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Electrostatic interactions make a large contribution to solvation free energy in ionic fluids such as electrolytes
and colloidal dispersions. The electrostatic contribution to solvation free energy has been ascribed to the self-
energy of a charged particle. Here we apply a variational field theory based on lower bound inequality to the
inhomogeneous fluids of one-component charged hard-spheres, thereby verifying that the self-energy is given
by the difference between the total correlation function and direct correlation function. Based on the knowledge
of the liquid state theory, the self-energy specified in this study not only relates a direct correlation function to
the Gaussian smearing of each charged sphere, but also provides the electrostatic contribution to solvation free
energy that shows good agreement with simulation results. Furthermore, the Ornstein-Zernike equation leads to
a set of generalized Debye-Hückel equations reflecting the Gaussian distributed charges.
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I. INTRODUCTION

Electrostatic correlations in aqueous solutions including
charged interfaces are important in a wide range of applica-
tions such as biological macromolecules, colloidal suspen-
sions, and ionic liquids, particularly because of the long-
range nature that significantly affects many chemical and
physical properties of interfaces [1–9]. The study of col-
loidal dispersions and electrolytes has thus received signif-
icant interest because of its central relevance to a variety
of technological applications, such as in biotechnology and
the food industry. Among the various issues related to the
fundamental properties of ionic solutions, we focus on the
thermodynamics of ion solvation that underlies a variety of
important processes, ranging from biological structures and
processes to self-assemblies in soft matter systems [8–18].
For instance, heterogeneous assemblies are formed due to
solvation of small ions and charged macromolecules such as
DNA and proteins [2].

A vast body of theoretical literature exists for ion solvation
in single-component liquids [8,9]. Recently, the composition
dependence of ion solvation in liquid mixtures was also
addressed because it has been found that the solvation free en-
ergy of salt ions can significantly affect the phase behavior and
interfacial properties of liquid mixtures [10–12]. Variational
Gaussian approximation within a field-theoretic framework
[13–17,19] is one of the promising theories to determine
electrostatic contribution to solvation free energy [13–17].
This method provides the Boltzmann distribution of equilib-
rium density whose weight is modified by the self-energy
[13–17,19]. The self-energy of an ion includes both the Born
solvation effects due to a spatially varying dielectric medium
and electrostatic effects [13–17]; the latter yields the ionic
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solvation free energy that depends on the ion concentration,
valency, and the dielectric permittivity [13–18].

The variational Gaussian theory [13–17,19] provides a
self-consistent set of two equations that determines the
self-energy. One is the the self-energy-modified Poisson-
Boltzmann equation that goes beyond the classical Poisson-
Boltzmann theory due to the inclusions of electrostatic
correlations in the self-energy to improve the approximation
of the mean-force potential [13–17]. The other is a generalized
Debye-Hückel (DH) equation where the screening length
spatially varies [2,13–17,19–26]. The generalized DH equa-
tion for obtaining the self-energy can be traced back to the
inhomogeneous Ornstein-Zernike (OZ) equation [2,20,21,23],
according to an alternative derivation based on density func-
tional formulation of the random phase approximation (RPA)
[20,21]. This finding opens up the possibility of developing a
hybrid framework of the above self-consistent theory and the
liquid state theory [1,6,7].

In this paper, we have advanced the above self-consistent
field theory for ionic solvation. Our formulation is based on
the extension of variational field theory using the lower bound
inequality [1,27–29] to inhomogeneous fluids. We have ob-
tained the self-energy and its associated self-consistent equa-
tions that are more intimately connected with the liquid state
theory than those of the previous formulations [13–17,20,21].
Accordingly, our hybrid framework based on the variational
Gaussian theory (or the RPA for inhomogeneous fluids) cre-
ates a bridge between the liquid state theory and the previ-
ous findings [18,27,29–38] that the charge smearing (or the
cutoff interaction potential) can virtually extend the scope of
tractable Coulomb systems, going beyond the conventional
limit of the RPA [1]. We thus obtain a simple form of the self-
energy of a highly charged sphere, borrowing from the knowl-
edge of the liquid state theory [1,6,7,30–38]. This expression
does not only relate a physical picture of colloidal solva-
tion to that known in strongly coupled plasmas [4,5,30–38],
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but also allows us to evaluate electrostatic contribution to
colloidal solvation free energy, which is in good agreement
with simulation results [18] as shown below.

The remainder of this paper is organized as follows. In
Sec. II we define key quantities, the effective diameter d and
the self-energy u(r) per particle in the one-component charged
hard-sphere system. Section III summarizes our main results
through providing a set of self-consistent equations, an equiv-
alent to the inhomogeneous OZ equation, that determines the
self-energy. In Sec. IV the validity of the self-energy formu-
lated in this paper is assessed by seeing correspondences with
simulation results of electrostatic contribution to colloidal
solvation free energy, as well as with the previous formulation.
In Sec. V we describe the detailed derivation of u(r) in terms
of the self-energy-modified Boltzmann distribution and the
Gibbs-Bogoliubov variational method. Section VI reviews the
structural outline of our hybrid theory based on both the
variational Gaussian theory and the liquid state theory, and
of the relation with simulation results. Finally, concluding
remarks are made in Sec. VII.

II. THE ONE-COMPONENT CHARGED HARD SPHERE
(OCCH) SYSTEM

We consider the one-component charged hard-sphere
(OCCH) system with its density slowly varying due to the
presence of an external field. In the highly charged systems of
the OCCH, it is necessary to introduce the effective diameter
d of charged spheres with its actual diameter σ and valence
q � 1. We also apply the Gaussian smearing of each charged
sphere to the highly charged systems using d , which corre-
sponds to a method of regularization that makes an agreement
with simulation results as seen below.

A. Effective diameter d

In the OCCH system, the bare interaction potential v(r) be-
tween charged spheres consists of two parts: v(r) = vh(r) +
ve(r) with vh(r) and ve(r) denoting the hard-core and elec-
trostatic interaction potentials. The hard-core interaction po-
tential vh(r) is expressed as vh(r) = ∞ (r � σ ) and vh(r) =
0 (r > σ ) using the sphere diameter σ as well as the distance
r ≡ |r| between charged spheres. On the other hand, the
bare electrostatic potential ve(r), representing the strength
of interactions between charged spheres of valence q in a
dielectric medium of permittivity ε, is written as ve(r) =
q2lB/r where lB = e2/(εkBT ) denotes the Bjerrum length, the
length at which the bare electrostatic interaction between two
monovalent ions is exactly kBT .

The effective diameter d is defined by

g(r) = 0 (r � d ), (1)

using the pair correlation function g(r) with distance r ≡ |r|,
and varies according to the Coulomb systems considered. In
the case of highly charged spheres, we can identify d with
the Wigner-Seitz radius: d is determined using an electrical
neutrality condition such that

4π

3
ρd3 = q, (2)

with ρ being the background charge density. Note that the
condition d > σ is, strictly speaking, to be imposed on the
effective diameter d so that d may be equated with the
Wigner-Seitz radius [36]; otherwise, it is appropriate to take d
as a constant (i.e., d = σ ) because hard-core repulsion given
by vh(r) leads to g(r) = 0 (r � σ ) in the OCCH system.

B. Self-energy u(r)

Let G0(r − r′) and G(r − r′) be free and dressed propa-
gators that satisfy the Poisson equation and a generalized set
of the DH equations, respectively, for weakly charged small
ions (i.e., q ∼ 1 and σ → 0). A variety of theoretical studies
on ionic solvation has demonstrated that the self-energy de-
fined by the difference between two propagators is equal to
the ionic solvation free energy [13–17]. Without considering
spatial dependence of dielectric permittivity (i.e., ε = const),
electrostatic contribution to the self-energy u(r) of a charged
sphere depends on the position r due to the inhomogeneity of
the present system and is simply given by [13–17]

u(r) = 1
2 lim

r→r′
{G(r − r′) − G0(r − r′)}, (3)

which is similar to the conventional DH theory. It is noted here
that all energy values, including the interaction potential and
free energy as well as the above self-energy, are given in the
kBT unit.

We further introduce the Gaussian distribution function,
fd (r) = e−(αr)2/d2

/{π3/2(d/α)3}, that will appear in the re-
sulting equations with respect to G0(r − r′) and G(r − r′).
As will be described after Eqs. (7) and (12), it has been
demonstrated [13,18,27,30–33,36] that the Gaussian smearing
of each charged sphere due to fd (r) allows us to investigate
strongly coupled Coulomb systems. In what follows, we adopt
α = 1.08, one of the values proposed by the previous theories
[13,18,27,30–33,36], because the present choice of α = 1.08
has been found to provide the precise internal energy in
the strong coupling regime of the uniform one-component
plasma [30], as will be detailed after Eq. (7). In addition,
the Gaussian smearing includes the description of weakly
charged point particles (i.e., q ∼ 1 and σ → 0) because the
distribution function fd (r) is reduced to the Dirac δ func-
tion: limd→0 fd (r − r′) = δ(r − r′), thereby recovering the
DH equation previously generalized [11–26] as confirmed
below.

III. OUR RESULTS

A. The Debye-Hückel (DH) equations generalized using the
Gaussian distribution function fd (r)

The generalized DH equation set, which will be de-
rived below, consists of three equations. The free propagator
G0(r − r′) satisfies

∇2G0(r − r′) = −4π lBq2 fd (r − r′). (4)

Equation (4) is reduced to the Poisson equation of point
charges due to fd (r − r′) → δ(r − r′).

The dressed propagator G(r − r′), on the other hand, obeys

∇2G(r − r′) = −4π lBq2[ fd (r − r′) − ρ∗(r)] (5)
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for |r − r′| � d and

∇2G(r − r′) =
∫

dr′′ fd (r − r′′)κ2(r′′)G(r′′ − r′) (6)

for |r − r′| > d . In Eq. (6), a spatially dependent screening
length, κ−1(r) = {4π lBq2ρ∗(r)}−1/2, has been introduced us-
ing an inhomogeneous density distribution ρ∗(r) specified
below. The second term [4π lBq2ρ∗(r)] on the right-hand side
(RHS) of Eq. (5) corresponds to the hole term [20,22,24,25]
representing the exclusion area of |r − r′| � d . In the limit of
limd→0 fd (r − r′) = δ(r − r′), we find that Eq. (6) is reduced
to a generalized DH equation previously used [11–26].

Combination of the self-energy, expressed by Eq. (3) and
a generalized set of Eqs. (4) to (6), forms the basis of our
results. The results obtained in this study will be compared
with previous RPA theories [13–18,20,21] in more detail, after
clarifying the connection with the OZ equation.

B. Connection with the liquid state theory

We focus on the typical correlation functions of concern
in the liquid state theory [1]: the direct correlation function
(DCF), c(r − r′; ρ∗), and the total correlation function, h(r −
r′; ρ∗) = g(r − r′; ρ∗) − 1, as functions of an inhomogeneous
density distribution ρ∗. These correlation functions are related
to each other through the OZ equation. We will verify below
that the above set of Eqs. (4) to (6) were obtained from
combining the OZ equation and the results of G0(r − r′) =
−c(r − r′; ρ∗) and G(r − r′) = −h(r − r′; ρ∗).

Before proceeding to the OZ equation, we need to select
the concrete form of the DCF among various expressions so
that the strongly coupled OCCH system [4,5,31–38] may be
described precisely. Hence, we have adopted the following
DCF:

−c(r; ρ∗) =
∫

dr′ lBq2

|r − r′| fd (r′) = lBq2

d
ṽL(x), (7)

which has been demonstrated to be available not only for
the one-component plasma but also for the OCCH system
in the strong coupling regime of q2lB/σ � 1 to satisfy d >

σ [4,5,30–38]; otherwise, we need to decompose the DCF
into the hard-core and Coulomb contributions [1]. In Eq. (7)
the bare electrostatic potential (∼1/r) is modified using the
Gaussian distribution function fd (r), and the second equation
of Eq. (7) introduces the function of ṽL(x) = erf (αx)/x (x ≡
r/d ) with which the long-range part of the Coulomb interac-
tion potential is represented as (q2lB/d )̃vL(x), and we have
set α = 1.08 so that we may use a well-known form of the
DCF relevant at strong coupling [30]. It is to be noted that the
internal energy of the one-component plasma, obtained using
this DCF, or Eq. (7), exhibits an error of less than 0.8% in the
strong coupling regime [30,38].

With the use of the above expression (7), the self-energy
u(r) given by Eq. (3) reads

u(r) = 1

2
{−h(0; ρ∗) + c(0; ρ∗)} = 1

2

[
1 − lBq2

d
ṽL(0)

]

≈ 0.5 − 0.61
lBq2

d
, (8)

using h(0) = −1 and ṽL(0) ≈ 1.22. The simple form in the
second line of Eq. (8) provides a quadratic function of q with
d treated as a fitting parameter, which will be fitted to the
simulation results of electrostatic contribution to colloidal sol-
vation free energy; consequently, we will obtain an optimized
diameter d∗ that can be identified with the Wigner-Seitz radius
in a quantitative sense.

Let us now apply the Laplacian operator to both c(r − r′)
and h(r − r′) using the above expression (7) as well as the OZ
equation:

∇2c(r − r′) = −∇2G0(r − r′) = 4π lB fd (r − r′), (9)

∇2h(r − r′) = −∇2G(r − r′),

= ∇2c(r − r′)

+
∫

dr′′∇2c(r − r′′)ρ∗(r′′)h(r′′ − r′), (10)

where the last equality of Eq. (10) is due to the OZ equation.
Equations (7) and (9) reveal the reason why the Gaussian

smearing expressed by fd (r − r′) emerges in Eq. (4) with
respect to the free propagator G0. As for h(r − r′) in Eq. (10),
on the other hand, we need to further impose the condition,
h(r) = −1 (r � d ), on Eq. (10) by definition of d , with which
Eqs. (7), (9), and (10) yield our generalized DH equation set
of Eqs. (5) and (6) because of fd (r − r′) ≈ 0 (r > d ).

IV. VALIDITY ASSESSMENT OF OUR RESULTS

So far, we have provided a formal list of our results:
the above concrete form (8) of the self-energy in addi-
tion to the basic equations represented by Eqs. (3) to (6).
The validity of our results will be assessed below, through
quantitative comparison with previous simulation results [18]
focusing only on electrostatic contribution to the colloidal
solvation free energy; formal comparisons between our and
previous treatments of strongly coupled Coulomb systems
[13–18,27,34–39] are also given below.

A. Correspondence with the previous forms of the self-energy
[13–18,27,34–39]

We can gain another physical insight into the self-energy,
other than the understanding from the general form (3), by
rewriting the expression (8) of the self-energy as

u(r) = 1

2

∫∫
dr′ dr′′ f√2d (r − r′) f√2d (r − r′′)

×
{

G(0) − lBq2

|r′ − r′′|
}
, (11)

where another Gaussian distribution function f√2d (r) =
e−(αr)2/2d2

/{π3/2(
√

2d/α)3} has been introduced and the con-
stancy of G(0) = −h(0) = 1 has also been used. Equation
(11) implies that the self-energy is evaluated as the interaction
energy difference due to effective and bare interactions be-
tween Gaussian distributed charges inside an Onsager ball (the
optimally smeared charge in an object) [27,34–39]; inciden-
tally, the Onsager ball model (or the ionic sphere model) with
Gaussian smearing has been demonstrated to yield the internal
energy in the strong coupling limit [36], which is close to the
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FIG. 1. Electrostatic contribution to the solvation free energy,
	Ge, as a function of the colloid charge q. Red circles indicate
simulation results [18], and the solid line corresponds to the best fit
of Eq. (8) to these results where the effective diameter is optimized
to be d∗ = 5 nm.

accurate lower bound, or the Lieb-Narnhofer bound [27,34–
39].

Meanwhile, the self-energy given by Eq. (3) has the same
form as that previously used in the field-theoretic formulations
[13-18], except for both the absence of the hole term on the
RHS of Eq. (5) and the use of the Dirac δ function instead
of fd (r) in Eqs. (4) to (6). Equation (11) makes clear the
difference between ours and the previous form of the self-
energy: we need to plug α = √

π into f√2d (r) and to replace
G(0) by G(r′ − r′′) in Eq. (11) for recovering the self-energy
used in this previous approach [13].

B. Correspondence with simulation results [18] of colloidal
solvation free energy

Let 	Ge be electrostatic contribution to the solvation free
energy in the kBT unit due to the presence of a highly charged
colloid. In our formulation of the OCCH system, 	Ge is sim-
ply identified with u(r), the self-energy of a colloid, because
the spatial variance of the dielectric constant has been ignored
in this study, and the surrounding electrolyte of small ions
is simply regarded as a smeared background that maintains
electrical neutrality. We compare Eq. (8) with simulation
results of 	Ge that has been evaluated for a colloid (σ = 6 nm
and −110 � q < 0) surrounded by an aqueous electrolyte
[18]. Note that the Bjerrum length lB in water medium at room
temperature is approximately 0.7 nm, providing lBq2/σ > 102

in the range of −110 � q < −30. Hence, this q range is
selected.

It has been found from the simulation results [18] that
the quadratic dependence on q of not only 	Ge but also
the total solvation free energy holds over a wide range of q,
indicating that colloidal solvation is governed by electrostatic
interactions and is insensitive to atomic-scale details. Figure 1
shows the extracted results of this simulation [18] in the
range of −110 � q < −30. It follows from Eq. (8) that u ≈
0.5 − 0.43q2/d , which provides the best fit to the simulation
data using the optimized diameter of d∗ = 5 nm in Fig. 1. As

mentioned before, d∗ for highly charged hard spheres must
be equal to the Wigner-Seitz radius, or the minimum length to
satisfy electrical neutrality, by definition, so that the simplified
treatment of this colloidal system as an OCCH system can
be justified. Actually, the integrated charge per unit colloid
vanishes around d∗ [see Fig. 4(A) in Ref. [18]], according to
the previous result in the same simulation [18]; the thickness
of the electric double layer is 2 nm and is comparable to the
colloidal radius of 0.5σ = 3 nm though d∗ = 5 nm is slightly
shorter than σ = 6 nm.

This consistency of our approach with the simulation
results suggests that electrostatic contribution to colloidal
solvation free energy is ascribable to the self-energy of one
colloid as a constituent of the OCCH system. We therefore
need to see the essential contribution to the self-energy, going
back to Eq. (11). Obviously, the second term on the RHS of
Eq. (11) contributes to the negative self-energy, which can
be interpreted as follows: the insertion of a single colloid
causes to eliminate electrostatic interactions between smeared
colloidal charges that follow a Gaussian distribution over the
scale of a Wigner-Seitz cell inside which electrical neutrality
is maintained, and the formation of electric double layer (or
the positional rearrangement of counterions and coions) due
to the existence of a highly charged colloid is represented by
adjusting the Wigner-Seitz radius (i.e., d = d∗). Because of
the simplicity of both the physical picture and the energy form
(8), or Eq. (11), our approach to the evaluation of colloidal sol-
vation free energy is expected to complement other elaborate
theories, including the local molecular field theory [18,31–33]
where the existence of surrounding ions (counterions and
coions) is considered explicitly and a numerical integration
of its evaluation has reproduced the simulation result of 	Ge

precisely [18].

V. EQUILIBRIUM DENSITY DISTRIBUTION MODIFIED
BY THE SELF-ENERGY

A. Self-energy-modified Boltzmann distribution

We have determined the self-energy given by Eq. (3), or
Eq. (8), based on the following expression (13) [or Eq. (20)]
of the equilibrium density ρeq. Here we outline the derivation
of ρeq, in addition to ρ∗.

As detailed in the Appendix, our variational approach is
based on the Gibbs-Bogoliubov inequality regarding the lower
bound of the free energy [1,27–29] for an inhomogeneous
system whose mean-field density ρ∗(r) is given by

ρ∗(r) = z exp

{
−ψ (r) − c(0)

2

}
,

ψ (r) = J (r) −
∫

dr′ρ∗(r′)c(r − r′), (12)

with z denoting the fugacity and J (r) an external field, which
is created by a fixed charge such as a charged wall, for
instance. Equation (12) corresponds to a modified Poisson-
Boltzmann equation in that the bare Coulomb interaction
potential v(r) is replaced by minus the DCF or the long-range
part of the Coulomb interaction as mentioned above [see also
Eq. (7)] [18,29,31–33,36]. It has been demonstrated that this
type of the modified Poisson-Botzmann equation, or the above
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local molecular field theory [18,31–33], reproduces well the
simulations results in strongly coupled Coulomb systems
including the OCCH system and inhomogeneous systems of
counterions dissociated from macroions [18,31–33].

In the Gaussian approximation of the lower bound free
energy regarding density fluctuations around ρ∗, the opti-
mized (or maximized) lower bound is expressed using the
optimized interaction potential that is identified with −c (see
the Appendix). In other words, the actual grand potential F [v]
of the OCCH system can be approximated by F [−c] with the
use of the expression (7) regarding the DCF. The equilibrium
density distribution is thus obtained from the differentiation
of F [−c] with respect to an external field J (r), yielding (see
below for the detailed derivation):

ρeq(r) = ρ∗(r) + ρ∗(r)

2
h(0; ρ∗)

≈ z exp

[
−ψ (r) − 1

2
{−h(0; ρ∗) + c(0; ρ∗)}

]
, (13)

where we have used the approximation, 1 + h/2 ≈ eh/2, in the
second line of the above equation. It follows from Eq. (13) that
the self-energy given by (8) has been proved.

B. Detailed derivation of Eq. (13)

The maximum of the grand potential F [−c] given by
the optimized mimic interaction potential −c(r) consists of
three parts: F [−c] = U [ρ∗] − T S[ρ∗] + L[ρ∗] where U [ρ∗]
represents the interaction energy term in the mean-field

approximation, −T S[ρ∗] is the ideal entropy term, and L[ρ∗]
is the logarithmic correction term. These functionals read,
respectively,

U [ρ∗] = −1

2

∫∫
drdr′ρ∗(r)ρ∗(r′)c(r − r′; ρ∗)

+
∫

dr ρ∗(r)

{
c(0; ρ∗)

2
+ J (r) − ln z

}
− Ub, (14)

− T S[ρ∗] =
∫

dr{ρ∗(r) ln ρ∗(r) − ρ∗(r)}, (15)

L[ρ∗] = 1

2
ln det{δ(r − r′) − ρ∗(r)c(r − r′; ρ∗)}, (16)

where Ub = (ρ2/2)
∫∫

dr dr′vc(r − r′), the last term on the
RHS of Eq. (14), arises from electrostatic interactions due
to the presence of smeared background charges. Incidentally,
it has also been found based on an ionic sphere model (the
Onsager ball theory [34,36,39]) for uniform fluids that we
can obtain the same functionals as the above expressions with
setting that α = 1.1, which is close to our choice of α = 1.08,
from optimizing the lower bound of the internal energy with
respect to the effective diameter d [36], so that the internal
energy may yield a similar value to the Lieb-Narnhofer bound,
the lower bound in the strong coupling regime [27,34–39].

Let 〈ρ̂(x)〉 be the averaged distribution of an instantaneous
density ρ̂(r) = ∑N

i=1 δ(r − ri ), that is obtained from differen-
tiation of F [v] with respect to an external field J (r): 〈ρ̂(x)〉 =
δF/δJ , which has been referred to as the equilibrium density
ρeq(r) [1,6].

Considering the ρ dependence of the DCF c(r − r′; ρ∗),
we have

δ

δρ(r)
(U [ρ] − T S[ρ])

∣∣∣∣
ρ=ρ∗

= ρ∗(r)

2

{
δc(0)

δρ
−

∫
|r−r′ |�d

dr′ρ∗(r′)
δc(r − r′)

δρ(r)

}
, (17)

where use has been made of the approximation δc/δρ ≈ δv/δρ = 0 (|r − r′| > d ). Furthermore, the functional differentiation
of the additional logarithmic term L[ρ] with respect to ρ is transformed to

2δL[ρ]

δρ

∣∣∣∣
ρ=ρ∗

=
∫

dr ′{δ(r − r′) + ρ∗(r′)h(r − r′)
}{−c(r − r′) − ρ∗(r)

δc(r − r′)
δρ(r)

}

= −
{

c(0) +
∫

dr′ ρ∗(r′)h(r − r′)c(r − r′)
}

−
{
ρ∗(r)

δc(0)

δρ
+ ρ∗(r)

∫
dr′ ρ∗(r′)h(r − r′)

δc(r − r′)
δρ(r)

}

≈ −
{

c(0) +
∫

dr′ ρ∗(r′)h(r − r′)c(r − r′)
}

− ρ∗(r)

{
δc(0)

δρ
−

∫
|r−r′ |�d

dr′ ρ∗(r′)
δc(r − r′)

δρ(r)

}

= −h(0) − ρ∗(r)

{
δc(0)

δρ
−

∫
|r−r′ |�d

dr′ ρ∗(r′)
δc(r − r′)

δρ(r)

}
, (18)

where we have used the approximation δc/δρ ≈ δv/δρ =
0 (|r − r′| > d ) in the third equality and the OZ equation in
the last equality.

Combining Eqs. (14) to (18), we arrive at the result of
Eq. (13):

ρeq(r) = δF [−c]

δJ
= ρ∗(r)

δJ (r)

δJ (r)
+ δρ∗(r)

δJ (r)

δL[ρ∗]

δρ∗

= ρ∗(r) + ρ∗(r)

2
h(0), (19)

due to the cancellation of the terms including δc/δρ. In the
second line of the above equation, we have also used the
relation δρ∗/δJ = −ρ∗.

C. Comparison with previous RPA formulations [13–21]

While Eqs. (3) to (6) are similar to previous ones particu-
larly in the limit of d → 0, it is evident from the expression
(8) that our formulations have advanced the knowledge of
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FIG. 2. The whole scheme of our theory (Boxes 1–3), and its comparison with simulation results (Box 4).

self-energy; actually, we have demonstrated that Eq. (8) is
available for simulation results of colloidal solvation. How-
ever, it is still helpful for revealing the underlying physics
of our results to observe, in detail, the difference between
previous RPA formulations [13–21] and our results given by
Eqs. (3), (5), (6), and (8).

Two types of theoretical formulations are compared with
our theory: density functional formulation of the RPA de-
veloped for inhomogeneous fluids [20,21], and variational
Gaussian approximation within a field-theoretical framework
[13–19]. The previous formulations and proposed formulation
share the same theoretical frame in the following two respects:
First, the equilibrium density distribution ρeq(r) obeys the
Boltzmann distribution that is modified by the self-energy
u(r):

ρeq(r) = z e−ψ (r)−u(r), (20)

where the potential field ψ (r) is determined in a self-
consistent manner. Second, the self-energy u(r) is evaluated
using a kind of generalized DH equations since all of the the-
ories, including the proposed formulation, take the Gaussian
approximation.

A similar set of Eqs. (3), (4), (5), (6), and (13) has been de-
veloped through an alternative formulation to ours; however,
the interaction potential −c(r) described by the DCF in our
equation set is replaced by the bare potential v(r), according
to the inhomogeneous RPA [20,21]. It follows that additional
manipulations are required for treating various systems of
harshly repulsive particles such as hard spheres, and that the
spatial dependence in the self-energy represented by Eq. (8) is

ascribed solely to that of the total correlation function h(0; ρ∗)
at zero separation, due to the spatial invariance of v(0) unless
the dielectric permittivity spatially varies.

VI. THE WHOLE SCHEME OF OUR THEORY

In Fig. 2 four main boxes are connected with each other
through the self-energy u(r) and its associated equilibrium
density ρeq(r), illustrating the whole scheme of our hybrid
framework based on both the variational Gaussian theory and
the liquid state theory, and its comparison with simulation
results: (1) the equilibrium density ρeq [Eq. (13)] obtained
from the approximate free energy F [−c] as a functional
of mean-field density ρ∗ given by Eq. (12), (2) the self-
energy-modified Boltzmann distribution of ρeq [Eq. (13)] that
is expressed using the total and direct correlation functions
[h(0; ρ∗) and c(0; ρ∗)], (3) the generalized Debye-Hückel
theory in terms of the self-energy [Eq. (3)] that is determined
by solving a set of self-consistent equations [the generalized
Debye-Hückel equation set given by Eqs. (4) to (6)], and (4)
the effective diameter d∗ evaluated from the new form of
the self-energy fitted to the simulation results of electrostatic
contribution to colloidal solvation free energy.

The whole scheme of our theory is summarized in Box 1
to Box 3 where our formulations are reviewed in the opposite
direction to that of the above sections.

Box 1—The main aim in Box 1 is to provide the equi-
librium density ρeq, given by Eq. (13), that is related to
the mean-field density ρ∗ as well as the approximate free
energy functional F [−c] = U [ρ∗] − T S[ρ∗] + L[ρ∗]. The
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approximate density functional of ρ∗ is denoted by F [−c]
because the interaction energy U [ρ∗] is described by the
direct correlation function −c(r) as the optimized interaction
potential. The remaining contributions of F [−c] consist of
two parts: the ideal entropy term −T S[ρ∗] and the logarithmic
correction term L[ρ∗] due to the Gaussian approximation of
fluctuating density around ρ∗. In addition, we give ρ∗ that is
determined by a self-consistent field equation (12), which has
been referred to as the modified Poisson-Boltzmann equation
(see also the inner box of Box 1) [18,31–33]. This equation is
modified from the original Poisson-Boltzmann equation, not
only in that the self-energy −c(0)/2 is added to the exponent
of the Boltzmann distribution, but also in that the original
interaction potential (vc(r) ∼ 1/r) is replaced by minus the
DCF −c(r), the long-range part of vc(r).

Box 2—The hub box in Fig. 2 is Box 2, where we can see
how the main result in this study is derived in connection
with Box 1, as well as what it yields in connection with
[Box 3] and Box 4. The expression (19) written in Box 1 is
approximated by the Boltzmann distribution of ρeq as given
by Eq. (13). Accordingly, we can verify the expression (8) of
the self-energy, which is written in the inner box of Box 2.

The self-energy in Box 2, on the other hand, is rewritten in
more tractable forms that appear in Box 3 and Box 4. While
Eq. (3) given in Box 3 clarifies the theoretical relationship
between our result and the generalized Debye-Hückel formu-
lation, a simple form of the self-energy given in Box 4 is used
for fitting of simulation results.

Box 3—In Box 3 we can see that the self-energy expressed
as Eq. (8) is reduced to the conventional form (3) when re-
garding the difference between the total and direct correlation
functions as that between dressed and free propagators (G
and G0). Correspondingly, we can find that the present set of
generalized DH equations given by Eqs. (4) to (6) is ascribed
to both the inhomogeneous OZ equation and the Gaussian
charge smearing that yields the DCF relevant at strong cou-
pling; in the limit of limd→0 fd (r) = δ(r), the generalized DH
equations previously proposed [11–26] are recovered.

Box 4—Equation (8), or the expression in the inner box
of Box 4, reveals the simple form of the self-energy that is
a quadratic function of q. As written in [Box 4], ṽL(0) and
lB has been found: the DCF given by Eq. (7) provides that
ṽL(0) = 1.22, and the Bjerrum length lB in water medium at
room temperature is evaluated to be 0.7 nm. Therefore, we
obtain the effective diameter d∗ from fitting the quadratic self-
energy to the simulation results [18] regarding the electrostatic
solvation energy of unit colloid as a function of the valence
q. The result is that d∗ = 5 nm, which we identify with the
Wigner-Seitz radius. Since the actual radius of a colloid is
3 nm in the present simulation [18], the difference between
the Wigner-Seitz and actual radii (i.e., d∗ − 0.5σ ) provides
the electric double layer thickness of 2 nm, which is in
good agreement with simulation results [18] in terms of the
integrated charge of unit colloid.

VII. CONCLUDING REMARKS

Thus, we have obtained the self-energy-modified Boltz-
mann distribution of equilibrium density by extending
the variational field theory [27–29] to inhomogeneous

one-component fluids. The present self-energy is simply given
by the difference between h(0; ρ∗) and c(0; ρ∗), due to which
the knowledge of the liquid state theory can be directly
utilized. The utilization of the liquid state theory naturally
results in the validation of the Gaussian smearing of each
charged sphere, thereby providing Eq. (8), which is consistent
with the simulation results in the strong coupling regime. It
also follows that a rephrasing of the conventional OZ equation
leads to a natural extension of previously generalized DH
equation [13–26] that has considered the spatial dependence
of the screening length as well as the exclusion area to
which the other ions are impenetrable. Despite the intimate
connection with the liquid state theory, however, there is
also a difference that the approximate grand potential F [−c]
is a functional of not the equilibrium density ρeq but the
mean-field density ρ∗, though the resulting functional form
appears quite similar to the conventional density functional
theory [6,7]. It is straightforward to extend our formulation
to multicomponent systems; therefore, it would be useful
to apply our self-consistent field theory not only to more
realistic soft matter systems such as colloids immersed in
various electrolytes, but also to soft-core systems including
polyelectrolyte solutions where the condition, h(0 ρ∗) �= −1,
is not satisfied automatically [17,20,21].

APPENDIX: THE GIBBS-BOGOLIUBOV VARIATIONAL
METHOD: LOWER BOUND APPROACH

The Gibbs-Bogoliubov inequality regarding the lower
bound [1,27–29] forms the basis of our formulations. Let
v(r) and w(r) be the bare interaction potential and a mimic
interaction potential, respectively. The actual grand potential
F [v] has a lower bound, F [w] + 	U [w, g], that depends on
both a mimic interaction potential w and the pair distribution
function g of an actual system, instead of a reference system:

F [w] + 	U [w, g] � F [v],

	U [w, g] = 1

2

∫∫
dr dr′ρ∗(r)ρ∗(r′)g(r − r′)

×{v(r − r′) − w(r − r′)}, (A1)

where the interaction energy difference 	U [w, g] corre-
sponds to a correction term to a variational grand potential
F [w], and also the present pair correlation function g(r) rep-
resents density-density correlations due to density fluctuations
not around the uniform density, as usual, but around the mean-
field density ρ∗(r) given by the Boltzmann distribution (12).

We can find the optimized (or maximized) lower bound by
using the functional differentiation:

δ

δw
(F [w] + 	U [w, g])|w=w∗ = 0. (A2)

As shown below, we perform the Gaussian approximation
of F [w] regarding density fluctuations around ρ∗, and the
optimized interaction potential w∗ determined by Eq. (A2) is
identified with −c as will be given in Eq. (A9).

It has been shown that the grand potential F [w] with an
arbitrary interaction potential w(r − r′) is expressed by the
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density functional form [27–29,40]

e−F [w] =
∫

Dρ e−Uw[ρ]+T S[ρ], (A3)

where S[ρ] has been given by Eq. (15), and the functional
form of Uw is the same as Eq. (14) if only the DCF is replaced
by −w:

Uw[ρ] = 1

2

∫∫
dr dr′ρ(r)ρ(r′)w(r − r′)

+
∫

dr ρ(r)

{−w(0)

2
+ J (r) − ln z

}
− Ub, (A4)

− T S[ρ] =
∫

dr{ρ(r) ln ρ(r) − ρ(r)}. (A5)

The saddle-point equation,

δ

δρ(r)
(Uw[ρ] − T S[ρ])|ρ=ρ∗ = 0, (A6)

thus provides the mean-field density given by Eq. (12)
[27–29,40]. Performing the Gaussian approximation of
density fluctuations around ρ∗ in Eq. (A3), we have

F [w] = Uw[ρ∗] − T S[ρ∗] + L[ρ∗]. (A7)

The variational functional F [w] + 	U [w, g] can be maxi-
mized at the optimized interaction potential of w∗ (the mimic
interaction potential) that is determined by Eq. (A2). Plugging
Eq. (A1) and (A7) into the relation (A2), we have

h(r − r′) = −w∗(r − r′)

−
∫

dr′′ w∗(r − r′′)ρ∗(r′′)h(r′′ − r′), (A8)

which is nothing but the OZ equation for inhomogeneous
fluids (see Ref. [29] for the detailed derivation). Hence it has
been confirmed that the optimized potential w∗ is identified
with minus the DCF as mentioned above:

w∗(r − r′) = −c(r − r′; ρ∗), (A9)

where c(r − r′; ρ∗) depends on ρ∗ through the OZ equation
for inhomogeneous fluids.

It is to be noted that 	U [w∗ = −c, g] vanishes in the
mean spherical approximation where g(v + c) ≡ 0 [1]. We
have also ignored 	U [−c, g] even in the hypernetted chain
approximation; this corresponds to the neglect of the cor-
relation entropy difference between the mean spherical and
the hypernetted chain approximations (see Ref. [28] for the
details).
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