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Anomalous energy diffusion in two-dimensional nonlinear lattices
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Heat transport in one-dimensional (1D) momentum-conserved lattices is generally assumed to be anomalous,
thus yielding a power-law divergence of thermal conductivity with system length. However, whether heat
transport in a two-dimensional (2D) system is anomalous or not is still up for debate because of the difficulties
involved in experimental measurements or due to the insufficiently large simulation cell size. Here we simulate
energy and momentum diffusion in the 2D nonlinear lattices using the method of fluctuation correlation
functions. Our simulations confirm that energy diffusion in the 2D momentum-conserved lattices is anomalous
and can be well described by the Lévy-stable distribution. As is expected, we verify that 2D nonlinear lattices
with on-site potentials exhibit normal energy diffusion, independent of the dimension. Contrary to the hypothesis
of a 1D system, we further clarify that anomalous heat transport in the 2D momentum-conserved system cannot
be corroborated by the momentum superdiffusion any longer. Our findings offer some valuable insights into
mechanisms of thermal transport in 2D system.
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I. INTRODUCTION

Fourier’s law [1] has witnessed a good validation in the
three-dimensional (3D) bulk systems, where thermal conduc-
tivity κ is an intrinsic property of a material. However, the
breakdown of Fourier’s law has recently been confirmed [1–7]
in low-dimensional systems. For the one-dimensional (1D)
system, thermal conductivity κ in the 1D Fermi-Pasta-Ulam
β(FPU-β) nonlinear lattices was first found [8] to diverge with
the system size N as κNα with 0 < α < 1. Similar length-
dependent thermal conductivity was further observed in the
FPU chains [9–12], the diatomic Toda lattice [13–16], and
random collision model [17]. This non-Fourier heat transport
is referred to as anomalous heat transport. Although many
efforts such as mode-coupling theory [18], hydrodynamical
theory [19], and nonlinear fluctuating hydrodynamics [20,21]
have been made, the origin of anomalous heat transport
[5] still remains unclear. Normal heat conduction obeying
Fourier’s law has been demonstrated in the 1D Frenkel-
Kontorova lattices [10,22] and φ4 lattices [23,24], where the
total momentum is not conserved. Therefore, it was once
assumed that momentum conservation leads to [25] anoma-
lous heat conduction in low-dimensional lattices. However,
a contradictory result is founded in the 1D coupled rotator
lattices [26] which reveal normal heat conduction in spite
of their momentum conservation. A further hypothesis [27]
that normal (anomalous) spread of excess momentum density
gives rise to normal (anomalous) heat conduction was made
for 1D nonlinear lattices.
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Furthermore, understanding thermal transport in two-
dimensional (2D) systems is not only of theoretical inter-
ests [1–3,5], but also of great importance to the possible
technological applications [5–7]in two dimensions realistic
materials such as graphene [28,29]. However, heat transport
in 2D systems is far from being clear. Based on the mode-
coupling theory [2,3,5], it has been conjectured that thermal
conductivity in the 2D nonlinear lattices with the conserved
momentum will diverge logarithmically with system size. Nu-
merical simulations in the 2D FPU-β nonlinear lattices [30]
and in the disk lattices [31] with vector displacements verified
such logarithmical divergences. But a power-law divergence
of thermal conductivity with system size is observed [32] in
the 2D FPU-β nonlinear lattices. A recent study with scalar
displacements [33] reveals a power-law divergence in the 2D
FPU-β nonlinear lattices and a logarithmically divergent ther-
mal conductivity for the purely quartic lattices, respectively.
In contrast, normal heat conductivity was observed [34] in the
2D scalar lattices. A possible explanation for the difference
among these simulation results maybe lies in the strong finite-
size effects [33] within affordable computational resources.

Energy diffusion [5,15,20,21,27,35–41] acts as another
important approach to understanding heat transport in 1D
systems since this diffusion method can circumvent the finite-
size problem. Nevertheless, the approach of energy diffusion
is difficult to be utilized in 2D nonlinear lattices on account
of theoretical difficulties or of heavy computations. No inves-
tigation of energy diffusion has been made in 2D nonlinear
lattices. To overcome this obstacle of heavy computations,
our present work has successfully accelerated the computation
through a graphics processing unit [42] (GPU). The aim of
this paper is to investigate energy and momentum diffusion
in the 2D nonlinear lattices. Our simulations confirm that
energy diffusion in the 2D momentum-conserved lattices is
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anomalous and can be well described by the Lévy-stable
distribution. We clarify that anomalous heat transport can no
longer be corroborated by the momentum superdiffusion in
the 2D system, in contrast to the hypothesis [27] for the 1D
nonlinear lattices.

The paper is organized as follows. In Sec. II, we first in-
troduce three typical models of 2D nonlinear lattices and then
describe the adopted simulation approach using the energy-
momentum fluctuation correlation function. In Sec. III, we
present our main results of energy and momentum diffusions
for the three 2D nonlinear lattices, accompanied by a dis-
cussion on the possible mechanism in terms of Lévy walk
distributions. Finally, conclusions are drawn in Sec. IV.

II. MODELS AND METHODS

A. Models

Here we consider energy diffusion in the 2D square lattices
made of Nx × Ny atoms with a vector displacement of qi, j . Nx

and Ny denote the number of atoms in the x and y direction,
respectively. The equilibrium positions of the atoms coincide
with the lattice sites, labeled by a pair of integer indices
{(i, j), i = 1, Nx; j = 1, Ny}. For simplification, each atom in
those lattices only interacts with its nearest neighbors that
characterize the short-range interatomic forces in real solids.
The general Hamiltonian for the adopted 2D nonlinear lattices
can be written as

H =
Ny∑

i=1

Ny∑
j=1

[
p2

i, j

2m
+ V (|qi+1, j − qi, j |)

+V (|qi, j+1 − qi, j |) + U (qi, j )

]
, (1)

where qi, j is the vector displacement from its equilibrium
position of the atom on the (i, j) lattice site and pi, j cor-
responds to its momentum vector. m is the atom mass and
has been set m = 1 without loss of of generality. The inter-
action potential is taken as V (r) = 1

2 kr2 + 1
4βr4. The term

U = 1
4 gr4 denotes the on-site potential, which breaks the

momentum conservation. To compare our results of energy
diffusion to previous simulations [30,32–34,43] of heat con-
duction, we consider three typical types of 2D nonlinear lat-
tices: the FPU-β model with k = 1, β = 1, g = 0; the purely
quartic lattice with k = 0, β = 1, g = 0; and the φ4 model
with k = 1, β = 0, g = 1. The FPU-β model has been widely
used [30,32,33,43] for studying nonlinear behaviors and heat
transport in low-dimensional nonlinear lattices. The purely
quartic lattice can be regarded as [5,33] the high temperature
limit of the FPU-β lattice. The φ4 model [23,24,44] without
the momentum conservation is studied to demonstrate the
effect of the momentum conservation on energy diffusion in
2D nonlinear lattices. To show the dimensional crossover of
energy diffusion in the 2D nonlinear lattices, the length Nx

is fixed to be 1023, while the lattice width Ny varies from
1 (1D) to 1024 (2D). Consequently, the largest number of
particles in the nonlinear lattices is up to 1 047 552 during
our simulations.

B. Methods

To make a direct comparison to the hydrodynamics theory
[20,21], we focus on energy and momentum diffusion in
the above 2D nonlinear lattices. The nonlinear hydrodynamic
fluctuation theory states [20,21,45] that anomalous energy-
momentum diffusion in nonlinear lattices can be characterized
by the scaling forms of the space-time correlation of fluctua-
tion functions. Here we define the spatiotemporal correlation
of fluctuation function [35,36] of energy ρE (i, t ) and momen-
tum ρP(i, t ) fluctuation for a microcanonical system as

ρE (�xi, j, t ) = 〈�Hi(t )�Hj (0)〉
〈�H0(0)�H0(0)〉 + 1

Nx
b − 1

, (2a)

ρP(�xi, j, t ) = 〈�Pi(t )�Pj (0)〉
〈�P0(0)�P0(0)〉 + 1

Nx
b − 1

. (2b)

The spatial coarse-graining of local energy density Hi(t ) and
momentum density Pi(t ) are summed over the atoms inside
the ith column of bin with respect to the position x of an atom
on the 2D nonlinear lattice at time t , separately. The energy-
momentum fluctuation corresponds to �Hi(t ) = Hi(t ) − H̄i

and �Pi(t ) = Pi(t ) − P̄i. The notations H̄i and P̄i denote the
averaged local density of energy and momentum, respectively.
For simplicity, the number of bins Nx

b is equal to the number
of lattice sites Nx along the x direction. As a result of the
spatial and time translational invariance in equilibrium states,
we can write energy ρE (�xi, j, t ) and momentum ρP(�xi, j, t )
fluctuation as ρE (i, t ) and ρP(i, t ) without confusion. The spa-
tiotemporal average 〈·〉 in Eq. (2) is also performed along the
x direction with time. Here we investigate the spatiotemporal
correlation of the energy-momentum fluctuation along the x
direction. The investigation on energy diffusion along one
direction may contribute to understanding the measurement
of thermal transport in experiments, where the sample is
placed between a heat source and a heat sink. A complete
two-dimensional description of the spatiotemporal correla-
tion of fluctuation is desirable, but this calculation of two-
dimensional point to point is beyond our present computation
capability. We will pursue it in the future.

From the perspective of hydrodynamics theory, the spa-
tiotemporal correlation function ρE (i, t ) and ρP(i, t ) can be
viewed as the fingerprint for the behaviors of energy and
momentum diffusion, corresponding to the correlation of heat
modes and sound modes, respectively. To quantify the energy
diffusions of heat modes on lattices, we also calculated the
mean-square deviation (MSD) of energy 〈�x2(t )〉E as

〈�x2(t )〉E =
∑

i

i2ρE (i, t ), (3)

where the index i is summed in the range of heat modes for
the energy fluctuation correlation.

During the numerical simulations, periodic boundary con-
ditions are applied in the both x and y directions. The energy
and momentum fluctuation correlation function are calculated
in the equilibrium state at average energy density ε = 0.5 per
site for a purely quartic lattice and the FPU-β model, and
ε = 3.0 per site for the φ4 model. The system is relaxed to
equilibrium state with 106 time steps from properly assigned
random states that has the zero total momentum and the given
average energy density per site. The number of the ensemble-
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FIG. 1. The spatial profiles of the energy fluctuation correlation function ρE (i, t ) for (a, b) the purely quartic lattices; (c, d) the FPU-β
lattices; (e, f) the φ4 lattices with the width Ny = 1, i.e., 1D lattices, and Ny = 1024. The spatial profiles of ρE (i, t ) at times t = 10, 50, 200 are
labeled by the black solid, red dashed, and green dotted lines, respectively, as indicated in the figure.

averaging in the spatiotemporal correlation function of Eq. (2)
is up to 108 after an equilibrium state is first prepared. The
velocity-Verlet algorithm is adopted for integrating the motion
equations with the time step h = 0.005. Owing to the heavy
computations from the large system of 2D lattices, we employ
the graphics processing unit (GPU) to implement the parallel
acceleration.

III. RESULTS AND DISCUSSIONS

We probe the diffusion behavior of energy and momentum
by simulating the spatiotemporal fluctuation correlations in
three typical nonlinear lattices: the purely quartic lattices, the
FPU-β lattices, and the φ4 model. The purely quartic lattices
and the FPU-β lattices hold the momentum conservation
while the φ4 model breaks the conservation of momentum
owing to the on-site potential. To demonstrate the dimensional
crossover of energy diffusion from one to two dimensions, we
increase the lattice width Ny, varying from 1 to 1024 with
a fixed length Nx = 1023. We first present energy diffusion

in three types of nonlinear lattices, elucidating the nature
of heat mode in 2D nonlinear lattices. Next we investigate
the diffusion of momentum to understand the dimensional-
crossover features of sound modes.

A. Profiles of energy fluctuation correlation function

1. Spatial profiles of energy fluctuation correlation

The spatial profiles of the energy fluctuation correlation
function ρE (i, t ) with varying width for the purely quartic
lattices, the FPU-β lattices, and the φ4 lattices are depicted in
Fig. 1. As is shown in the figures, there is a prominent central
peak in each spatial profile of ρE (i, t ), which corresponds
to the heat mode according to the hydrodynamical theory
[20,21,45]. For the 1D nonlinear lattices, i.e., Ny = 1, our
calculated ρE (i, t ) is qualitatively consistent with the previous
results [15,27,35,36,38,40,41,44]. In addition, there are two
observable right- and left-moving side peaks along both sides
of the central heat mode. These side peaks originate from a
strong coupling [45] between the heat modes and the sound
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FIG. 2. The decay of the peak height of the energy fluctuation correlation function HE
C as a function of time (a) for the purely quartic lattice

and (b) for the FPU-β lattices. The decay of height is fitted to a power-law distribution HE
C ∼ t−1/γ as shown in the figure.

modes by the mode cascade theory [46]. Thus, it can be
inferred from the prominent side peaks that the energy and
momentum transport are strongly coupled in the momentum-
conserved 1D nonlinear lattices. This strong coupling between
heat and sound modes may contribute to anomalous energy
transport by the mode cascade theory [46]. In contrast, it can
be seen from Fig. 1 that these side peaks become weakened
for both the purely quartic lattices and the FPU-β lattices
with width Ny = 1024. Such a disappearance of the side
peaks for the wider lattices may result from the vertically
summed energy along the x direction. On the other hand,
for the φ4 lattices, there are no side peaks in Figs. 1(e) and
1(f), independent of the lattice width. This observation of the
φ4 lattice with the on-site potential is in agreement with the
previously reported spatial profiles of the energy fluctuation
correlation function [35,44] for the 1D φ4 model. We think
that the side peak generally does not occur for the lattices
without the conserved momentum, where heat transport may
be carried out mainly in terms of heat diffusion. The promi-
nent cental peak of heat modes in the spatial profiles of Fig. 1
dominates the feature of energy diffusion in low-dimensional
lattices. Next, we characterize the features of these central
peaks based on the Lévy walk theory using the scaling
analysis.

2. Decay of peak height of heat modes

To investigate the probability character of the central peak
of the heat mode, we first turn to the predictions of 1D nonlin-
ear lattice by the recent nonlinear fluctuating hydrodynamic
theory [20,21,45], which relates its heat and sound modes to
the fluctuation correlations of three conserved quantities: en-
ergy, momentum, and stretch. Generally, this spatial-temporal
fluctuation correlation function such as ρE (i, t ) is subject to a
scaling invariant relationship [47] as

t
1
γ ρE (i, t ) � ρE

(
i/t

1
γ , t

)
, (4)

with the scaling exponent 1 � γ � 2. Different behaviors
of diffusion can be characterized [48] by the exponent γ :
ballistic diffusion γ = 1, superdiffusive diffusion 1 < γ <

2, and normal diffusion (i.e., Gaussian distribution) γ = 2.
Phenomenologically, the dynamics of the diffusion process
can be modelled [48] by the Lévy walk using the Lévy-stable
distribution f γ

LW(i, t ) that is the Laplace-Fourier transform of
the Lévy characteristic function e−|k|γ t . To put it more straight-
forwardly, the diffusion property of the fluctuation correlation
function such as ρE (i, t ) is determined by the scaling exponent
γ and has the same mathematical property as the Lévy-
stable distribution f γ

LW(i, t ). The anomalous energy diffusion
in our simulations can be identified through the superdiffusive
diffusion 1 < γ < 2. For the conserved quantity, the scaling
exponent γ can be extracted [27,35] from the height of the
central peak in the fluctuation correlation function. Now we
start to clarify the diffusion property of heat mode using the
above approach. For the purely quartic lattices and the FPU-β
model with the conserved momentum, we extract the scaling
exponent γ from the decay of peak height HE

c of the central
heat mode. The log-log plots of the peak height HE

c as a
function of time are depicted in Fig. 2, respectively. As can
be seen from the figure, a power-law decay HE

c ∼ t−1/γ can
be explicitly fitted. The rate of decay 1/γ of HE

c for the
purely quartic lattices decreases from 1/γ = 0.670 ± 0.001
for 1D(Ny = 1) to 1/γ = 0.550 ± 0.003 for 2D (Ny = 1024)
as illustrated in Fig. 2(a). In contrast, the decay rate 1/γ of
the central peak for the FPU-β lattices is about 0.688 ± 0.002
for the 1D chain and shows no significant change with the
increase of lattice width.

3. Rescaled energy fluctuation correlation function

Furthermore, to identify the diffusion property of heat
modes, the rescaled energy fluctuation correlation functions
t1/γ ρE (i/t1/γ , t ) with the varying width for the purely quartic
lattices and the FPU-β model are depicted in Fig. 3. The
scaling exponent γ is obtained from the relation HE

c ∼ t−1/γ

shown in Fig. 2. To further confirm the superdiffusive property
of ρE (i, t ), the Lévy-stable distribution [47,48] f γ

LW(i, t ) with
the same scaling exponent γ is also plotted by the solid line
in each figure. From the figure, we can find that the collapse
of the central heat mode at different times after scaling is very
good according to the scaling invariant in Eq. (4). The fitting
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FIG. 3. The rescaled energy fluctuation correlation function t1/γ ρE (i/t1/γ , t ) in the (a, b) purely quartic lattices and (c, d) the FPU-β lattices
with the width Ny = 1, Ny = 1024. Here the exponent γ is obtained by fitting the decay height of the energy fluctuation correlation function to
the power-law distribution ∼t−1/γ shown in Fig. 2. The black solid line in the figure denotes the fit to the Lévy-stable distribution f γ

LW(i, t ).

to the corresponding Lévy-stable distribution is also quite fine.
In addition, as can be seen from Figs. 3(a) and 3(c), the side
peak in the 1D system does not follow the same scaling prop-
erty of heat mode as predicted by the nonlinear fluctuating
hydrodynamic theory [21,45]. Here we focus on the scaling
property of the heat modes. The nonlinear hydrodynamic fluc-
tuation theory [20,21,45] predicts that the scaling exponent γ

scales according to the Lévy-3/2 distribution (i.e., γ = 3/2)
for the 1D momentum-conserved nonlinear lattices with an
even potential at zero pressure, like the purely quartic lattice
and the FPU-β model. As indicated in the figure, our obtained
values of the scaling exponent γ agree well with the predic-
tion of nonlinear hydrodynamic fluctuation theory, with γ =
3/2(1/γ = 0.670 ± 0.001) for the 1D purely quartic lattice
and γ = 1.454(1/γ = 0.688 ± 0.002) for the FPU-β model.
When the lattice width Ny is increased to 1024, the scaling
exponent γ reaches γ = 1.818(1/γ = 0.550 ± 0.003) for the
purely quartic lattice and γ = 1.504(1/γ = 0.665 ± 0.006)
for the FPU-β model, respectively. All values of the scaling
exponent γ with different lattice width fall into the range 1 <

γ < 2, thus confirming the superdiffusive property of heat
modes for both the purely quartic 2D lattice and the FPU-β
2D model. Our simulations exhibit a slower energy diffusion

with the dimensional crossover from one to two dimensions
in the momentum-conserved nonlinear lattices.

Finally, as can be seen in Figs. 1(e) and 1(f), a Gaussian
distribution function (normal diffusion) of the heat mode
can be observed for the φ4 model with an on-site poten-
tial, which breaks the conservation of momentum. Its pro-
file of the energy fluctuation correlation function ρE can be
perfectly well described by the Gaussian distribution ρE ∼
e−i2/4πDE t/

√
4πDEt , where DE denotes the diffusion constant

for the heat mode. The normal heat diffusion has been well
verified [35,44] in the 1D lattices with a φ4 potential. After
numerically examining the Gaussian property of heat mode
in the figure, we find that the energy fluctuation correlation
function ρE satisfies the Gaussian distribution both for the
1D and 2D φ4 model. Actually, this result is obvious and
generally assumed beyond any doubt [35,44].

In addition, the MSD of energy distribution 〈�x2(i, t )〉E

(i.e., the second moments of energy in terms of the probability
function) can explicitly characterize energy diffusion in the
asymptotic time limit and is related to heat conduction. Next,
we quantitatively characterize heat transport by calculating
the MSD of energy distribution 〈�x2(t )〉E given by Eq. (2)
for the central heat modes.
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B. Mean square deviation of energy distribution

Heat conduction in the 1D system can be directly related
to the energy diffusion process. According to the connection
theory [37], the MSD in the 1D system obeys the second order
differential equation with time as

d2〈�x2(t )〉E

dt2
= 2CJJ (t )

kBT 2c
, (5)

where c is the specific heat capacity and kB is the Boltzmann
constant. The autocorrelation function of heat currents CJJ (t )
is related to thermal conductivity κ through the Green-Kubo
formula [1–3] given by κ = 1

kBT 2

∫ ∞
0 dtCJJ (t ). If the MSD

of an energy conserved distribution 〈�x2(t )〉E is assumed to
scale as 〈�x2(t )〉E ∼ tβ , the behavior of the diffusion process
for a conservation quantity can be categorized [37,47] with
regard to the exponent β: the normal diffusion when β = 1,
the superdiffusion when β > 1, and the subdiffusion when
β < 1. For example, the MSD 〈�x2(t )〉E will be proportional
to time t , i.e., 〈�x2(t )〉E ∼ t when the energy fluctuation
correlation function ρE is the Gaussian distribution like the
φ4 model. Thus the normal energy diffusion will give rise
to finite thermal conductivity, indicating normal heat conduc-
tion. Furthermore, if the profile of the energy fluctuation cor-
relation function ρE belongs to the Lévy-stable distribution,
the MSD will spread faster than the normal diffusion and
exhibits the superdiffusion with β = 3 − γ given by the Lévy
walk theory [47,48]. Anomalous heat conduction has been
verified in the 1D momentum-conserved nonlinear lattices
[15,27,35,36,38,40,41] such as the FPU-β and purely quartic
lattices. This relation [37] of the energy diffusion to heat trans-
port has been quantitatively verified in the 1D nonlinear lattice
with symmetrical potential. As for 2D nonlinear lattices, there
is no strict theoretical relationship between energy diffusion
and heat transport, but we can still employ energy diffusion
to qualitatively identify whether heat transport is normal or
anomalous.

The calculated distributions of MSD energy 〈�x2(t )〉E of
heat modes versus evolving time t are plotted in Figs. 4,
5, and 6 for the purely quartic lattices, the FPU-β lattices,
and the φ4 model with the varying width, respectively. As
can be seen from Figs. 4 and 5, the MSD of energy on the
purely quartic and FPU-β model shows the superdiffusion
behavior. We can find that the diffusion exponent β decreases
with the increase of lattice width. For example, the diffu-
sion exponent β for the purely quartic lattices is reduced
from β = 1.415 ± 0.003 for Ny = 1 to β = 1.269 ± 0.003 for
Ny = 1024. The obtained β of 1.419 ± 0.003 for the 1D chain
Ny = 1 is consistent with the previously reported [27,35,36]
diffusion coefficient 1.4. When the width is increased to 1024,
the diffusion exponent decreases to β of 1.269 ± 0.003 as
shown in Fig. 4, still implying an anomalous heat conduc-
tion in the 2D quartic lattices. As for the 2D systems, the
mode-coupling theory [2,3] predicts that the autocorrelation
function of heat currents CJJ (t ) decays as t−1, which leads
to the logarithmic divergence of thermal conductivity with
system size N as κ ∝ ln N . If the connection theory Eq. (5)
is still valid in 2D systems, the MSD of energy will change
over time as 〈�x2(t )〉E ∼ t ln t . To compare to the power-
law relationship, we plotted the function of t ln t in Fig. 4

FIG. 4. The MSD of energy 〈�x2(t )〉E of heat modes as a func-
tion of time for the purely quartic lattices with width Ny varying from
1 to 1024 as shown in the figure. The fittings of MSD to a power-law
distribution ∼tβ for the lattices of the width Ny = 1 and Ny = 1024
are plotted in the figure, respectively. The red dashed line in the figure
represents the function of t ln t .

using the red dashed line. As illustrated in the figure, the
discrepancy in the scaling behavior between the power-law
∼t1.269±0.003 and the function of ∼t ln t is so small that it
is difficult to numerically determine whether the observed
MSD of the energy distribution conforms to the power-law
∼t1.269±0.003 or to the function of ∼t ln t in the asymptotic
time limit. A logarithmically divergent thermal conductivity
with the system size N is recently reported [33] in the purely
quartic lattices with a scalar displacement field. Note that our
purely quartic lattice has a vector displacement. Considering
the good numerical fitting as the power-law in Fig. 4, our
results of energy diffusion may be in favor of a logarithmic

FIG. 5. The MSD of energy 〈�x2(t )〉E of heat modes as a func-
tion of time for the FPU-β lattices with width Ny varying from 1 to
1024 as shown in the figure. The fittings of MSD to a power-law
distribution ∼tβ for the lattices of the width Ny = 1 and Ny = 1024
are plotted in the figure, respectively. The red dashed line in the figure
represents the function of t ln t .
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FIG. 6. The MSD of energy 〈�x2(t )〉E of heat modes as a
function of time for the φ4 lattices with width Ny varying from 1
to 1024 as shown in the figure. The fittings of MSD to a proportional
relationship ∼t for the lattices of the width Ny = 1 and Ny = 1024
are plotted in the figure, respectively.

divergence of thermal conductivity with size in the purely
quartic lattices with a vector displacement. At the same time,
we cannot exclude that this may be a numerical coincidence.
But, the calculated distributions of MSD energy 〈�x2(t )〉E

for energy diffusion in Fig. 4 assuredly confirms that heat
transport in the 2D purely quartic lattices is anomalous. In
addition, it can be seen from the figure that the dimensional
crossover from one to two dimensions with the varying width
occurs rapidly such that the diffusion exponent β for Ny = 16
almost converges to the value of 1.269 ± 0.003. This rapidly
convergent tendency is consistent with the direct simulation
of thermal conductivity [34], where the converged results are
obtained when the width Ny > 32.

A similar superdiffusive time dependence of the MSD
energy distribution can be observed for the FPU-β model
in Fig. 5. A fast superdiffusive energy spreading, growing
as 〈�x2(t )〉E ∼ t1.598±0.004, is observed for the 1D lattices
in Fig. 5. When the width is increased to 1024, the dif-
fusion exponent β converges rapidly to β = 1.509 ± 0.003.
To compare to the prediction of logarithmical divergency
by the mode-coupling theory, a function of ∼t ln t is also
illustrated in Fig. 5 by the red dashed line. By contrast,
a significant difference exits between the power-law scale
∼tβ=1.509±0.003 and the function of ∼t ln t . Therefore, a power-
law relationship can be assumed for the anomalous energy
diffusion in the 2D FPU-β lattices. If the connection theory
of Eq. (5) is still valid in the 2D system, our energy diffusion
yields that thermal conductivity κ will diverge as κ ∼ N0.51,
which qualitatively coincides with the power-law divergence
of thermal conductivity [32] of the 2D FPU-β lattices with
a vector displacement by the direct simulation of thermal
conductivity. In contrast, as shown in Fig. 6, a normal MSD
energy diffusion 〈�x2(t )〉E ∼ t can be observed in the φ4

lattices with an on-site potential, irrespective of the varying
width. Put differently, we extend the conclusion from 1D to
2D systems that nonlinear lattices with a φ4 on-site potential
will exhibit normal energy diffusion and thus give rise to the

Fourier law of heat transport. The normal energy diffusion in
the φ4 lattices obviously originates from the explicit Gaussian
distributions of energy fluctuation correlation functions, as
depicted in Figs. 1(e) and 1(f). To sum up, our MSD energy
distribution strongly confirms anomalous energy diffusion in
both the 1D and 2D momentum-conserved lattices of the
purely quartic and FPU-β model and normal energy diffusion
in the φ4 2D system. Next, we turn to the characteristics of
momentum diffusion in the 2D lattices.

C. Momentum diffusion

According to the nonlinear fluctuating hydrodynamic the-
ory [20,21,45], the full three normal modes (one heat mode
and two sound modes) determined heat transport in the 1D
nonlinear lattice. Sound mode or momentum diffusion can be
related [20,21,45] to the momentum fluctuation correlation.
Among the three types of nonlinear lattices considered, mo-
mentum diffusion cannot be well defined in the φ4 model,
owing to its nonconserved momentum. Therefore, we focus
on the behavior of momentum diffusion in the purely quar-
tic lattices and the FPU-β lattices. Momentum diffusion is
represented by the momentum fluctuation correlation function
ρP(i, t ) defined in Eq. (2). The spatial profiles of momentum
fluctuation correlation function ρP for different times with
varying lattice width for the purely quartic lattices and the
FPU-β lattices are depicted in Fig. 7. It is interesting to
investigate the dimensional-crossover features of momentum
diffusion from 1D to 2D system. It can be seen from the figure
that two side peaks of the sound mode move ballistically
outward with a constant sound velocity c. We numerically
fitted the sound speed from the profiles of ρP(i, t ) at different
correlation times, obtaining c = 0.914, 0.861 for the purely
quartic lattices with Ny = 1, 1024 and c = 1.22, 1.16 for the
FPU-β lattices with Ny = 1, 1024, respectively. A small de-
crease of sound speed can be observed with the increase of
lattice width. This decrease of sound speed may originate
from the reduction of phonon group velocity because the
phonon dispersion relations will change with the increase of
lattice width.

To further investigate the momentum diffusion, we also
calculated the decay of the peak height of the momentum
fluctuation correlation function. The decay of the peak height
of the momentum fluctuation correlation function as a func-
tion of time is depicted in Fig. 8 for the 2D purely quartic
lattice and the FPU-β lattice, respectively. It can be seen
from the figure that the decay of momentum height can be
fitted to a power-law distribution HP

c ∼ t−μ, which is sim-
ilar to that of energy. A normal diffusion of momentum is
characterized by the value of the decay exponent μ = 0.5.
For the 1D system, both the purely quartic lattice and the
FPU-β lattice demonstrate a superdiffusion of momentum,
with a decay exponent μ = 0.616 ± 0.001, 0.611 ± 0.003
correspondingly. Here our result for the 1D nonlinear lattices
is consistent with the previous hypothesis [27] that anomalous
heat transport in 1D momentum-conserved Hamiltonian lat-
tice systems is corroborated by the superdiffusive spreads of
momentum excess density. However, when the lattice width
increases, the momentum diffusion induces a crossover from
superdiffusion in the 1D system to normal or subdiffusion in
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FIG. 7. The spatial profiles of the momentum fluctuation correlation function ρP(i, t ) for the purely quartic lattices and the FPU-β lattices
with the width Ny = 1, i.e., 1D lattices and Ny = 1024. The spatial profiles of ρP(i, t ) at times t = 10, 50, 200 are labeled by the black solid,
red dashed, and green dotted lines shown in the figure, respectively.

2D systems. For example, in the case of the purely quartic
lattice, the decay exponent μ changes from 0.616 ± 0.001 for
the 1D system (Ny = 1) to 0.402 ± 0.002 for the 2D system
(Ny = 1024). Similar behaviors can also be observed in the

FPU-β lattices. Contrary to the hypothesis of the 1D system,
we find that anomalous heat transport in the 2D momentum-
conserved Hamiltonian lattice systems is not accompanied by
the superdiffusion of momentum any longer.

FIG. 8. The decay of the peak height HP
c of the momentum fluctuation correlation function as a function of time (a) in the 2D purely quartic

lattice and (b) in the FPU-β lattices. The decay of height is fitted to a power-law distribution HP
c ∼ t−μ as shown in the figure.
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IV. CONCLUSION AND DISCUSSION

In summary, we successfully investigated energy-
momentum diffusions from one to two dimensions in
three types of nonlinear lattices: the purely quartic lattice,
the FPU-β lattice, and the momentum-nonconserved φ4

model. The apparent advantage of the approach of the
fluctuation correlation function is that it circumvents the
finite-size problem during the direct simulation of heat
transport. Our simulation confirms that energy diffusion of
the momentum-conserved 2D nonlinear lattices is anomalous
and can be well fitted by the Lévy-stable distribution. As was
expected, we find that nonlinear lattices with the φ4 on-site
potential exhibit normal energy diffusion, independent of
its dimension. In addition, the simulations of momentum
diffusion illustrate that two sound modes in the 2D nonlinear
move ballistically outward with a constant sound velocity,
similar to that of the 1D chain. Contrary to the hypothesis
of the 1D system, we further clarify that anomalous energy

diffusion in the 2D momentum-conserved system cannot be
corroborated by the momentum superdiffusion any longer.

Our studies here confirm that energy diffusion in the
momentum-conserved 2D nonlinear lattices is anomalous.
The anomalous energy diffusion may suggest anomalous heat
conduction in the 2D nonlinear lattices. How to relate energy
diffusion to heat conduction will be an important and interest-
ing problem. However, further investigations, both theoretical
and numerical, are needed. We hope our results contribute to
understanding heat transport in 2D nonlinear lattices.
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