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Kinetics of contact processes under segregation
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The kinetics of contact processes are determined by the interplay among local mass transfer mechanisms,
spatial heterogeneity, and segregation. Determining the macroscopic behavior of a wide variety of phenomena
across the disciplines requires linking reaction times to the statistical properties of spatially fluctuating quantities.
We formulate the dynamics of advected agents interacting with segregated immobile components in terms of a
chemical continuous-time random walk. The inter-reaction times result from the first-passage times of mobile
species to and across reactive regions, and available immobile reactants undergo a restart procedure. Segregation
leads to memory effects and enhances the role of concentration fluctuations in the large-scale dynamics.
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I. INTRODUCTION

Mass-action reactions find applicability as population dy-
namics models of contact processes among agents, span-
ning biological processes [1], epidemiology [2], ecology [3],
quantum molecular dynamics [4], and chemical reactions
in geological media [5]. The large-scale dynamics of such
processes are determined by the interplay among local mech-
anisms, spatial heterogeneity, and segregation. Transport lim-
itations under segregation and spatial heterogeneity lead to
inter-reaction times which are related to the first encounter
time among reactants [6–10]. Broad reaction times result
in mesoscopic dynamical coupling between transport and
reaction due to memory effects [11,12]. In turn, the large-
scale behavior may involve nonclassical, fluctuation-driven
kinetics [13–15], broad reaction rate distributions [16], time-
dependent reaction rates [17], and time-nonlocal kinetics [12].
The concept of residence time and its role in reactive transport
have received much attention, in particular in hydrogeological
applications [18,19]. This has led to the formulation of large-
scale dynamics in terms of so-called stochastic-convective
streamtube models, where reactive transport in the presence
of physical and chemical heterogeneity is represented in terms
of an ensemble of streamtubes [20–23].

The classical picture for stochastic reactions, correspond-
ing to the Gillespie algorithm [24], assumes complete re-
actant mixing. It leads to exponential inter-reaction times
and predicts the classical mass-action rate laws for large
reactant numbers [25–27]. The recently proposed chemical
continuous-time random walk (chCTRW) framework allows
for more general inter-reaction times, leading to a broader
class of large-scale rate laws, including time-nonlocal kinet-
ics [28]. However, linking disorder properties, mass transfer,
and inter-reaction times, a fundamental step toward the under-
standing and quantification of the emergence of large-scale
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kinetics in the presence of spatial heterogeneity and reactant
segregation, remains in general an open problem.

This work develops this link for advective transport under
spatial chemical disorder. We consider segregated immobile
reactants, which react with mobile components. Inter-reaction
times relate directly to first-passage times (FPTs) of mobile
reactants to and across reactive regions. On encountering a
reactive region, mobile components come into contact with
the locally available reactants. As we will see, this corre-
sponds to a restart of the immobile reactants according to the
original resident copy numbers. Processes under restart have
received considerable attention in the context of chemical
reactions and in particular as a framework for optimizing
search strategies [29–32].

We derive a generalized master equation [33] for the
chemical kinetics using the chCTRW framework, which we
generalize to account for restart and parametrize in terms
of the heterogeneity. The corresponding large-scale kinetics
exhibit memory effects, and fluctuations about the average
concentration play a role at large scales.

II. MODEL

We consider mobile reactants advected along separate tra-
jectories. Advective velocity V is constant in each trajectory
and independent and identically distributed according to a
probability density function (PDF) ξ (·) across trajectories.
Additional reactants are confined to certain regions, see Fig. 1.
We term these reactants immobile and these regions reactive.
The latter are treated as well-mixed batch reactors, such
that the chemical dynamics within proceed according to the
classical Gillespie algorithm [24].

The length Lr of reactive regions is an independent and
identically distributed random variable distributed according
to the PDF ρr (·). The well-mixed assumption is difficult to
justify if ρr has infinite moments. Instead, we assume Lr

is characterized by a finite mean �r , and for simplicity we
set ρr (�) = e−�/�r /�r . Segregation of immobile reactants is
characterized by the PDF ρc(·) of nonreactive region lengths
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FIG. 1. Illustration of the model segregation structure. The velocity V of mobile species (proportional to black bar length) is constant
along each separate trajectory and distributed across trajectories. Mass evolves according to reaction in reactive regions (blue), interspersed
with nonreactive regions (yellow), both of distributed length.

Lc between reactive regions, which are also independent and
identically distributed. We distinguish the cases of mild seg-
regation, corresponding to finite inter-reactive-region mean
distance �c, and strong segregation, corresponding to infinite
mean distance, ρc(�) ≈ (�/�c)−1−β/[�c|�(−β )|] for � � �c,
where �(·) is the gamma function, �c is a characteristic
length, and 0 < β < 1 [34]. We assume in what follows that
mobile reactants begin within a reactive region to simplify the
exposition. The general case of start in an arbitrary region, as
illustrated in Fig. 1, can readily be treated in the framework
developed below by including an additional waiting time until
the first reaction, corresponding to the time to reach the first
reactive region.

The idealized model set forth here retains the key features
of segregation and will allow us to develop a quantitative
model of its impact on chemical reactions. We consider
in general a set of ms species S j , j = 1, . . . , ms, which
are subject to mr reactions,

∑ms
j=1 ri jS j →κi

∑ms
j=1 pi jS j , i =

1, . . . , mr . Each reaction is characterized by its stoichiometry,
with ri j (pi j) denoting the number of reactants (products) of
species j consumed (produced) by reaction i. Furthermore,
each reaction is associated with an intrinsic (microscopic)
reaction rate κi which fully determines its behavior under
well-mixed conditions. All reactions involve immobile re-
actants, so that no reaction occurs outside reactive regions.
The chemical state N(t ) describes the number of mobile and
immobile reactants of each species at time t . The net change
in chemical state due to reaction i is described by the stoi-
chiometry vectors si = pi − ri. Sub- or superscripts M, I de-
note quantities relating to mobile and immobile components,
respectively. For example, the chemical state is decomposed
into mobile and immobile components as N = (NM, NI ) and
the stoichiometry vectors as si = (sM

i , sI
i ). Throughout, we

denote the Laplace transform by a tilde, the Laplace variable
by λ, and ensemble averages (across trajectories) by angled
brackets. A vertical bar is used to denote conditioning.

We introduce also some key quantities governing the dy-
namics. The mean time spent in a reactive region at velocity
v is μ(v) = �r/v, so that 1/μ(v) is the probability per unit
time for mobile reactants to exit a given reactive region and
experience the delay induced by the subsequent nonreac-
tive region. Reactive patches are associated with a Damköh-
ler number Da(v) = μ(v)a(n)/n, where n are characteristic
copy numbers of each species (e.g., the initial state) and n
is an overall characteristic copy number (e.g., the average
of n across components or a component of interest). This

dimensionless number is the ratio of the characteristic trans-
port and reaction times in a single reactive region. Finally, the
ratio of characteristic nonreactive and reactive region lengths
is denoted by α = �c/�r .

III. QUALITATIVE DYNAMICS OF REACTION
UNDER SEGREGATION

In order to motivate the general theory developed below,
we first illustrate the impact of segregation on the large-
scale kinetics of the mobile-immobile degradation reaction
SM + SI →κ ∅, where SM is mobile and SI is immobile. We
consider both mild and strong segregation, specifically with
exponential and Lévy-stable [34] inter-reactive region lengths.
For simplicity, we set a fixed velocity V = v and a fixed
number of initial immobile components n0,I in each reactive
region.

We consider an instantaneous, point initial injection of
mobile components, and we simulate their average degra-
dation under segregation for large particle numbers. When
characteristic reactant numbers n → ∞, we may define con-
tinuous (number) concentrations C(t ) = N(t )/n. We take n
as the average initial number of reactants. The reaction in
reactive patches then proceeds according to the well-mixed
rate laws. For nM,I mobile or immobile particles under well-
mixed conditions, there are nMnI mobile-immobile particle
pairs available for reaction. The reaction between each pair
proceeds at the microscopic reaction rate κ . The reaction
between some pair thus proceeds at a rate a(n) = κnMnI . In
terms of concentrations, the well-mixed rate laws are thus
given by

dcwm
M,I (t )

dt
= −κCcwm

M (t )cwm
I (t ), (1)

where κC = nκ is a macroscopic reaction rate associated with
well-mixed concentration decay. The analytical solution of
this equation, along with details on the numerical simulations
under segregation, is given in Appendix A.

The solid lines in Fig. 2 show the ensemble-averaged
mobile concentrations cM (t ), normalized by the initial con-
centration c0,M , as a function of time t for different val-
ues of Damköhler number Da = κCμc0,I , where c0,I is the
initial immobile concentration in each reactive region. The
evolution of concentration presents qualitative differences in
the functional form of the decay with varying Damköhler
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FIG. 2. Temporal evolution of concentration under the full degradation reaction SM + SI →κ ∅ (solid lines) and the catalytic degradation
reaction SM + SI →κ SI (markers) for different values of Damköhler number Da. The initial conditions for mobile and immobile concen-
trations are c0,M = 4/3 and c0,I = 2/3. Fixed parameters are α = 2, v = 4, and κC = 2, and Da is set by varying �r . Concentrations are
averaged over 105 realizations. Left: Mild segregation, with exponentially distributed nonreactive region lengths. Right: Strong segregation,
with Lévy-stable-distributed nonreactive region lengths with exponent β = 0.7.

number. For mild segregation (left panel), the decay at low
Da is always exponential, but slower-than-exponential decay
is present for longer times as Da increases. Under strong
segregation (right panel), we observe power-law decay for all
finite Da, characterized by the exponent β associated with the
inter-reactive-region lengths. The solutions for a single well-
mixed patch, corresponding to the Da → ∞ limit, are also
shown. In this case, the concentration initially decays faster
than in the segregated systems. However, due to depletion
of the initial immobile concentration, which in this exam-
ple is lower than the initial mobile concentration, reaction
then slows down and the mobile concentration approaches
equilibrium.

The impact of segregation on reaction dynamics, illustrated
here for this simple degradation reaction, is in general due
to two factors. First, reaction is punctuated by times spent
in nonreactive regions, which leads to an effective reaction
slowdown. Second, mobile components react only with the
locally available immobile reactants in a given region. When
a reactive region is left and a subsequent one is entered,
there is a restart of available immobile reactants, according to
their initially available concentration. In order to highlight the
role of immobile reactant depletion and restart, the markers
in Fig. 2 show the evolution of mobile concentrations for
the catalytic degradation reaction SM + SI →κ SI , using the
same parameter values as before. In this case, the immobile
component acts as a catalyst, and it is thus neither consumed
nor subject to the effect of restart. For a single well-mixed
patch, in the Da → ∞ limit, the mobile species’ decay is then
purely exponential and always faster than under segregation.
However, as Da → 0, corresponding to negligible reaction
within each single region, the decay of mobile concentration
becomes identical under the two reactions.

IV. THEORY

In what follows, we will discuss and quantify the mech-
anisms discussed in the previous section. To this end, we
develop a general framework for arbitrary reaction dynamics
under spatial segregation.

A. Catalytic reactions

We start by examining the case where the immobile
components serve as catalysts, i.e., they participate in the
reactions but are not consumed or produced (sI

i = 0). We
further assume for the moment that the immobile reactants are
present in identical copy numbers in each reactive region. In
this case, the dynamics proceed identically with the classical
well-mixed scenario, except the periods of availability of
reactants are punctuated by waiting times due to segregation.
We proceed to find the chCTRW description of this system
in terms of a generalized master equation, starting from the
determination of the inter-reaction times.

1. Inter-reaction times

The lack of memory of the exponential distribution implies
that the distribution of distances to the end of reactive regions,
starting from any point within a reactive region, has the same
length distribution as the full regions [27]. Thus, it is sufficient
to study inter-reaction times starting at the beginning of
reactive regions.

Consider a given chemical state N(t ) = n and velocity V =
v. For advective transport, the FPT across reactive and con-
servative regions is given by the crossing time Lr,c/v. Thus,
the corresponding PDFs are given by ψr,c(t |v) = vρr,c(vt ).
Following chCTRW theory, we write the inter-reaction times
as τ (n, v) = τr (n) + τc(τr, v). The intrinsic reaction time τr

represents reaction in the absence of segregation. It depends
on the current chemical state and corresponds to time spent
in reactive regions, where reaction proceeds according to the
classical well-mixed theory. Let φr

i (t |n) dt represent the joint
probability that, in the absence of segregation, reaction 1 �
i � mr fires next and after a waiting time in [t, t + dt]. Then,
τr (n) has PDF φr (t |n) = ∑

i φ
r
i (t |n) (see Appendix B for a

brief overview of the well-mixed description). The additional
global delay τc is caused by segregation. It corresponds to
time spent in nonreactive regions, which is fully determined
by the current τr and does not depend further on the chem-
ical state. Specifically, a given time τr = tr corresponds to
fully traversing a certain number η(tr, v) of reactive regions,
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and τc(tr, v) = ∑η(tr ,v)
k=1 Lc,k/v, where the Lc,k are independent

and identically distributed according to ρc. For exponential
reactive lengths, η(tr, v) is Poisson-distributed, as shown in
Appendix C. Thus, segregation leads to a compound-Poisson
inter-reaction delay. According to Ref. [28], the full inter-
reaction time density is then related to the intrinsic inter-
reaction time density by

φ̃i(λ|n, v) = φ̃r
i [λ/K̃ (λ|v)|n, v], (2)

where

K̃ (λ|v) =
[

1 + 1 − ψ̃c(λ|v)

μ(v)λ

]−1

(3)

is the Laplace transform of a memory kernel, as we will see
shortly.

2. Generalized master equation

We first define the probabilities γi(n|n′) of reaction i yield-
ing the chemical state n, given the starting state n′. The change
in state is given by the stoichiometry vector si. Thus,

γi(n|n′) = δn,n′+si , (4)

where δ·,· is the Kronecker delta. According to the general
theory developed in Ref. [28], the generalized master equation
for the ensemble-averaged propagator of the chemical state,
given initial state n0 and velocity v, is then given by

∂ p(n, t |n0, v)

∂t
=

∑
n′�0

mr∑
i=1

∫ t

0
dt ′[γi(n|n′) − δn,n′]

× Mi(t − t ′|n′, v)p(n′, t ′|n0, v), (5)

where the Laplace transforms of the memory functions are
given in terms of the inter-reaction time densities as

M̃i(λ|n, v) = λφ̃i(λ|n, v)

1 − ∑mr
i=1 φ̃i(λ|n, v)

. (6)

Using Eq. (13) together with the well-mixed description, we
obtain

M̃i(λ|n, v) = K̃ (λ|v)ai(n), (7)

with ai(n) = κihi(n) and a(n) = ∑mr
i=1 ai(n), where the κi are

microscopic rate constants and the hi(n) encode the depen-
dency of the rates on the state. In the absence of segregation,
ψc(t ) = δ(t ). Equation (3) with ψ̃c(λ) = 1 leads to K̃ (λ|v) =
1, and therefore K (t |v) = δ(t ). This recovers the classical
chemical master equation [25]. We thus see that K plays
the role of a memory kernel describing reaction slowdown
due to segregation. Reactions under compound-Poisson delay,
and corresponding simulation techniques to solve the gen-
eralized master equation (5), are discussed in general terms
in Ref. [28]. Note that for catalytic reactions, sI

i = 0 implies
immobile copy numbers do not change, and it is sufficient to
consider the evolution of the mobile components.

As an example, consider the catalytic degradation re-
action introduced in Sec. III. We have h1(n) = nMnI , the
number of pairs of mobile–immobile particles, and a(n) =
a1(n) = κnMnI . The intrinsic waiting time density is given by
φr

1(t |n) = a(n) exp[a(n)t], and the single memory function is

M̃1(λ|n, v) = K̃ (λ|v)a(n). The stoichiometry vector is s1 =
(−1, 0). Thus, the master equation for the mobile components
becomes

∂ p(nM, t )

∂t
= −

∫ t

0
dt ′ K (t − t ′)[a(nM, n0,I )p(nM , t ′)

− a(nM + 1, n0,I )p(nM + 1, t ′)], (8)

where we have omitted the dependency on the initial condition
and v for notational brevity.

The ensemble-averaged probability of a given state at a
given time is in general obtained by averaging over veloc-
ities and initial conditions. Denote by γM (·|v) the initial
distribution of mobile components at injection and by γI (·|v)
the initial distribution of immobile reactant numbers across
reactive regions, given velocity v. The initial copy num-
ber distribution at the first reactive region is thus γ (n|v) =
γM (nM |v)γI (nI |v). For equal initial immobile component
copy numbers n0,I in each reactive patch, γI (n|v) = δn,n0,I .
The probability of finding the state N(t ) = n at time t is
p(n, t ) = 〈p[n, t |N0(V ),V ]〉, where for each V = v the initial
condition N0(v) is distributed according to γ (·|v). We note
also that the propagator contains all necessary information
to compute spatial quantities. Spatial distributions may be
obtained by multiplying the propagator by the probability that
mobile reactants are at position x at time t before averaging,
which, assuming mobile species start at x = 0 at t = 0, is
given here by the Dirac delta δ(x − V t ). Similarly, concen-
trations fluxes at a control plane at distance x as a function of
time t are obtained by multiplying by the FPT to distance x,
given here by δ(t − x/V ).

B. General reactions

We now study the general case where reactions may in-
volve net production or consumption of immobile components
and where different reactive regions may initially comprise
different copy numbers of immobile reactants. In this case,
as the mobile reactants reach each reactive region, they en-
counter the initial resident copy numbers. These are then
depleted or produced according to reaction. Once the mobile
components exit a given reactive region and arrive at the
subsequent one, they again encounter resident copy numbers
according to their initial distribution. This leads naturally to
the concept of restart of immobile components. Developing a
generalized master equation for these dynamics thus requires
generalizing the inter-reaction times to account for restart.

1. Inter-reaction times under restart

In order to make use of the techniques developed in
Ref. [28], we require that the dynamics be a Markov pro-
cess in reaction step. For exponential reactive region lengths,
whenever a reaction fires, the leftover reactive region length is
identically distributed with the full region length, as discussed
above. However, if the initial number of immobile reactants
depends on the reactive region length, then the number of
immobile reactants then gives information about the region
length, and the inter-reaction times are no longer independent
of past history. We assume here that this is not the case.
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Consider a given chemical state N(t ) = n, velocity V = v,
and lengths of a consecutive reactive-nonreactive region pair
Lr,c. The effect of restart may be treated as a special reaction,
which we number i = 0. It fires after a time Lr/v and leads to
restart of the immobile components after a time (Lr + Lc)/v.
The next reaction to fire is the one with the minimum inter-
reaction time, including restart. The inter-reaction time densi-
ties, given the chemical state, velocity, and region lengths, are
defined such that φi(t |n, v, Lr, Lc) dt is the joint probability of
reaction i firing and the inter-reaction time being in [t, t + dt].
Under restart, we write

φi(t |n, v, Lr, Lc) = bi(n, v, Lr )φ|i(t |n, v, Lr, Lc), (9)

where bi(n, v, Lr ) is the propensity of reaction i, i.e., the
probability that it fires next, and φ|i(·|n, v, Lr, Lc) is the
inter-reaction time PDF of reaction i given that it will fire
next. Restart occurs if the minimum reaction time is larger
than the restart time Lr/v. This happens with probability∫ ∞

Lr/v
dt φr (t |n) = exp[−a(n)Lr/v]. Otherwise, with proba-

bility 1 − exp[−a(n)Lr/v], the normal reaction with the min-
imum inter-reaction time fires. Thus,

bi(n, v, Lr ) =
{

e−a(n)Lr/v

[1 − e−a(n)Lr/v] ai (n)
a(n)

. (10)

Here and in what follows, the first case refers to i = 0 (restart)
and the second to 1 � i � mr (regular reactions). The inter-
reaction time PDFs must also be conditioned on t < Lr/v for
the regular reactions, and the waiting time associated with
restart is (Lr + Lc)/v, so that

φ|i(t |n, v, Lr, Lc) =
{

δ
(
t − Lr+Lc

v

)
a(n) exp[−a(n)t]

1−exp[−a(n)Lr/v] H
( Lr

v
− t

) , (11)

where H is the Heaviside step function. Thus, according to
Eq. (9),

φi(t |n, v, Lr, Lc) =
{

e−a(n)Lr/vδ
(
t − Lr+Lc

v

)
ai(n)e−a(n)t H

( Lr
v

− t
) . (12)

Defining φi(t |n, v) = 〈φi(t |n, v, Lr, Lc)〉, we find the Laplace
transforms

φ̃i(λ|n, v) =
{

ψ̃r[λ + a(n)|v]ψ̃c(λ|v)

ai(n) 1−ψ̃r [λ+a(n)|v]
λ+a(n)

. (13)

The inter-reaction times are thus fully determined by first-
passage properties together with the rates ai(n).

2. Generalized chemical master equation under restart

We turn to the generalized master equation incorporating
the effect of restart. The transition probabilities γi(n|n′) cor-
responding to the regular reactions remain given by Eq. (4),
as the effect of these reactions does not change. The effect
of the restart reaction, conditioned on a given velocity v, is
characterized by:

γ0(n|n′, v) = γI (nI |v)δnM ,n′
M
, (14)

meaning that mobile reactants remain unaffected, and immo-
bile copy numbers are redrawn from the initial distribution

as discussed above. As shown in detail in Appendix D, the
generalized master equation corresponding to the dynamics
under restart retains the same form as Eq. (5), with the mem-
ory functions again given in terms of the inter-reaction time
densities according to Eq. (6). However, sums over reactions
in both these equations now extend to i = 0, the reaction
describing restart, and the inter-reaction time densities are
given by Eq. (13). Direct computation shows that the modified
inter-reaction times lead to the same memory functions for
the regular reactions, as given by Eq. (7). Restart is associated
with the memory function

M0(n|n′, v) = K̃ (λ|v)ψ̃c(λ)/μ(v). (15)

These results follow from the fact that normal reactions pro-
ceed at rate ai(n) in reactive regions, whereas restart occurs
at rate 1/μ(v) and is associated with an additional delay
corresponding to traversing a nonreactive region. Realizations
of these dynamics may be simulated with recourse to a gener-
alized Gillespie algorithm under restart, which we outline in
Appendix E.

Consider as an example the full degradation of Sec. III,
with equal initial copy numbers of immobile components
n0,I in each reactive region. The stoichiometry vector is s1 =
(−1,−1) and γ0 = δnI ,n0,I δnM ,n′

M
. Similarly to Eq. (8) for the

catalytic degradation example, we find the master equation

∂ p(nM , nI , t )

∂t
= −

∫ t

0
dt ′K (t − t ′)[a(nM, nI )p(nM , nI , t ′)

− a(nM + 1, nI + 1)p(nM + 1, nI + 1, t ′)]

−
∫ t

0
dt ′ Kc(t − t ′)[a(nM, nI )p(nM , nI , t ′)

− a(nM , n0,I )p(nM , n0,I , t ′)], (16)

where the memory kernel associated with restart is given by
the convolution Kc(t ) = ∫ t

0 dt ′ K (t − t ′)ρc(t ′), and we have
again omitted dependencies on the initial condition and v.

C. Restart and catalytic reactions

Consider equal initial immobile copy numbers in all reac-
tive regions as in Sec. IV A. Since for catalytic reactions sI

i =
0, immobile copy numbers do not change due to either restart
or regular reactions, the i = 0 term in the master equation is
null, and we recover catalytic dynamics, Eq. (5).

The catalytic description also plays a role as the limiting
behavior for slow reaction. For small Damköhler number,
Da 	 1, the dynamics are transport dominated at the scale of
a single region, meaning that many reactive regions must be
visited before appreciable change due to reaction can occur.
For fixed initial immobile copy numbers, the reset mechanism
ensures there is no appreciable change in immobile copy
numbers. The catalytic description is then valid for arbitrary
reactions, and the subordination formulation of Ref. [28]
holds. Note also that under these conditions, for arbitrary
initial copy numbers, the dynamics are independent of the
specific reactive region length distribution as long as it has
a finite mean, see Appendix C.
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D. Large-scale kinetics

Next, we obtain the large-scale description correspond-
ing to the mesoscopic master equations developed in the
previous sections. In the large-particle-number limit, we
work in terms of concentrations C(t ) = N(t )/n as introduced
in Sec. III. Correspondingly, we define aC

i (c) = κC
i hC

i (c),
aC (c) = ∑mr

i=1 aC
i (c), with κC

i = n
∑ms

j=1 ri j−1κi/�
ms
j=1ri j! as the

macroscopic rate constants and hC
i (c) = ∏ms

j=1 c
ri j

j . Note that
these quantities are fully defined in terms of their microscopic
equivalents. For example, considering again the degradation
reaction of Sec. III, we have κC = nκ and hC

1 (n) = cMcI ,
from which aC (c) = aC

1 (c) = κCcAcB, the usual rate in the
well-mixed rate laws for concentration. The average initial
numbers of immobile components for velocity v are denoted
by c0,I (v) and the average concentrations for initial condition
c0 and velocity v by c(t |c0, v) = 〈C(t )|c0, v〉.

1. Dynamical equations

In Appendix F, we show that the ensemble-averaged con-
centrations obey the integro-differential dynamical equations

dcM (t |c0, v)

dt
=

∫ t

0
dt ′K (t − t ′|v)

mr∑
i=1

sM
i

〈
aC

i [C(t ′)]|c0, v
〉
,

dcI (t |c0, v)

dt
=

mr∑
i=1

sI
i

〈
aC

i [C(t )]|c0, v
〉

−μ(v)−1[cI (t |c0, v) − c0,I (v)]. (17)

Segregation induces memory effects in the form of a convolu-
tion with a memory kernel for the mobile components. For the
immobile components, restart leads to a mean-reverting forc-
ing term. For mild segregation, the memory is short term, and
the late-time rate equations are time local, whereas memory
is long range under strong segregation and the late-time rate
equations involve nonlocal fractional derivatives [35].

In the classical rate laws, fluctuations vanish in
the large-particle-number limit and 〈aC

i [C(t )]|c0, v〉 =
aC

i [c(t |c0, v)] [27]. Here this is not the case. Under strong
segregation, realizations of the dynamics break ergodicity
weakly due to large fluctuations in the inter-reaction
times, leading to persistent fluctuations about the average
concentrations [28]. Under mild segregation, short-term
memory effects coupled with the discontinuous changes
in immobile concentrations caused by restart also prevent
the fluctuations from vanishing. While equations for higher
moments of the concentration can be found by appropriate
averaging of the generalized master equation (5), these
depend on still higher moments, and closed rate equations
for the average components do not exist in general. In
other words, fluctuations play an important role in the mean
behavior, analogously to Ovchinnikov-Zeldovich segregation
in a bimolecular annihilation reaction between diffusing
components [13,36]. A common approach is to employ
moment closure approximations [37,38], a technique that
must be adapted to specific reactions and which we do not
explore here. We employ stochastic algorithms, outlined
in Appendix E, to numerically solve for the exact average
concentration. We note here that the mean-reverting term

in the large-scale description of immobile concentration
depends only on average concentrations. Thus, the catalytic
description (for catalytic reactions or the low-Damköhler
limit of general reactions, see Secs. IV A and IV C) holds at
the large scale even if initial immobile copy numbers vary
across reactive regions.

2. Asymptotics

We now examine the asymptotic behavior of the large-
scale kinetics. For mild segregation, under which the inter-
reactive-region lengths have a mean, the Laplace transform
of the corresponding FPT is approximated by ψ̃c(λ|v) ≈
1 − αμ(v)λ for λ 	 1/[αμ(v)], corresponding to large times
compared to the mean time to traverse a nonreactive region.
To leading order in λ 	 1/[(1 + α)μ(v)] (corresponding to
large times compared to the mean time to traverse a reactive
and a nonreactive region),

M̃i(λ|n, v) = 1

1 + α

{
1/μ(v)
ai(n) . (18)

This leads to time-local equations for the mobile components
at late times,

dcM (t |c0, v)

dt
= (1+ α)μ(v)2

mr∑
i=1

sM
i

〈
aC

i [C(t )]|c0, v
〉
. (19)

For strong segregation, under which the inter-reactive re-
gion lengths do not have a mean, we have instead the small-λ
expansion ψ̃c(λ|v) ≈ 1 − [αμ(v)λ]β , 0 < β < 1. To leading
order in λ 	 1/[(1 + α)μ(v)],

M̃i(λ|n, v) = μ(v)λ[αμ(v)λ]−β

{
1/μ(v)
ai(n) , (20)

yielding, at late times, the time-nonlocal equations

dβcM (t |c0, v)

dtβ
= [αμ(v)]βμ(v)

mr∑
i=1

sM
i

〈
aC

i [C(t )]|c0, v
〉
,

(21)
where dβ/dtβ denotes the Riemann-Liouville fractional
derivative of order β [35].

V. LARGE-SCALE DYNAMICS OF REACTION UNDER
SEGREGATION

In order to illustrate the main features of the theoretical de-
velopments in the context of a particular reaction, let us return
to the large-scale dynamics of mobile concentration for the
degradation reaction SM + SI →κ ∅ introduced in Sec. III.
As the Damköhler number Da(v) = κCμ(v)c0,I (v) → 0, the
changes in immobile concentration due to reaction in each
region become arbitrarily small, so that 〈CICM〉 ≈ c0,I (v)〈CM〉
at all times. Thus, for small Da, the late-time rate equation for
the mobile component under mild segregation is, according to
Eq. (19),

dcM (t |c0, v)

dt
= − Da(v)

(1 + α)μ(v)
cM (t |c0, v). (22)

There is no appreciable reaction before the late-time equation
is valid, so that the initial condition c0,M may be employed,

012114-6



KINETICS OF CONTACT PROCESSES UNDER … PHYSICAL REVIEW E 101, 012114 (2020)

0 5 10 15 20 25 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 5 10 15 20 25 30

-0.3

-0.2

-0.1

0

0.1

FIG. 3. Temporal evolution of concentration for SM + SI →κ ∅ under mild segregation for different values of Damköhler number Da.
Symbols represent stochastic simulations based on the Gillespie algorithm (107 initial mobile particles and 5 × 106 immobile particles per
reactive region, averaged over 105 realizations) and solid lines employ the well-mixed rate equations in reactive regions (106 realizations).
Nonreactive region lengths are exponentially distributed. Fixed parameters are α = 2, v = 4, and κC = 2, and Da is set by varying �r .
Dash-dotted lines (overlapping the solid lines for low Da) are numerical solutions of Eq. (17) using 〈CMCI 〉 = cM cI . Left: Average mobile
concentration. The dashed line is the analytical solution in the limit of small Damköhler. Right: Concentration fluctuations.

and

cM (t |c0, v) = c0,M exp

[
− Da(v)t

(1 + α)μ(v)

]
. (23)

Under strong segregation, the Laplace transform of the late-
time equation (21) is, for Da(v) 	 1,

[αμ(v)λ]β

Da(v)
[c̃M (t |c0, v) − λ−1c0,M] = −c̃M (λ|c0, v). (24)

Noticing that, for small λ, the initial-condition term on the
left-hand side dominates, and inverting the Laplace transform,

cM (t |c0, v) ≈ c0,M

Da(v)�(1 − β )

[
t

αμ(v)

]−β

. (25)

Simulation results for mild segregation are shown in Fig. 3
and for strong segregation in Fig. 4. We consider for concrete-
ness exponential ρc for mild and Lévy-stable ρc for strong
segregation, as before. Note that, unlike in Fig. 2, time is

nondimensionalized so as to highlight the collapse of the low-
Damköhler behavior onto the Da-independent curve valid for
both the full degradation reaction and the catalytic degradation
reaction SM + SI →κ SI . Under this nondimensionalization,
higher Da leads to slower decay due to the effect of depletion
of the immobile component. We compare a full stochastic
algorithm employing the Gillespie method in reactive regions
to a more efficient algorithm, valid for large particle num-
bers, which makes use of the well-mixed rate equations as
in Sec. III (see Appendix E). The results are in very good
agreement.

For mild segregation, simulations suggest that 〈CICM〉 ≈
c0,I (v)〈CM〉 holds at late times, as expected under finite-mean
inter-reaction times (see the right panel of Fig. 3). Thus, the
late-time concentration for each velocity v decays in general
exponentially as argued above, but the leading coefficient dif-
fers because the appropriate initial condition for the late-time
equation depends on the dynamics before it becomes valid.
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100
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FIG. 4. Temporal evolution of concentration for SM + SI →κ ∅ under strong segregation for different values of Damköhler number Da.
Symbols represent stochastic simulations based on the Gillespie algorithm (107 initial mobile particles and 5 × 106 immobile particles per
reactive region) and solid lines employ the well-mixed rate equations in reactive regions. All results are averaged over 105 realizations.
Nonreactive region lengths are Lévy-stable-distributed with exponent β = 0.7. Fixed parameters are α = 2, v = 4, and κC = 2, and Da is set
by varying �r . Left: Average mobile concentration. The dashed line is the late-time analytical solution in the limit of small Damköhler. Right:
Concentration fluctuations.
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However, for large Da, the exponential asymptotic regime is
not observed, as the concentration reaches very small values
before it occurs. We show also the solution obtained by
numerically integrating the closed rate equations obtained
by setting 〈CMCI〉 = cM cI in Eq. (17) (see Appendix F). Its
breakdown for Da � 1 is due to the role of concentration
fluctuations. Even though the fluctuations vanish at late times,
they have an irreversible impact on the total reaction.

Under strong segregation, the leading coefficient varies
with Da for two reasons. First, the initial condition to be
used with the asymptotic equation differs as above. Sec-
ond, the weak ergodicity breaking displayed by the inter-
reaction times impedes 〈CI (t )CM (t )〉 → c0,I〈CM (t )〉 for late
times, because there is a sufficiently high probability that
CM (t ) remains large due to long nonreactive regions. Nonethe-
less, simulations suggest that 〈CI (t )CM (t )〉 ∝ cI (t )cM (t ) ≈
c0,I cM (t ) at late times for all values of Da, see the right
panel of Fig. 4, so that the power-law behavior ∝t−β remains
unaffected.

VI. CONCLUSIONS

The link between first-passage and inter-reaction times
connects the kinetics of contact processes to spatial het-
erogeneity and segregation. We have quantified this link
for advective transport under spatial segregation of immo-
bile components and formulated the reaction dynamics in
terms of a generalized master equation. The evolution of
total mass may be obtained from this description, and mass
fluxes and spatial reactant distributions may also be easily
computed.

In contrast to the classical picture for well-mixed reactions,
the resulting large-scale kinetics cannot be fully quantified in
terms of the dynamical equations obtained by averaging over
the chemical master equation. This is due to the presence of
concentration fluctuations on the order of the average values,
which result from a combination of the restart mechanism
and memory effects, both caused by segregation. For this
reason, closed-form rate laws valid for all times do not exist
in general. In the case of strong segregation, characterized by
infinite-mean inter-reactive-region distances, memory is long
range and induces weak ergodicity breaking across trajecto-
ries, a typical feature of anomalous transport [39–44].

Future work will focus on extending this approach to more
complex transport processes, including effects such as vari-
able velocity within each trajectory [45,46] and local mixing
(e.g., diffusion). Moment closure approximations for the rate
equations will also be the subject of further study.
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APPENDIX A: WELL-MIXED DEGRADATION KINETICS

Consider the degradation reaction SM + SI →κ ∅ intro-
duced in the main text. In a well-mixed reactor, the kinetic
rate laws are given by Eq. (1). For equal initial conditions,

c0 = (c0,M , c0,I ) with c0,M = c0,I = c0, the solution is

cwm
M,I (t |c0) = c0

1 + κCc0t
. (A1)

For c0,M �= c0,I , setting cmax = max{cwm
M , cwm

I } and cmin =
min{cwm

M , cwm
I },

cmin(t |c0) = c0,ming(t, c0)e−κCt (c0,max−c0,min ),
(A2)

cmax(t |c0) = c0,maxg(t, c0),

where

g(t, c0) = c0,max − c0,min

c0,max − c0,mine−κCt (c0,max−c0,min )
. (A3)

The simulations of the evolution of concentration due to
this reaction in the presence of segregation proceed as follows.
A reactive region length � is generated according to the PDF
ρr . The solution of the well-mixed rate laws is then applied to
obtain the evolution of concentrations for a time interval �/v.
Then a nonreactive region length �′ is generated according
to ρc, and no reaction occurs for a time interval �′/v. This
procedure is iterated up to a desired time, with the initial
condition for the well-mixed rate laws in each reactive patch
being set according to the current mobile concentration and
the initial resident immobile concentration.

If one considers instead the catalytic degradation reaction
SM + SI →κ SI in a well-mixed reactor, then the immobile
species concentration does not change and remains equal to
c0,I . The rate law for the mobile component is the same as
before, and we obtain

cwm
M (t |c0) = e−κC c0,I t . (A4)

The simulations under segregation proceed in the same man-
ner as above, using this solution for the mobile concentration.

APPENDIX B: INTRINSIC INTER-REACTION TIMES

This Appendix provides a brief review of the intrinsic inter-
reaction times, which characterize reactions in the absence
of segregation. These correspond to the classical stochastic
theory of well-mixed reaction [24]. Consider a given chemi-
cal state n. Each reaction i = 1, . . . , mr considered in isola-
tion has an exponential inter-reaction time with rate ai(n) =
κihi(n), where κi is a (microscopic) rate constant and hi(n)
encodes the dependency on the chemical state. For mass-
action reactions,

hi(n) =
ms∏
j=1

n j!

ri j!(n j − ri j )!
. (B1)

It follows from the exponential character of reaction times,
and the fact that the next reaction to fire is the one with the
minimum waiting time, that the inter-reaction time density is

φr
i (t |n) = ai(n)

a(n)
φr (t |n), (B2)

where a(n) = ∑mr
i=1 ai(n) and

φr (t |n) = a(n)e−a(n)t , (B3)
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with φr (t |n) dt the probability that the inter-reaction time is
in [t, t + dt[. The Laplace transform of the inter-reaction time
density is thus

φ̃r
i (λ|n) = ai(n)

λ + a(n)
. (B4)

APPENDIX C: NUMBER OF TRAVERSED REACTIVE
REGIONS

Here we determine the distribution νr (·|tr, v) of the number
ηr (tr, v) of fully traversed reactive regions between reactions,
given time tr spent in reactive regions and velocity v. The
length traversed in time tr is vtr . The number ηr (tr, v) of
reactive regions traversed in this time is such that their total
length is smaller than vtr , but the total length of ηr (tr, v) + 1
regions is larger than vtr . Thus,

νr (k|tr, v) =
〈

H

(
vtr −

k∑
k′=1

Lr,k′

)
H

(
k+1∑
k′=1

Lr,k′ − vtr

)〉
,

(C1)

where H is the Heaviside step function and the Lr,k′ are
independent and identically distributed according to ρr . Con-
ditioning on the total length of the first k regions, we obtain

νr (k|tr, v) =
∫ vtr

0
d�

〈
δ

(
� −

k∑
k′=1

Lr,k

)〉 ∫ ∞

vtr−�

d�′ ρr (�′).

(C2)

Taking the Laplace transform with respect to tr ,

ν̃r (k|λ, v) = 1 − ψ̃r (λ|v)

λ
ψ̃r (λ|v)k. (C3)

Thus, using ρr (�) = e−�/�r /�r and ψr (t |v) = vρr (vt ), we
have ν̃r (k|λ, v) = μ(v)[1 + μ(v)λ]−k , with μ(v) = �r/v. In-
verting the Laplace transform,

νr (k|tr, v) = [tr/μ(v)]k

k!
e−tr/μ(v), (C4)

so that ηr (tr, v) is Poisson-distributed with mean tr/μ(v).
Note that, as long as reactive region lengths have a finite

mean �r , we have, for small λ 	 1/μ(v) (corresponding to
the large tr � μ(v) limit), ψ̃r (λ|v) ≈ 1 − μ(v)λ ≈ 1/[1 +
μ(v)λ], the Laplace transform of the exponential density.
Thus, the distribution of the number of traversed reactive
patches is always approximately Poisson for large tr . Since
typical reaction times are large when the Damköhler number
is low, as explained in the main text, the specific distribution
of reactive lengths does not play a role in that case.

APPENDIX D: GENERALIZED MASTER EQUATION
UNDER RESTART

Consider the process K(t ), which describes the number
of reactions as a function of time, and write NK(t ) = N(t ).
We have K(t ) = sup{k | Tk < t}, where Tk is the time of
the kth reaction. The propagator can then be written as

p(n, t |n0, v) = 〈δn,NK(t ) |n0, v〉. Conditioning on K (t ) = k and
Tk = t ′,

p(n, t |n0, v) =
∫ ∞

0
dt ′ ∑

k�0

〈δn,Nk δ(Tk − t ′)

× H (t − t ′)H[τk − (t − t ′)]|n0, v〉, (D1)

with the inter-reaction times τk = Tk+1 − Tk independent of
Tk . Thus,

p(n, t |n0, v) =
∫ t

0
dt ′ ∑

k�0

Rk (n, t ′|n0, v)

×
mr∑
i=0

∫ ∞

t−t ′
dt ′′ φi(t

′′|n, v), (D2)

where Rk (n, t |n0, v) = 〈δn,Nk δ(Tk − t )|n0, v〉 is the probabil-
ity per time of arriving at state n at time t given k reaction
steps. The dynamics are Markov in reaction step number k,
and Rk (n, t |n0, v) solves the Chapman-Kolmogorov equation

Rk+1(n, t |n0, v) =
∫ t

0
dt ′ ∑

n′�0

mr∑
i=0

γi(n|n′, v)

×φi(t − t ′|n′, v)Rk (n′, t ′), (D3)

with R0(n, t |n0, v) = δn,n0δ(t ), γi(n|n′, v) = γi(n|n′) given
by Eq. (4), and γ0(n|n′, v) given by Eq. (14). Laplace trans-
forming Eqs. (D2) and (D3) summed over k,

R̃(n, λ|n0, v) = δn,n0 +
∑
n′�0

mr∑
i=0

γi(n|n′, v)

× φ̃i(λ|n′, v)R̃(n′, λ|n0, v),

p̃(n, λ|n0, v) = R̃(n, λ|n0, v)
1 − ∑mr

i=0 φ̃i(λ|n, v)

λ
, (D4)

where R(n, t |n0, v) = ∑
k�0 Rk (n, t |n0, v). Eliminating R̃, we

find

λ p̃(n, λ|n0, v) − δn,n0 =
∑
n′�0

mr∑
i=0

[γi(n|n′, v) − δn,n′]

× M̃i(λ|n′, v) p̃(n′, λ|n0, v), (D5)

where M̃i(λ|n, v) is given according to Eq. (6) for all 0 � i �
mr and with the sum extending to i = 0. Laplace inversion
leads to the same form as the generalized master equation (5),
with the sum extending to i = 0.

APPENDIX E: STOCHASTIC SIMULATION ALGORITHMS

We describe a generalized Gillespie algorithm that takes
into account restart as described in the main text. Velocity v

is to be sampled from the PDF ξ (·). In order to simulate dy-
namics up to time tm (or distance �m), the following algorithm
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should be repeated for a prescribed number of realizations:
(i) Set time t = 0 (or distance � = 0). Generate n accord-

ing to the initial state distribution.
(ii) Generate �1 according to ρr and �tr according to

φr (·|n), see Eq. (B3).
(iii) Find the next reaction i: If �tr > �1/v, then set i = 0.

Else generate 0 < r � a(n) from the uniform distribution and
set i such that ai(n) < r � ai+1(n), see Eq. (B3).

(iv) If i = 0, then generate �2 according to ρc and set �t =
(�1 + �2)/v. Else set �t = �tr . Increment t by �t (� by v�t).

(v) If t < tm (� < �m), then update n according to
γi(·|n, v), see Eq. (4), and go to 2. Else set t = tm (� = �m)
and end.

For large particle numbers, this procedure may be replaced
by a more efficient method to find the concentrations:

(i) Set time t = 0 (or distance � = 0). Generate c accord-
ing to the initial concentration distribution.

(ii) Generate �1 according to ρr and �tr according to
φr (·|n), see Eq. (B3). Set �t = min{�tr, tm − t}.

(iii) Update c according to the well-mixed rate equations
over the interval [t, t + �t]. Increment t by �t (� by v�t). If
t = tm (� = �m) end.

(iv) Generate �2 according to ρc. Increment t by �t =
min{(�1 + �2)/v, t − tm} (� by v�t).

(v) If t < tm (� < �m), then generate cI according to the
initial concentration distribution and go to 2. Else end.

Note that this algorithm reduces to the one outlined in
Appendix A for the reactions considered therein.

APPENDIX F: LARGE-SCALE KINETICS

Following Ref. [28], we define pC (c, t |c0, v) =
np(nc, t |nc0, v), MC

i (t |c, v) = Mi(t |nc, v)/n, i = 1, . . . , mr ,
and MC

0 (t |c, v) = M0(t |nc, v). We multiply Eq. (D5) by, and
sum over, n, and write

∑
n = n

∫
dc in the limit n → ∞.

Integrating by parts, we obtain

λc̃(λ|c0, v) − c0

=
mr∑
i=1

siLt→λ

〈
M̃C

i [λ|C(t )]|c0, v
〉

− Lt→λ

〈
[C(t ) − (CM (t ), c0,I (v))]M̃C

0 [λ|C(t )]|c0, v
〉
,

(F1)

where Lt→λ f (t ) = f̃ (λ). Substituting Eq. (6) for the memory
functions, we have

λc̃M (λ|c0, v) − c0,M

=
mr∑
i=1

sM
i K̃ (λ|v)Lt→λ

〈
aC

i [C(t )]|c0, v
〉
,

[λc̃I (λ|c0, v) − c0,I (v)]

[
1 + K̃ (λ|v)ψ̃c(λ|v)

μ(v)λ

]

+
mr∑
i=1

sI
i K̃ (λ|v)Lt→λ

〈
aC

i [C(t )]|c0, v
〉
. (F2)

Using Eq. (3) for the memory kernel, we find that 1 −
K̃ (λ|v)[1 − ψ̃c(λ|v)]/[μ(v)λ] = K̃ (λ|v), so that the second
equation may be rearranged and divided by K̃ (λ|v) to give

λc̃I (λ|c0, v) − c0,I (v) = −λc̃I (λ|c0, v) − c0,I (v)

μ(v)λ

+
mr∑
i=1

sI
iLt→λ

〈
aC

i [C(t )]|c0, v
〉
. (F3)

Inverse-Laplace transforming yields Eq. (17).
In order to integrate Eqs. (17) for the degradation

reaction SM + SI → ∅, under the assumption 〈CICM〉 =
cI cM and mild segregation, note that the memory ker-
nel (3) reads K̃ (λ|v) = 1 − α/[1 + α + αμ(v)λ], so that, in-
verting the Laplace transform, K (t |v) = δ(t ) − exp{−(1 +
α)t/[αμ(v)]}/μ(v). Equations (17) then read

dcM (t |c0, v)

dt
= −κCcM (t |c0, v)cI (t |c0, v)

+ κC

μ(v)

∫ t

0
dt ′e− 1+α

αμ(v) (t−t ′ )cM (t ′|c0, v)cI (t ′|c0, v),

dcI (t |c0, v)

dt
= −κCcM (t |c0, v)cI (t |c0, v) − cI (t |c0, v)− c0,I

μ(v)
.

(F4)

We solve these equations numerically using a combination of
the forward Euler method for the derivative with the trape-
zoidal rule for the convolution integral. We use a discretization
time step �t = 10−2 min{μ, 1/(κCc0,M ), 1/(κCc0,I )}.
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