−3γ )(t+c) − γ )1/2
, (17)

where the constant c is related to the initial magnetization
m0 by

c = 1

2 − 3γ
ln

(
2 − 3γ + γ m2

0

2m2
0

)
. (18)

For large times m ∼ e−t/τ , where τ = 2/(2 − 3γ ) is the time
correlation length.

This exponential behavior turns into a power law at the
critical point that occurs when γ = 2/3. At the critical point
the solution of Eq. (16) is

m(t ) = m0√
1 + 2m2

0 t/3
, (19)

which leads to m ∼ t−1/2 for large times, independently of
m0. Comparing with Eq. (11), we observe that no initial slip
is found in mean-field regime although Eq. (19) shows a de-
pendence on m0. However, the stretched exponential behavior
deviation from criticality corroborate the results obtained via
Monte Carlo simulations. However, the question is whether
this would bring behavior similar to the flux of entropy
obtained via Monte Carlo simulations and the answer is no,
since the correct behavior seems to be related to the initial slip
of the magnetization as we will see in the next section. But it
would be interesting to find a formula for the time dependence
of the flux of entropy in this regime.

From the formula (8) for the flux of entropy we obtain,
within the mean-field approximation, the following expres-
sion:

φ = 1

16
[−5γ + 6(2 − γ )m2 + (γ − 4)m4] ln

q

p
. (20)

At criticality we are able to explicitly write down φ as function
of m0 and t by taking into account Eq. (19)

φ = 5

24
ln 5 + ln 5

2
(
m−2

0 + 2
3 t

)2

[
1

3
−

(
m−2

0 + 2

3
t

)]
. (21)

In the limit t → ∞ we see that the flux of entropy approaches
a nonzero value φ∞ = (5/24) ln 5. This value is reached
through the power law

φ − φ∞ ∼ t−1. (22)

In the next section we will see how these results for the
two-dimensional voter model are modified when the Monte
Carlo simulations are used. We also show how the diffusion
of the voters on the two-dimensional lattice affects the entropy
production at the steady state and the short-time properties.

III. MONTE CARLO SIMULATIONS

In this section we study numerically the majority voter
model with diffusion of the voters. We perform MC simula-
tions on a square lattices with periodic boundary conditions
with N = L2 sites. At each time step we choose a site at
random and we decide if it will be flip or not according to
signal of the sum of their neighbors. One MC step is defined

as repeating this procedure N times. In each MC step, after
the updating of the spins, we perform the diffusion, that is,
we choose N random pairs of neighboring sites and we swap
their positions with probability 0 � α � 1. We perform the
diffusion of the voters in full lattices, so dilution is not a
parameter here.

In steady-state simulations we performed averages using
106 MC steps to calculate the flux φ after discarding 103 MC
steps. On the other hand, in short-time simulations, we per-
form Nrun = 20 000 different times series to compute m(t ) and
φ(t ). Particularly for simulations starting from ferromagnetic
initial systems we have considered a more modest number
of runs Nrun = 3000 runs since in this situation, the initial
trace is not important and smaller fluctuations are observed.
This reasoning is often used in short-time studies. In the
present paper, we obtain our estimates for L = 128 unless
we explicitly study some lattice effects and small sizes are
explored in order to corroborate that this size is enough for
our purpose.

In our first exploratory investigations, the voters are not
subject to diffusion (α = 0). Figure 1(a) shows the behavior

FIG. 1. (a) Time evolution of the entropy flux φ obtained by
MC simulations for different initial magnetizations m0 indicated.
(b) Time evolution of magnetization m for different initial magne-
tizations m0 indicated, obtained in the same simulations.
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FIG. 2. Simple mean-field analysis of the system. (a) Time
evolution of the entropy flux φ for different initial magnetizations
m0 indicated at criticality pc = 5/6. (b) The corresponding time
evolution of the magnetization m also at criticality. (c) Deviation
from p = pc of the magnetization m for several values of p indicated.
The initial condition is m0 = 1.

of φ(t ) via Monte Cartlo simulations estimated according
to Eq. (12) at the critical value pc = 0.925 known for the
model. Different initial magnetizations converge for the same
value and the flux may increase or decrease depending on its
correlation level.

Figure 1(b) shows the typical short-time behavior expected
for a spin model via MC simulations according to Eq. (11).
Alternatively and only for a comparison, we can observe that
some differences can be observed in the mean-field regime by
using the equations obtained in the previous section.

First, Fig. 2(a) shows that the mean-field entropy flux φ

according to Eq. (21) independently of m0 always decreases
to reach the φ∞ = (5/24) ln 5 ≈ 0.33, which is much bigger
than the steady-state value obtained for MC simulations.
Differently from the MC simulations, in Fig. 2(b) we do not
observe a initial slip for magnetization and we observe that
m(t ) universally decays as t−1/2. We believe that absence of
initial slip in mean-field short-time behavior must affect the
differences on φ(t ) via MC simulations and the MF approach.
Finally, we plot the stretched exponential deviation from this
power law considering p < pc, which is also expected in STD
theory when studied by time-dependent simulations, but we
observe a more salient effect on the MF regime.

It is also interesting to investigate the power law verified in
mean field by Eq. (22). In this case we can study the quantity
φ − φ∞ as function of t , expecting a power-law behavior φ −
φ∞ ∼ t−ξ . Differently from the mean-field regime, in MC
simulations we expect ξMC �= ξMF = 1. In Fig. 3 we present
a study of the quantity φ − φ∞ for two different situations: In
Figure 3(a) with simulations starting from ferromagnetic inital
state, m0 = 1, and in Fig. 3(b) considering an disordered ini-
tial state with a very small initial magnetization, m0 = 1/29. A
stable power law can be observed up to tmax ≈ 110 MCsteps,
and we obtained, respectively, ξ = 1.36(2) and ξ = 1.38(2)
for m0 = 1 and m0 = 1/29, showing that there is no numerical
evidence about a dependence on the initial condition of the

FIG. 3. Power-law behavior of the quantity φ − φ∞ obtained MC
simulations: (a) m0 = 1, (b) m0 = 1/29, and (c) the evolution of the
same quantity obtained via mean field for different values of p: p =
pc = 5/6, p = 4/5, and p = 3/4.

system. We can observe that ξMC > ξMF, but in both cases
the power-law behavior is verified. Figure 3(c) shows for a
comparison the time evolution of φ − φ∞ via a mean-field
approximation calculated by substituting the result from the
Eq. (17) into Eq. (20). For p = pc = 5/6 we can observe a
power-law behavior [Eq. (21)] and an exponential deviation
can be observed for p �= pc.

Thus, we explore the MC simulations for α > 0. First we
used a technique to localize and refine the critical parameters
by considering a refinement method proposed in 2012 by two
of the authors of this paper [11]. This approach, which is
based on the refinement of the coefficient of determination
of the order parameter, allows us to locate phase transitions of
systems in a very simple way.

Considering that discarding a certain Nmin MC steps is
needed since the universal behavior which we are looking for
emerges only after a time period sufficiently long to avoid
the microscopic short-time behavior (see, for example, some
papers in several different models: With defined Hamiltonian
[12] and without defined Hamiltonian [13]), we can define
the coefficient of determination as in Ref. [11] (see the
Appendix),

r =
∑NMC

t=Nmin
(ln m − a − b ln t )2∑NMC

t=Nmin
[ln m − ln m(t )]2

, (23)

where NMC is the total number of MC steps and generically

O = 1

(NMC − Nmin + 1)

NMC∑
t=Nmin

O(t ).

The value of Nmin depends on the details of the system in study
and it is related to the microscopic timescale, i.e., the time
the system needs to reach the universal behavior in short-time
critical dynamics [5].

When the system is near the criticality (p ≈ pc), for m0 =
1, we expect that the order parameter follows a power-law
behavior m(t ) ∼ t−β/νz which, in log × log scale, yields a
linear behavior and r approaches 1. In this case, we expect
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FIG. 4. Determination coefficient r as function of p for different
values of α indicated. The peak of these curves (maximum coefficient
of determination) corresponds to the best pc obtained.

the slope b to be a good estimate of β/νz. On the other
hand, when the system is out of criticality, there is no power
law and r 	 0. Thus, we are able to use the coefficient of
determination r to look for critical points. Thus, the idea of the
method is very simple: We just need to sweep the parameter p
and find the point that possess r 	 1.

Thus, we performed simulations determining pc for each
studied α studied (see Fig. 4), i.e., the best power cor-
responding to m(t ) ∼ t− β

νz which occurs for ferromagnetic
initial states, for example, the case α = 0 can be observed
in Fig. 1(b). The inset plot in Fig. 4 shows the linear
dependence of pc as function of α. We use a resolution of
�p = 10−3. Thus, with these pc values in hands, we also
determine θ = θ (α). For this task instead of studying the time
evolution of magnetization for small values of m0, and thus
performing an extrapolation, we use the correlation of mag-
netization which also presents a power laws with this specific
exponent [14]:

C(t ) = 〈m(t )m(0)〉 ∼ t θ , (24)

.

.

.

FIG. 5. Power-law behavior of the correlation given by Eq. (24)
for three different diffusion levels.

TABLE I. Critical parameters for five different repetitions of
optimization and the corresponding exponents for each value of
diffusion rate.

α pc(1) pc(2) pc(3) pc(4) pc(5) β/(νz) θ

0.0 0.925 0.925 0.925 0.924 0.925 0.0541(13) 0.185(6)
0.2 0.920 0.920 0.920 0.920 0.919 0.0642(15) 0.176(6)
0.4 0.913 0.914 0.913 0.913 0.913 0.0779(17) 0.160(2)
0.6 0.906 0.907 0.907 0.907 0.906 0.0932(36) 0.151(6)
0.8 0.902 0.902 0.902 0.902 0.902 0.0996(10) 0.14(1)
1.0 0.897 0.897 0.898 0.897 0.898 0.1108(29) 0.12(1)

where in this case 〈m(0)〉 ≈ 0. We can observe in Fig. 5 the
power law from our MC simulations for different mobility
rates. In order to obtain the uncertainties on the exponent θ

we repeat the same simulations for Nb = 5 different beans, as
well as the same procedure was used to obtain β

νz by using the
relaxation of ferromagnetic initial states.

In Table I we show the value of exponents θ and β/(νz)
(last two columns) corresponding to different values of dif-
fusion α. We also show the values of critical parameters
obtained by repeating the same optimization process for Nb =
5 different seeds. We can observe that uncertainties leads to
σp = O(10−4) which is better than resolution of optimization
procedure (� = 10−3).

We can observe that β/(νz) increases while θ decreases
as the diffusion rate increases, showing that diffusion has a
important role in the phase transition of the model as observed
for example in epidemic models and surface reaction models
(see, for example, Ref. [15]). Just for a comparison of the
exponents with other results only for α = 0, which is the
only available estimates. In Ref. [7], the authors obtained
θ = 0.191(2) for MVM making extrapolation m0 → 0 which
in good agreement with our value. Both results also are in
good agreement with results for the Ising model obtained by
Grassberger [16] since both models are in the same universal-
ity class. It is also important to mention that our result is close
to the value of β/(νz) = 0.0579(5), obtained by B. Zheng for

FIG. 6. Decay of the correlation of the entropy flux as function
of time for several values of α indicated.
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FIG. 7. (a) Entropy production of entropy calculated via flux at
steady state for different mobility rates for L = 128. (b) Finite-size
effects tested for a specific value of mobility: α = 0.2. For L � 32
we do not observe differences between the plots.

the Ising model (see, for example, first reference in Ref. [12],
p. 1448).

By exploring some alternative results, we study the cor-
relation of the entropy flux CF (t ) = 〈φ(t )φ(0)〉 for different
diffusion rates. The results (see Fig. 6) show that correlation
decays more slowly as the diffusion increases.

Since we have explored the time-dependent results, we
finally explore the effects of the diffusion on the entropy
production which is equal to flux in the steady state. Here we
call attention of the readers that we look for p and not q as
the authors in Ref. [4] studied. We can see that our results for
α = 0 recover those obtained by the authors [see Fig. 7(a)]
but, naturally, inverted.

This plot shows that entropy production (calculated as flux
at steady state) increases as the diffusion enlarges. Figure 7(b)
shows that for L � 32 we have no observed differences in the
plots of entropy production.

IV. SUMMARY AND CONCLUSIONS

We have studied the diffusion effects on the majority
voter model exploring time-dependent and time-independent

properties of the entropy flux. Our results show that curve of
entropy production enlarges as the diffusion rate enlarge for
any value of p. We also studied the effects of the diffusion
on the critical parameters of the model by using refinement
procedure of power laws in short time. Our results show that
critical parameter depends linearly on mobility rate. Similarly,
the dynamic exponents also depend on mobility rate. Mean-
field results are revisited and we make a empirical comparison
between short-time power law and entropy flux which still is
a preliminary study and deserves future investigation in other
models.

ACKNOWLEDGMENTS

R.d.S. thanks CNPq for financial support under Grants No.
311236/2018-9 and No. 424052/2018-0. This research was
partially carried out using the computational resources from
the Cluster-Slurm, IF-UFRGS.

APPENDIX

The coefficient of determination is a very simple concept
used in linear fits or other fits. Thus, let us briefly explain
such standard procedure in the context of short-time MC
simulations. When we perform least-squares linear fit to a
given data set, we obtain a linear predictor ŷt = a + bxt . In
addition, if we consider the unexplained variation given by
�̃ = ∑N

t=1(yt − ŷt )2, then a perfect fit is achieved when the
curve is given by yt = a + bxt , and therefore �̃ = 0.

On the other hand, the explained variation � is given
by the difference between the average y = N−1 ∑N

t=1 yt and
the prediction ŷt , i.e., � = ∑N

t=1(̂yt − y)2. So, it is inter-
esting to consider the total variation, naturally defined as
�total = ∑N

t=1(yt − y)2. So, we can rewrite this last expression
as �total = ∑N

t=1(yt − ŷt )2 + ∑N
t=1(̂yt − y)2 + ξ , where ξ =

2
∑N

t=1(yt − ŷt )(̂yt − y). However, we can easily show that
ξ = 0, since

N∑
t=1

(yt − ca − cbxt )(ca + cbxt − y)

= cb

N∑
t=1

xt (yt − ca − cbxt )

+(ca − y)
N∑

t=1

xt (yt − ca − cbxt ),

= −cb

2

∂

∂cb

N∑
t=1

(yt − ca − cbxt )
2

− (ca − y)

2

∂

∂ca

N∑
t=1

(yt − ca − cbxt ), (A1)

and the last two sums vanish by definition when take the least-
squares values (ca, cb) = (a, b). Therefore, the total variation
can be simply defined as

�total = �̃ + �, (A2)
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and the better the fit, the smaller the �̃. So, in an ideal situation
�̃ = 0, the ratio

r = �

�total
= 1, (A3)

i.e., the variation comes only from the explained sources.

So adapting this method to time-dependent MC simula-
tions, if we consider that yt = ln m(t + Nmin), xt = ln(t +
Nmin), where Nmin is the number of MC steps discarded at the
beginning of the simulation (the first steps), we can obtain
Eq. (23).
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