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Logarithmic finite-size scaling correction to the leading Fisher zeros in the p-state clock model:
A higher-order tensor renormalization group study
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We investigate the finite-size-scaling (FSS) behavior of the leading Fisher zero of the partition function in
the complex temperature plane in the p-state clock models of p = 5 and 6. We derive the logarithmic finite-size
corrections to the scaling of the leading zeros which we numerically verify by performing the higher-order
tensor renormalization group (HOTRG) calculations in the square lattices of a size up to 128 × 128 sites. The
necessity of the deterministic HOTRG method in the clock models is noted by the extreme vulnerability of the
numerical leading zero identification against stochastic noises that are hard to be avoided in the Monte Carlo
approaches. We characterize the system-size dependence of the numerical vulnerability of the zero identification
by the type of phase transition, suggesting that the two transitions in the clock models are not of an ordinary
first- or second-order type. In the direct FSS analysis of the leading zeros in the clock models, we find that their
FSS behaviors show excellent agreement with our predictions of the logarithmic corrections to the Berezinskii-
Kosterlitz-Thouless ansatz at both of the high- and low-temperature transitions.
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I. INTRODUCTION

Finite-size-scaling (FSS) analysis is an essential numer-
ical tool to study phase transitions and critical phenomena
[1]. The singular behavior of free energy characterizing a
phase transition is hidden in finite-size systems available in
numerical simulations because the growth of the correlation
length is governed by the finiteness of the system. For in-
stance, in a system below the upper critical dimension, the
correlation length is typically considered to be bounded by
the linear dimension of the system [2,3] while it can exceed
the linear dimension in a system above the upper critical
dimension [4–6]. Around the transition point, the FSS ansatz
relates the scaling behavior of an observable to the system
size through the limited divergence of the correlation length,
enabling a precise determination of the transition point and
critical exponents from the curve collapse or the extrapo-
lation with systems of different sizes. While the access to
larger systems is thus crucial for better FSS analysis, the
practical limit of an available system size depends on the
character of the phase transition that the system undergoes
as well as a particular numerical simulation method to be
used.

In this paper, we focus on the FSS behaviors of the lead-
ing Fisher zeros in the systems undergoing the Berezinskii-
Kosterlitz-Thouless (BKT) transitions [7–9]. The zeros of
the partition function provide a way to characterize phase
transitions without defining order parameters (for a review,
see, for instance, Ref. [10]). The connection between the
singular behavior of the free energy and the partition function
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zeros was formulated first in the plane of complex fugacity
by Lee and Yang [11] and then in the plane of complex
temperature by Fisher [12] which we consider here. While
the Fisher zero coincides with the transition point only in
the thermodynamic limit, the leading zero with the smallest
magnitude of its imaginary part systematically approaches the
real-temperature axis as the system size increases. The FSS
behavior of the leading Fisher zero is well established in the
first- and second-order transitions (see, for instance, Ref. [13]
and references therein). For the BKT transitions, although
the FSS behavior of Lee-Yang zeros and the logarithmic
corrections was derived and numerically examined long ago
[14–16], progress with Fisher zeros was much slower. The
Fisher zero study has been extended very recently to the BKT
transitions in the two-dimensional XY model [17–19] and the
p-state clock model [20,21].

The Monte Carlo (MC) estimates of the leading Fisher
zeros have shown limited success in characterizing the BKT
transitions. In the p-state clock model [20,21], the leading
zero calculations based on the Wang-Landau (WL) density
of states [22,23] turned out to be reliable only up to L � 32
in the square lattices of L × L sites. This may be surprising
since the system size reached L = 128 already a decade ago
in the previous Fisher zero study on the Potts model [24],
implying that the numerical difficulty of finding the leading
Fisher zero may differ with the type of phase transition. In
Ref. [21], it was argued that the nondivergent specific heat in
the BKT transition was the fundamental origin of the small
accessible system sizes for the Fisher zero search and the
consequent inconclusive FSS behavior of the leading zeros.
In particular, the low-temperature transitions at all p’s and the
high-temperature transition at p = 5 remain uncharacterized
with the Fisher zero in the p-state clock model.
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On the other hand, in the XY model in the square lattices,
the deterministic calculations by using the higher-order ten-
sor renormalization group (HOTRG) method [17] provided
the computation of the leading Fisher zeros for the system
sizes up to L = 128. Although the WL approach with energy
space binning [18,19] reported the leading-zero computation
performed for up to L = 200, the transition temperature esti-
mate was TBKT ≈ 0.70, which deviated from the known value
TBKT ≈ 0.89 [25–27]. In contrast, the HOTRG calculation
[17] for the power-law leading-zero trajectory was consistent
with the known value of the BKT transition temperature.

The main goal of this paper is to provide a reliable FSS
analysis of the leading Fisher zeros to characterize both of
the low- and high-temperature transitions in the p-state clock
model. While the previous results in the XY model [17] sug-
gested a numerical advantage of using the HOTRG method,
we find that it still needs a more precise analytic treatment
of finite-size effects appearing in the clock model. We derive
the logarithmic corrections to the finite-size scaling of the
leading zeros, which turns out to be essential to determine the
transition temperature and understand the particularly strong
finite-size influences observed at the lower transitions. By
employing the HOTRG calculations and the logarithmic cor-
rection to the FSS ansatz, we obtain the Fisher-zero estimates
of the transition temperatures that agree well with the previous
estimates obtained from different measures. The same BKT
ansatz with the logarithmic finite-size correction successfully
describes the leading zero behaviors at both of the upper and
lower transitions in the p-state clock model.

The importance of logarithmic corrections at the BKT
transitions was pointed out in the seminal studies of Lee-Yang
zeros in the two-dimensional XY and step models [14–16].
In the second-order transitions, the scaling relations between
logarithmic correction exponents were derived through the
behaviors of Lee-Yang and Fisher zeros [28–30]. While the
behavior of Fisher zeros at the BKT transition was not con-
sidered in these previous works, our FSS analysis based on
the HOTRG calculations provides the numerical evidence of
the logarithmic scaling behavior of the leading Fisher zeros
characterizing the two BKT transitions in the p-state clock
model.

In addition, we revisit the numerical advantage of the
HOTRG calculations over the MC estimates when studying
the leading Fisher zeros in the systems undergoing the BKT
transitions. By performing analytic and numerical analysis
on the hill-valley structure of the partition function around
the leading zero location, we find that the tolerance to the
noises for the visual identification of the zero, which we call
“numerical visibility,” shows the distinct FSS behavior that
encodes the character of the associated phase transition. In the
first-order transition, the numerical visibility of the zero loca-
tion under the finite noises does not decrease with increasing
system size, making the leading zeros well accessible with
the MC estimates in a large system. On the other hand, in
the second-order transition, the visibility can decay slowly,
depending on the criticality of the specific heat. In the BKT
transition, the leading zero becomes exponentially less visible
as the system size increases, indicating that an extremely
accurate computation of the partition function is required for
the systematic FSS analysis of the leading zeros.

This paper is organized as follows. In Sec. II, we describe
the numerical procedures of finding the Fisher zeros and
provide the numerical details of the WL and HOTRG methods
to evaluate the partition functions at complex temperatures.
We present our main results in two parts. In Sec. III, we
derive the system-size dependence of the numerical visibility
of the leading zero for different types of phase transition
and demonstrate it in the Ising, Potts, and clock models.
In Sec. IV, we introduce the logarithmic corrections to the
BKT ansatz to derive the FSS forms of the leading zeros.
We perform the analysis with the HOTRG data in the five-
and six-state clock models to locate the transition points and
discuss the BKT character of the zeros at the upper and lower
transitions. The summary and conclusions are given in Sec. V.

II. MODELS AND NUMERICAL METHODS

A. Models for different phase transitions

While the Fisher-zero characterization of the p-state clock
model is of our main interest, we also consider the other
well-known classical spin models in the square lattices to
compare the numerical difficulty of finding the leading Fisher
zero between the different types of phase transition. For the
ordinary first-order and second-order transitions, we consider
the spin-1/2 Ising model and the q-state Potts model with
q = 3 and q = 10. The Ising Hamiltonian is given as H =
−∑

〈i, j〉 sis j where the spin variable si at site i takes the values
of ±1, and the summation runs over the nearest-neighbor
sites. The q-state Potts model is described by the Hamiltonian
H = −∑

〈i, j〉 δσi,σ j where the Potts spin takes σ = 0, . . . , q −
1. The 10-state Potts model is used as an example system
undergoing the first-order transition. The three-state Potts and
the Ising models exemplify the second-order transitions with
different critical exponents.

The Hamiltonian of the clock model is given as H =
−∑

〈i, j〉 cos(θi − θ j ), where the spin angle θ = 2πn/p has a
discrete value with an integer n ∈ {0, . . . , p − 1}. The p-state
clock model is a cousin of the XY model with discrete Z(p)
symmetry. Despite the discrete symmetry, it was analytically
found that the continuous U(1) symmetry would emerge at
p > 4, and the massless intermediate-temperature phase
would undergo two BKT transitions into the low-temperature
ordered and high-temperature disordered phases [31–38]. The
nature of the two transitions in the p-state clock model has
been studied widely with various numerical methods and dif-
ferent measures [20,21,39–53]. However, the characteristics
of the Fisher zeros remain unclear particularly for p = 5 and
at the low-temperature transition even for a higher p.

B. Numerical strategies of finding the Fisher zeros

We follow a standard strategy of searching for partition
function zeros that is usually evaluated with the reweight-
ing scheme based on the Monte Carlo estimate of spectral
densities [54–57]. Although the recipe is well known (for
instance, see the procedures in Ref. [16] for Lee-Yang zeros
and [58] for Fisher zeros and references therein), let us briefly
go through the implementation with the WL density of states
for later discussion on the numerical uncertainty issue at the
BKT transition given in Sec. III. The two-step procedures [58]
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FIG. 1. Map of the zeros of real (square) and imaginary (circle)
parts of the partition function in the five-state clock model. The
partition function is evaluated with the WL density of states sampled
in the system of L = 16. The Fisher zero is marked with the filled
square.

are composed of the graphical search to find an approximate
location and the numerical minimization for refinement. As il-
lustrated in Fig. 1, a map can be drawn for the zeros of the real
and imaginary parts of the partition function Z (β ) in the plane
of the complex inverse temperature β ≡ βR + iβI . This can be
done by using a one-dimensional root finder for βI at a given
βR. Given the map in the wide range of βR, one can identify
an approximate location of the crossing where the zeros of the
real and imaginary parts meet each other. The leading Fisher
zero β1 is given by the crossing with the smallest magnitude
of βI . Starting from the approximate location of the crossing,
β1 is refined by numerically minimizing |Z (β )|.

While this two-step approach can work in principle with
any normalization of the partition function, the WL estimate
may prefer the particular form with

Z̃ (β ) ≡ Z (β )

Z (βR)
=

∑
E

P(E ; βR)e−iβI E = 〈e−iβI E 〉βR (1)

because once the density of states g(E ) is obtained, the energy
distribution P(E ; βR) is computed straightforwardly at any
real inverse temperature βR as

P(E ; βR) ≡ 1

Z (βR)
g(E )e−βRE . (2)

The energy distribution is not affected by an arbitrary normal-
ization factor for the WL estimate of g(E ) ≡ gWL(E ) since it
is canceled out with Z (βR). The conventional MC simulations
use a similar reweighting strategy in the grids of βR. In the
HOTRG calculations, the normalization is not relevant since
it gives the direct computation of ln Z (β ), but we will still
consider Z̃ (β ) for comparison with the WL estimates.

The other method to compute the partition function zeros
is to use a polynomial solver, while it is applicable only when
the density of states g(E ) is prepared as a function of equally
spaced energy E ≡ En. For a given En = nε + ε0, where n is

a non-negative integer, one can find the zeros of the partition
function by solving a complex polynomial equation,

Z (z) = e−βε0

nmax∑
n=0

gnzn = 0, (3)

where z ≡ exp(−βε) and gn ≡ g(En). The zeros can be com-
puted for instance by using the MPSOLVE package [59]. This
approach is applicable to the case of the Ising, Potts, and
six-state clock models where the energy is regularly spaced.
However, it cannot be used for the models with continuous
symmetry like the XY model or the ones with irregular
energies like the five-state clock model without introducing
an artificial binning error. For our purpose of discussing the
vulnerability due to the MC noises in the zero finder, the
two-step approach is also more intuitive. The leading zeros
in this work are identified by using the two-step method.

C. Wang-Landau sampling method

The WL sampling method is used to estimate g(E ) in
the Ising and Potts models. The standard algorithm [22,23]
is employed with the stopping criterion of the modification
factor at 10−8. The histogram flatness criterion is set to be
0.99 for the system sizes up to L = 32 and 0.95 for the larger
systems.

The normalized partition function Z̃ (β ) is evaluated based
on a set of the WL samples of the density of states. The energy
probability distribution in Eq. (2) is averaged over Ns different
WL samples of the density of states {g(k)

WL(E )} as

P(E ; βR) ≈ P̄WL(E ; βR) = 1

Ns

Ns∑
k=1

g(k)
WL(E )e−βRE∑

E ′ g(k)
WL(E ′)e−βRE ′ . (4)

We have Ns = 30 from 30 independent runs of the WL simula-
tions for the model Hamiltonian examined. The measurement
uncertainty of Z̃ (β ) and the location of the leading zero are
computed for the confidence level of 95% by repeating the
bootstrap resampling processes 1000 times with the prepared
WL samples of the density of states.

On the other hand, in the p-state clock model, while we
mainly use the HOTRG method in this work, the WL method
was used for the Fisher zero problem in the previous studies
[20,21]. However, the previous work [21] reported the strong
limitation in accessible system sizes and argued that it was
due to a fundamental property of the Fisher zero at the BKT
transition rather than the WL algorithm itself. In fact, for the
six-state clock model, the WL density of states can be ob-
tained for sizes up to L = 128 within the same criterion used
for the Ising model. Even larger systems can be considered by
using the parallel algorithm [60,61]. While the five-state clock
model needs the two-parameter representation [21], advanced
strategies for acceleration have been suggested recently for
simulations in large systems [62–65].

D. Higher-order tensor renormalization group

The HOTRG method [66] provides a deterministic way of
evaluating the partition function in the tensor-network repre-
sentation. For a classical spin model with local interactions in
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the square lattices, the partition function can be written as

Z (β ) = Tr exp(−βH ) = Tr
∏

i

Txix′
i yiy′

i
, (5)

where Txix′
i yiy′

i
represents a local tensor with the indices of four

legs associated with the bonds in the x and y directions. The
complexity in this product of the local tensors can be truncated
systematically in a controlled way by using the real-space
renormalization group procedures [66–69]. In particular, the
HOTRG method has been extended to the study of the Fisher
[17] and Lee-Yang [70] zeros of the partition function evalu-
ated at complex temperatures and fields.

Let us briefly review the HOTRG procedures. Initially, the
model-dependent local tensor T (0) is prepared at each site, and
then it is coarse-grained with the tensor in a neighboring site
sharing a bond. In 2N × 2N lattices, with translational invari-
ance being assumed, it takes 2N operations of the contraction
applied alternatively along the x and y directions to obtain the
final coarse-grained tensor. For instance, the nth operation of
the contraction along the y direction starts by computing

M (n)
xx′yy′ =

∑
i

T (n)
x1x′

1yiT
(n)

x2x′
2iy′ , (6)

where x = x1 ⊗ x2 and x′ = x′
1 ⊗ x′

2. If the dimension of each
leg of T (n) is D, then the dimension of x and x′ increases to
D2. The dimension of the legs will be exponentially large as
the contraction goes on if Mxx′yy′ is given directly to the new
tensor. This is prevented by introducing the cutoff dimension
Dc for the spectral truncation in the singular value decomposi-
tion. The truncation error is controlled by increasing Dc. The
new coarse-grained tensor T (n+1) is then written as

T (n+1)
xx′yy′ =

∑
i j

UixM (n)
i jyy′U ∗

jx′ . (7)

For a real β, a real unitary matrix U can be obtained by
solving the eigenproblem of the semi-positive-definite ma-
trix AA† with Ax,x′yy′ = Mxx′yy′ or Ax′,xyy′ = Mxx′yy′ , where the
eigenvectors corresponding to the first Dc largest eigenvalues
are only taken to determine U . For a complex β, we follow
the strategy proposed in the previous work for the XY model
[17] to find the orthogonal transformation with a real unitary
matrix U . The previous work proposed to replace AA† with
Re[AA†], Re[AAT ], Im[AA†], or Im[AAT ]. Here we choose
Re[AA†] to preserve the trace of AA† in our implementation
of the HOTRG method. At every contraction, trying both of
Ax,x′yy′ = Mxx′yy′ and Ax′,xyy′ = Mxx′yy′ to build AA†, we pick
the one with the smaller residue of the trace that is due to
small eigenvalues not included in the largest Dc eigenvalues
constructing the new coarse-grained tensor T (n+1).

As the contractions are repeated, the components of T (n)

can increase to very large numbers. To avoid the numerical
overflow, we normalize T (n) by a factor of λn which we set
to be the Euclidean norm of T (n). After 2N steps of the
contractions, the partition function is evaluated as

ln Z = ln Tr T̃ (2N ) +
2N∑
i=1

22N−i ln λi, (8)

where T̃ (n) ≡ T (n)/λn is the normalized tensor.

The initial local tensor T (0) ≡ T depends on the model
Hamiltonian. For the Ising and q-state Potts model, the exact
expression of T is known [66,69,71]. For the p-state clock
model, we construct T by using the same expansion technique
previously used for the XY model [72]. The partition function
Z (β ) of the p-state clock model is written as

Z (β ) =
∏

i

∑
θi

exp

⎡
⎣β

∑
〈i, j〉

cos(θi − θ j )

⎤
⎦ = Tr

∏
i

Txix′
i yiy′

i
.

(9)

The Boltzmann factor can be expanded by using

eβ cos θ =
∞∑

n=−∞
In(β )einθ , (10)

where In(β ) is the modified Bessel function of the first kind.
Summing out the spin angle variable θi, we obtain

Txx′yy′ =√
Ix(β )Ix′ (β )Iy(β )Iy′ (β )δmod(x+y−x′−y′,p),0. (11)

The difference from the XY model is indicated by mod(x +
y − x′ − y′, p), which is x + y − x′ − y′ modulo p, appearing
because of the discrete values of θ . Note that the initial
tensor can be prepared alternatively by using the singular
value decomposition [51,52]. While in the initial tensor, the
magnitude of the coefficient In(β ) decays exponentially with
increasing n, the cutoff dimension Dc should be tested nu-
merically for the required accuracy of final results. The XY
model was examined previously with Dc = 40 and 50 [17,72].
We increase the cutoff up to Dc = 70, which is the largest
Dc available within our limitation of computational memory,
for the identification of the leading zeros in the systems with
sizes up to L = 128 [73]. Figure 2 displays the estimates with
different Dc’s, indicating that Dc = 60 and 70 are very similar.
We use the dataset of Dc = 70 for the FSS analysis presented
in later sections.

III. UNCERTAINTY OF FINDING THE LEADING
ZERO UNDER STOCHASTIC NOISES

The presence of stochastic noises is a general property
of any MC estimator. The questions that we address in this
section are how much one can trust the identification of the
leading Fisher zero under the stochastic errors of the partition
function estimate and how it depends on a particular character
of the phase transition. These questions were briefly consid-
ered by one of us in the previous work [21] which conjectured
that based on the Gaussian approximation, the numerical
tolerance to the noises is related to the critical behavior of
the specific heat. We examine this conjecture beyond the
Gaussian approximation by providing more detailed analysis
with demonstrations in the Ising, Potts, and clock models.

A. System-size scaling of the uncertainty criterion

Figure 3 presents examples of reliable and unreliable iden-
tifications of the leading zeros in the presence of the stochastic
uncertainty of the partition function estimate. Finding the
zeros of the normalized partition function Z̃ (β ) under the
uncertainty should accompany with a test for a signal-to-noise
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FIG. 2. Leading zero identification compared between different
values of the dimensional cutoff Dc in the HOTRG procedures for
the upper and lower transitions in the p-state clock model. The data
points are available for the system sizes of L = 8, 16, 32, 64, 128,
where the smaller L corresponds to the larger value of βI .

ratio to lend confidence to the search for the zero. The minimal
condition can be set for the “hill” of |Z̃| surrounding the
location of the zero to be higher than the uncertainty level
[see the dashed line in Fig. 3(a)]; otherwise, the “valley” of
|Z̃ (β )| = 0 is untrusted as indicated in Fig. 3(c). The boundary
of confidence [17,58,74] can be given by the measurements
based on the WL dataset as a line above which the magnitude
of |Z̃ (β )| is smaller than its uncertainty measure σ̃ [|Z̃ (β )|].

While the boundary of confidence can be computed in
MC simulations, one can build useful intuition about how the
boundary would evolve with increasing system sizes from
the analytic approach based on the Gaussian approximation
of the energy distribution. In Ref. [58], the random sampling
with the Gaussian energy distribution provided the standard
error σ̃ [|Z̃ (β )|] = [(1 − |Z̃|2)/ns]1/2, which defined the radius
of confidence from the real axis as

R =
√

ln(ns + 1)/σE , (12)

where ns is the size of the samples, and σ 2
E ≡ 〈E2〉 − 〈E〉2

is the variance of energy at a given βR. The extension to the
quasi-Gaussian distribution was also discussed in Ref. [74].
Despite the difference from realistic energy distributions,
Eq. (12) still provides an important implication on the numeri-
cal accessibility to the leading zero that turns out to differ with
the type of the associated phase transition.

The system-size dependence of R is encoded in the energy
variance that is proportional to the heat capacity. Since the
heat capacity is extensive, one may anticipate that R ∼ L−d/2

in the d-dimensional lattices, indicating that the area where
we can trust the estimate of Z̃ shrinks with a power law as

FIG. 3. Landscape of the normalized partition function |Z̃| eval-
uated with the WL density of states for (a) the Ising [73] and (b) six-
state clock models [21] in the square lattices of L = 32. The dashed
lines in (a) and (b) indicate the boundary above which |Z̃| is smaller
than the uncertainty estimate σ̃ [|Z̃|]. The location of the true leading
zero obtained from the HOTRG calculations is marked with the filled
star. (c) |Z̃| and σ̃ [|Z̃|] plotted along the dash-dotted line in (b).

L increases. The decrease of R is even faster in the vicinity
of the leading zero along the line of βR = Re[β1] because it
corresponds to a pseudotransition point at which the specific
heat c∗

L becomes critical in the ordinary phase transition.
However, an important missing piece in this argument is that
the leading zero, which we want to identify, is also moving
toward the real axis as the system size increases.

Therefore, what we need to consider is the race between
R(c∗

L ) and Im[β1], both of which decrease with increasing
L. If R is always larger than Im[β1] regardless of L, then
one can successfully locate the leading zero even at a very
large system within the uncertainty of the MC estimate. If R
becomes smaller than Im[β1] at some point of L, then the zero
identified under the noises is likely to be accidental and thus
hardly trusted. Because c∗

L and Im[β1] are both governed by
the critical behaviors, one may reach an intuition that while
the FSS behavior of the leading zero characterizes the phase
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transition, the character of the transition may also influence
reversely the numerical difficulty of finding the leading zero.

In the first-order transitions, the diverging specific heat
c∗

L ∼ Ld at a pseudotransition point leads to R ∼ L−d which
coincides with the expected behavior of Im[β1] ∼ L−d . In the
second-order transitions with the critical exponent α > 0, the
specific heat c∗

L ∼ Lα/ν leads to R ∼ L−(dν+α)/2ν that becomes
R ∼ L−1/ν with the hyperscaling relation dν = 2 − α, and
the leading zero has the same scaling behavior of Im[β1] ∼
L−1/ν . Therefore, the ordinary first-order and second-order
transitions exhibit R ∼ Imβ1 regardless of L, suggesting that
the leading zero may be marginally accessible even at a very
large system under finite stochastic uncertainty of |Z̃|.

On the other hand, the situations are very different in
the XY model where the specific heat does not diverge
[9,14,16,25]. The radius R ∼ L−d/2 decreases much faster
than the imaginary part of the leading zero that is expected to
scale as Im[β1] ∼ [ln(bL)]−q̃ with q̃ = 1 + 1/ν at a very large
L [17]. The singular part of the specific heat with the logarith-
mic correction [14,16,25] is proportional to L−d (ln L)2q̃ which
is comparable to Im[β1]−2; however, the main contribution
to R comes from the constant regular part since the singular
part quickly decreases with increasing L. This leads to R �
Im[β1] at a large L, implying that for the BKT transitions,
a reliable identification of the leading zero is fundamentally
limited to small systems within the MC estimate of |Z̃|.

While Eq. (12) indicates a connection between the nu-
merical feasibility of finding the leading zero and the critical
phenomena, MC simulation are often performed to keep the
measurement error at a certain level. Thus, in practice, it is
meaningful to consider the criterion for a fixed uncertainty σ̃0,

|Z̃ (β )| � σ̃0, (13)

which examines whether the hill of |Z̃| surrounding the lead-
ing zero is visible above the uncertainty level [21]. For the
Gaussian energy distribution, |Z̃ (β )| at a complex value of
β = βR + iβI is calculated as

|Z̃ (β )| = exp

[
−Ld c∗

L

β2
I

2β2
R

]
. (14)

At the location of the leading zero, β = β1, the leading-order
behavior of |Z̃ (β1)| ≡ Q(L) for a large L can be written as

Q1st (L) = AL exp[−a0L−d ], (15)

Q2nd(L) = AL exp[−a0L−α/ν], (16)

QBKT(L) = AL exp[−a0Ld (ln bL)−2q̃], (17)

for the first-order, second-order, and BKT transitions, respec-
tively, where a constant a0 is given by the regular part of c∗

L.
The singular part of c∗

L is canceled out together with Im[β1]
as discussed for R. It contributes to to the factor AL, but
it may also contain the logarithmic or next-to-leading order
corrections of c∗

L. For instance, in the Ising model, the specific
heat with α = 0 diverges logarithmically as c∗

L ∼ ln L, leading

to the power-law decay of AL as

QIsing(L) = A0L−a. (18)

For a small α, considered the next-to-leading order correction
term as in c∗

L ∼ Lα/ν (1 − aωL−ω ), we may rewrite Q(β1) as

Q2nd(L) = A0 exp[−a0L−α/ν + a1L−ω], (19)

indicating that Q2nd(L) can decrease slowly as L increases
when a0 < 0, or a1L−ω is positive and dominant.

Therefore, for the first-order transition, Q1st is an increas-
ing function of L, implying that the same uncertainty level
is enough for large systems. While it works similarly in the
second-order transition, one may need more accurate esti-
mates at a larger system if α is small. For the BKT transitions,
QBKT exponentially decays with increasing L, implying that a
larger system requires exponentially more accurate estimates
that may not be feasible with usual MC simulations.

B. Numerical visibility of the leading zeros in spin models

A caveat of the above argument is that the Gaussian form
of the energy distribution becomes a crude approximation
near the actual location of the zero. It is well known that the
Gaussian energy distribution cannot produce Z = 0 as also
indicated in Eq. (14). The previous work [21] argued that
Eq. (14) works as an envelope function of Z̃ (β ), and thus
the analytic connection between the numerical difficulty and
the critical behavior of the specific heat can be still intuitive.
Therefore, it is still important to check numerically, in the
realistic spin models, how the maximally tolerable uncertainty
for a trusted identification of the zero scales with the system
size.

As illustrated in Fig. 3, the uncertainty level that can still
reveal the valley of |Z̃| = 0 is bound by the height of the hill
surrounding the location of the zero. Thus, we compare the
behavior of the hill height just above the leading zero, which
we denote by Z̃∗, with the predicted scaling behavior of Q(L).
Figure 4 presents the system-size dependence of Z̃∗ in the
Potts, Ising, and clock models to examine the different types
of phase transition. The partition functions in the Potts and
Ising models are evaluated based on the WL density of states,
and the calculations are done in the clock model by using
the HOTRG method. It turns out that despite the quantitative
difference from Q(L), the FSS behaviors of Z̃∗(L) agree well
with the behavior of Q(L) predicted based on the Gaussian
approximation of the energy distribution.

In the 10-state Potts model undergoing the first-order tran-
sition, it is notable that the estimate of Z̃∗ increases toward
unity as L increases [see Fig. 4(a)]. While the numerical data
of Z̃∗ does not fit precisely to the line of Q1st (L) in Eq. (15),
the prediction of the increasing behavior is essentially valid.
The excellent contrast between the hill and valley of Z̃∗ guar-
antees that the location of the leading zero can be accessible
under finite noises even at a large system. The comparison
with other phase transitions discussed below suggests that
within the MC simulations, the numerical identification of the
leading zero is the most stable at the first-order transition.

The examples of the second-order transitions also show
excellent agreement with the expectation from the Gaussian
approximation. The three-state Potts model shown in Fig. 4(b)
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FIG. 4. Numerical visibility of the leading zeros associated with the different types of phase transition. The normalized partition function Z̃
is plotted in the vicinity of the leading zero for (a) 10-state Potts, (b) three-state Potts, (c) Ising, and (d) five-state clock models. The hill height
Z̃∗, the maximum of |Z̃| above the leading zero in the imaginary axis is marked with a filled symbol. In the bottom panels, the system-size
scaling behavior of Z̃∗ is compared with a curve fit to Q(L) predicted from the Gaussian approximation. The partition functions shown here
are obtained by using the WL density of states for the Ising and Potts models and by using the HOTRG method with Dc = 70 for the five-state
model. The identified location of the leading Fisher zeros are tabulated in Supplemental Material [73].

presents that the hill height Z̃∗ decreases with L but tends to
asymptotically converges. The data points of Z̃∗ show a very
good curve fit to A exp[−a0L−α/ν] with a0 < 0 and α/ν ≈ 0.4
given in Eq. (19). The parameters are consistent with the
conjectured value of α/ν = 2/5 [75] and the previous FSS
test of the specific heat maximum where the negative constant
term (a0 < 0) was indicated [76]. In the Ising model presented
in Fig. 4(c), the data points Z̃∗ indicate a power-law decrease
as expected from QIsing(L) in Eq. (18). While the decreasing
behavior suggests that the stochastic error should decrease
accordingly to identify the leading zero, the measured uncer-
tainty of our WL estimates is well below the hill level of Z̃∗ in
the tested range of the system sizes.

On the other hand, in the five-state clock model, we observe
an exponential decay of Z̃∗ ∼ exp(−aLx ) in the HOTRG
calculations of the partition function [see Fig. 4(d)]. This
indicates that if there were finite noises, then the valley-hill
structure around the leading zero would get exponentially
less visible with increasing system size. Although the ob-
served scaling behavior of Z̃∗ is different from Eq. (17), both
reach the same conclusion that the search for the leading
zero would become extremely vulnerable against stochastic
noises, implying that the MC methods are inadequate to the
Fisher-zero study of the BKT transitions. This emphasizes
the advantage of HOTRG as a deterministic method whose
accuracy is controlled with the cutoff dimension and free from
stochastic noises.

In the next section, we present the FSS analysis with the
leading zeros identified in the HOTRG calculations to charac-
terize the BKT features of the upper and lower transitions in
the five- and six-state clock models.

IV. TWO BKT TRANSITIONS IN THE CLOCK MODEL

Let us begin this section by summarizing the problems
that remain unsolved in the previous Fisher-zero study of the
p-state clock model [21]. First, for p = 5, the transition point
suggested by the leading zeros seemed to deviate from the
previous estimates when the BKT exponent ν = 1/2 is used,
while ν = 1/2 has been verified in the phenomenological FSS
analysis [43] and the analysis of the helicity modulus rede-
fined for the discrete symmetry [49,50]. Second, the leading
zeros at the lower transitions showed an arclike FSS trajectory
which was different from the power-law trajectory expected
from the XY model. The leading zero behavior at the lower
transition remains unexplained.

An obvious criticism to the previous analysis based on the
WL density of states in Ref. [21] was that the system sizes
examined were too small to draw any conclusive results. Here
we provide the FSS analysis with the leading zeros obtained
by using the HOTRG calculations in the systems of sizes
up to L = 128. Nevertheless, it turns out that the finite-size
effects are still strong so that the known leading-order ansatz
is not enough to explain the observed behaviors, suggesting
that subleading order corrections are necessary to be included
in the FSS analysis within the available system sizes.

A. Logarithmic correction to the finite-size-scaling ansatz

The FSS behavior of the leading Fisher zero in the previous
study of the XY model [17] was derived by extending the
pseudotransition temperature obtained from the system-size
scaling of the correlation length ξL(β ) ∝ L into the domain
of the complex temperature. It was found that a complex

012124-7



SEONGPYO HONG AND DONG-HEE KIM PHYSICAL REVIEW E 101, 012124 (2020)

pseudotransition temperature βL ≡ βx(L) + iβy(L) would be-
have as βy ∝ (βc − βx )3/2 at a small βy at a large L. In
the present study, we incorporate the logarithmic finite-size
correction into the correlation length, which turns out to be
essential to the FSS analysis of the leading Fisher zeros.

While the FSS ansatz of the correlation length is typically
written as ξL(β )/L = a0 with a constant a0 for a large L, the
previous MC study of the second moment correlation length
in the XY model [26] indicated the presence of the logarithmic
correction. Assumed that it works in the same way in the
complex domain, we may begin with the ansatz written as

ξL(β )

L
= a0 + a1

ln L
+ O[(ln L)−2], (20)

where the constants a0 and a1 are complex numbers. Given the
BKT ansatz of ξ = A exp[1/(atν )], we can write an equation
for a reduced temperature t ≡ tL at a finite L as

1

atν
L

= z0 + ln L + z1

ln L
+ O[(ln L)−2], (21)

where z0 = ln(a0/A) and z1 = a1/a0. To the leading and next-
to-leading orders for the real and imaginary parts of the right-
hand side, the final FSS ansatz is written as

(βx ± iβy)−ν � a ln bL + i
(

c0 − c1

ln L

)
, (22)

where the complex reduced temperature tL for a transition
point βc is written as tL ≡ βx ± iβy with βx = |βc − βx|.
The sign of ±βy is irrelevant because of the symmetry of
the Fisher zero, and we choose βy > 0 and tL = βx − iβy.
The logarithmic behaviors of the real and imaginary parts are
evident in the numerical tests with ν = 1/2 in Fig. 5.

Equation (22) can be solved for βx = rL cos θL and βy =
rL sin θL in the polar coordinates of the complex inverse
temperature. The radius rL and the angle θL are written as

rL = (a ln bL)−
1
ν

[
1 + ψ2

L

]− 1
2ν , (23)

θL = 1

ν
tan−1 ψL, (24)

where we define the size-dependent parameter ψL as

ψL = 1

a ln bL

[
c0 − c1

ln L

]
≡ Im[(βx − iβy)−ν]

Re[(βx − iβy)−ν]
. (25)

For a small ψL, one can write βx and βy as

βx = (a ln bL)−
1
ν

[
1 − B1ψ

2
L + O

(
ψ4

L

)]
, (26)

βy = 1

ν
(a ln bL)−

1
ν ψL

[
1 − B2ψ

2
L + O

(
ψ4

L

)]
, (27)

where B1 = 1
2ν

+ 1
2ν2 and B2 = 1

3 + 1
2ν

+ 1
6ν2 . One can further

expand these equations in powers of 1/ ln L as

βx ∝ (ln bL)−
1
ν [1 − B′

1(ln L)−2 + O[(ln L)−3]], (28)

βy ∝ (ln bL)−1− 1
ν [1 − B′

2(ln L)−1 + O[(ln L)−2]], (29)

where B′
1 = B1c2

0/a2 and B′
2 = c1/c0. In the asymptotic limit,

they approach the lines of βx ∝ (ln bL)−1/ν and βy ∝
(ln bL)−1−1/ν , reproducing the simple power-law trajectory

FIG. 5. Logarithmic finite-size corrections to the scaling ansatz.
The real and imaginary parts of (βx − iβy )−ν are shown at the
transitions in the p-state clock model and the XY model. The
postulated BKT exponent ν = 1/2 is used. The dotted lines are given
by the curve fits of the parameters in Eq. (22). The numerical values
of the parameters are listed in Ref. [73]. The HOTRG data at Dc = 70
are used.

of βy ∝ β1+ν
x that was proposed in Ref. [17]. To take into

account the logarithmic correction terms in βx and βy, the
leading zero trajectory can be expressed as

βx = w1β
1

1+ν
y + w2βy + w3β

2− 1
1+ν

y + O
(
β

3− 2
1+ν

y
)
, (30)

where the coefficients can be determined perturbatively from
the asymptotic solution. While this expression includes the
higher-order corrections, it is still unclear how the trajectory
can bend like an arc as previously observed at the lower
transitions in the p-state clock model [21].

We find that at the postulated BKT exponent ν = 1/2, the
closed-form expressions of βx and βy are obtained to show
more explicitly the character of the leading-zero trajectory at
a finite L. At ν = 1/2, Eq. (22) provides the expressions,

βx = ψ2
L

(
1 − ψ2

L

)
(
1 + ψ2

L

)2

[
c0 − c1

ln L

]−2
, (31)

βy = 2ψ3
L(

1 + ψ2
L

)2

[
c0 − c1

ln L

]−2
. (32)

It turns out that as ψL decreases, βx increases first at a large
ψL and then starts to decrease when ψL becomes smaller than
a certain value. This contrasts with the monotonic increase
in βy. Thus, if ψL is not small, then one may find L∗ at
which the slope of βx change its sign, leading to an arclike
trajectory in the complex plane. In the numerical tests shown
in Fig. 6, the leading zeros at the lower transitions have much
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FIG. 6. System-size dependence of ψL in the p-state clock model
and the XY model. The solid lines indicate Eq. (25) with the fitting
parameters determined in Fig. 5. The filled symbol denotes L∗ at
which βx has maximum in Eq. (31).

larger values of ψL than at the upper transitions, explaining
the strong finite-size effects observed at the lower transitions.
Below we demonstrate the finite-size behaviors discussed in
this section by using the HOTRG data of the leading zeros.

B. Finite-size-scaling behaviors of the leading Fisher zeros

The logarithmic FSS behavior in the imaginary part of
Eq. (22) plays an essential role to determine the transition
points from the leading Fisher zero data. While both of the
real and imaginary parts expect the ln L dependence as shown
in Fig. 5, the imaginary part of (β − iβy)−ν responds much
more sensitively to the change of βc, providing a stable curve
fit to locate βc in practice. Figure 7 demonstrates the behavior
of Im[(β − iβy)−ν] with the postulated BKT exponent of
ν = 1/2, indicating the systematic deviations of the data
points from the straight line as it moves away from the
determined value of βc.

Table I lists our Fisher-zero estimates of βc based on the
HOTRG data computed at Dc = 60 and 70 and the previous
results based on various different measures at the upper and
lower transitions in the p-state clock model for p = 5 and
6. Our estimates at both Dc’s are well in the range of the
previous estimates. The estimate of βc is obtained by solving
the least-squares problem to minimize the absolute difference
between Im[βx − iβy]−1/2 and c0 − c1/ ln L in Eq. (22). The
HOTRG calculations are deterministic and provide a single set
of the leading Fisher zero data at each Dc [73]. The error given
in the parentheses in Table I is the fitting uncertainty at a given
Dc measured by the jackknife variance with one data point
being discarded. The fitting uncertainty gets smaller with the
larger Dc, supporting the 1/ ln L correction ansatz in Eq. (22).
Comparing with the previous Fisher zero study using the WL
method [21], the reasons for the better agreement between
the present results and the other estimates are twofold. First,
our HOTRG dataset covers up to L = 128 which is much
larger than L � 32 of the previous WL study. Second, while
Ref. [21] relied on the form of the trajectory that is valid in the
asymptotic limit, our method of locating βc benefits from the

FIG. 7. Determination of the transition points. The ansatz with
the 1/ ln L correction is employed to locate the transition point βc at
the upper [(a) and (c)] and lower [(b) and (d)] transitions in the p-state
clock model. The sensitivity of the 1/ ln L behavior (solid line) is
examined by moving away from βc with the step size δ = 0.004.
The HOTRG data and the estimates of βc at Dc = 70 are used.

logarithmic finite-size correction in the next-to-leading order,
providing a better access to finite systems at both of the upper
and lower transitions.

The finite-size influence of neglecting the higher order
logarithmic terms in the FSS ansatz of (βx − iβy)−ν can
be tested by not including some data points of the smallest

TABLE I. Comparisons with the previous estimates of the tran-
sition points for the upper (βhigh

c ) and lower (β low
c ) transitions in the

p-state clock model. The last four rows indicate our estimates from
the fits to Eq. (22) with the HOTRG dataset for L � Lmin at Dc = 60
and 70.

βhigh
c (p = 5) β low

c (p = 5) βhigh
c (p = 6) β low

c (p = 6) Reference

1.088(12) 1.47(4) [40]
1.1111 1.4706 [41]

1.1101(7) 1.4257(22) [42]
1.0510(10) 1.1049(10) [43]

1.1086(6) [48]
1.0593 1.1013 1.106(6) 1.4286(82) [49]
1.058(19) 1.094(14) [50]
1.0504(1) 1.1075(1) [52]

Dc = 60
1.060(2) 1.097(3) 1.110(6) 1.436(6) Lmin = 8
1.058(2) 1.096(16) 1.114(15) 1.433(20) Lmin = 16

Dc = 70
1.059(1) 1.096(7) 1.106(1) 1.441(5) Lmin = 8
1.058(1) 1.101(6) 1.106(2) 1.444(2) Lmin = 16

012124-9



SEONGPYO HONG AND DONG-HEE KIM PHYSICAL REVIEW E 101, 012124 (2020)

system sizes. Although our dataset of five data points is not
enough for a systematic analysis, we can still compare the
one from the full dataset with the other from the reduced
dataset excluding L = 8. As shown in Table I, the locations
of βc at the upper transitions are stable with the exclusion of
L = 8. At the lower transitions, the finite-size effect is much
stronger as suggested by the test of ψL in Fig. 6; however, the
change of βc is still in the range of the values reported in the
previous studies. In addition, the same procedures provides
βc ≈ 1.115 in the XY model for our leading-zero dataset
of L � 128, which is also comparable to the high-precision
estimate βc ≈ 1.1199 given by the large-scale MC simulations
[26,27].

The imaginary and real part of the leading zeros
are expected to behave as βy ∼ (ln bL)−1−1/ν and βx ∼
(ln bL)−1/ν from the BKT ansatz in the limit of a very large
L. While at a finite L, the leading zero behaviors deviate
from these asymptotes, Eqs. (31) and (32) that include the
finite-size corrections describe very well the FSS behaviors of
the leading zeros, including an arclike trajectory at the lower
transition, as demonstrated in Fig. 8. The parameters in ψL

are determined from the linear fits shown in Fig. 5 in the
procedures of locating βc. The excellent agreement between
the data points and the analytic predictions again emphasizes
that the logarithmic correction to the BKT ansatz is essential
to the analysis of the leading zeros in the p-state clock
model.

Finally, let us discuss briefly the BKT exponent ν that is
fixed at the standard value of ν = 1/2 in our FSS tests. While
it is hard to determine ν directly from βx or βy because
of other fitting parameters being involved, the asymptote of
the leading zero trajectory, βy ∝ β1+1/ν

x , can be checked
for the consistency with the HOTRG data because it is free
from the parameters other than the estimate of βc. It turns out
that at the upper transition, where the finite-size influence is
less pronounced, the leading zero data agree very well with the
prediction of βy ∝ β3/2

x as shown in Fig. 8(e). At the lower
transitions, while the finite-size influence is much stronger as
shown in Fig. 8(f), the extrapolation of the leading-zero data
points is getting closer to the asymptotic behavior of ν = 1/2
as L increases, suggesting that the lower transitions as well as
the upper ones are indeed of the same BKT type yet with the
different appearance of the finite-size effects.

V. SUMMARY AND CONCLUSIONS

We have investigated the numerical feasibility of the FSS
analysis with leading Fisher zeros for the BKT transitions
and proposed the logarithmic corrections to the FSS ansatz to
examine the two phase transitions in p-state clock models for
p = 5 and 6 in the square lattices. Our main findings can be
summarized in two parts. (i) The reliability of the leading zero
identification under finite MC noises highly depends on the
type of the associated phase transition. (ii) The combination
of the HOTRG method and the logarithmic correction to the
FSS ansatz allows us to locate the transition points, resolving
the discrepancy between the previous Fisher zero study and
the other estimates from different measures.

We have found that the numerical visibility of the lead-
ing zero exhibits the characteristic system-size scaling that

FIG. 8. Finite-size-scaling behaviors of the leading zeros at the
transitions in the p-state clock model and the XY model. The
imaginary [(a) and (b)] and real [(c) and (d)] parts of the leading zeros
and their trajectory in the complex plane [(e) and (f)] are examined
at the upper [(a), (c), and (e)] and lower [(b), (d), and (f)] transitions.
The dotted lines indicates Eqs. (31) and (32). The trajectories at the
lower transitions are rescaled with the factor rp ≡ 1 − cos (2π/p) for
visualization. The data at Dc = 70 and the parameters determined
from Fig. 5 are used.

depends on the type of phase transition. The analytic pre-
diction and the numerical tests in the Potts, Ising, and
clock model suggest that the leading zero identification is
the most robust against the finite MC noises in the first-
order transition. In the second-order transition with a non-
negative specific heat exponent, the tolerance to the finite
noises decreases slowly with increasing system size. In the
BKT transition, the tolerance decay turns out to be ex-
ponential, emphasizing the necessity of an highly accurate
partition function evaluation in the search for the leading
zero.

Employing the deterministic HOTRG method, we have
identified the leading zeros for system sizes up to L = 128
in the p-state clock model. Although, it turns out that the
logarithmic correction is essential to the characterization of
the leading zero behavior. The logarithmic correction works
as a guide to locate the transition points, providing the Fisher-
zero estimates that are in good agreement with the other
estimates from different measures. In addition, our formu-
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lation of the FSS ansatz indicates that an arclike trajectory
of the leading Fisher zeros can occur if the finite-size in-
fluence is strong as indeed observed at the lower transi-
tions. Our results significantly extend the previous Fisher
zero studies of the p-state clock model [20,21] by describing
both of the upper and lower transitions within the same
BKT scaling ansatz of the leading zeros with the finite-size
correction.
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