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Dynamical cluster size heterogeneity
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Only recently has the essential role of the percolation critical point been considered on the dynamical
properties of connected regions of aligned spins (domains) after a sudden temperature quench. In equilibrium, it
is possible to resolve the contribution to criticality by the thermal and percolative effects (on finite lattices, while
in the thermodynamic limit they merge at a single critical temperature) by studying the cluster size heterogeneity,
Heq(T ), a measure of how different the domains are in size. We extend this equilibrium measure here and study
its temporal evolution, H (t ), after driving the system out of equilibrium by a sudden quench in temperature. We
show that this single parameter is able to detect and well-separate the different time regimes, related to the two
timescales in the problem, namely the short percolative and the long coarsening one.
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I. INTRODUCTION

The ferromagnetic Ising model displays relatively homoge-
neous configurations when equilibrated either at temperatures
T � Tc or T � Tc, where Tc is its critical temperature. In
the former case, thermal fluctuations in the giant, equilibrium
background cluster of aligned spins are energetically inhibited
but increase in probability with temperature. In the opposite
limit, well above Tc, large domains of parallel spins are
unstable against the thermal noise, which breaks them into
small clusters whose average size decreases with temperature.
At these extreme limits, the size diversity is smaller than
that found close to Tc, where the distribution of allowed
sizes is very broad, with a fully developed power law (in the
thermodynamic limit, L → ∞). Because neighboring parallel
spins are not necessarily correlated, besides the geometric
clusters described above, Coniglio-Klein (CK) clusters [1]
may be built by removing a temperature-dependent fraction of
the parallel pairs from the geometric clusters. These so called
physical clusters have been useful in developing powerful
simulation algorithms [2,3] and to unveil geometric properties
for both models and experimental systems [4–9] that char-
acterize both the equilibrium critical behavior [1,10] and the
out-of-equilibrium dynamics [4]. The domain size distribution
only becomes dense in the infinite-size limit or after ensemble
averages are taken, while for a single, finite sample, space
constraints forbid the presence of every possible cluster size,
and the distribution gets truncated and sparse, subject to
sample-to-sample fluctuations. A simple, global measure of
the heterogeneity of a finite equilibrium configuration was
introduced [11–15], only taking into account whether a given
size is present in a configuration. The cluster size hetero-
geneity (H) is defined as the number of distinct cluster sizes,
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irrespective of the number of equally sized domains, that are
present in a finite-size sample.

The results for the equilibrium cluster size heterogeneity
Heq(T ) of the geometrical domains in the two-dimensional
(2D) Ising model show a double peak structure at two very
distinct temperatures. The small peak at T1 � Tc, associ-
ated with the thermal transition [14], is only observed for
sufficiently large systems [15]. The peak grows as Heq(T1)
∼ Ld/τ , where τ = 379/187 � 2.027 is the Fisher exponent
associated with the power-law cluster size distribution at the
critical temperature of the Ising model [16,17]. In spite of the
thermal and percolative transitions occurring at the same Tc,
for finite systems these effects have not yet merged. Indeed,
the percolative contribution appears as a second, much larger
peak [15], at a temperature significantly higher than Tc [e.g.,
T2(L) � 2Tc for L = 640]. The height of this second peak
behaves as Heq(T2) ∼ Ld/τ ′(L). The exponent τ ′, associated
with the height of the second peak, is closer to the percolation
value, τp = 187/91 � 2.055, but it should cross over to τ

as the two peaks merge in the thermodynamic limit. The
double-peaked heterogeneity is a property of the geometric
domains, while the physical (CK) domains, on the other
hand, have a single peak similar to the susceptibility. Thus,
for equilibrium finite samples, when describing the thermal
and percolation transitions with the cluster heterogeneity of
geometric domains, they seem to be disentangled, each one
affecting the geometric properties more effectively at different
temperatures (where the peaks are located), suggesting that
the corresponding mechanisms may be different. The smaller
the system is, the larger is the interval between these peaks.
Whether this equilibrium separation translates to a temporal
resolution is an interesting question. Thus, the main objective
of this paper is to explore whether this measure may be useful
to study not only equilibrium properties of simple models but
their dynamics as well.

After a quench from infinite to a below-critical tem-
perature, the out-of-equilibrium, single-flip dynamics of the
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nonconserved order parameter 2D Ising model is first attracted
by the percolative critical point and only then crosses over
to the coarsening regime [18,19]. In the process, a perco-
lation cluster first appears in the early stages (tp1 ) of the
dynamics [18,19], but it only becomes stable on a longer,
size-dependent timescale tp ∼ Lzp [20,21] where the exponent
has been conjectured to be zp = 2/5 [21] for the square
lattice. This initially percolating cluster strongly correlates
with the asymptotic state [20,22–28]. The domain growth
eventually leads to the fully magnetized ground state for
roughly 2/3 of the random initial configurations. The second
most frequent outcome is a configuration of parallel stripes,
while diagonal stripes have a much smaller probability (and a
longer timescale). During the evolution, as the domains keep
decreasing the excess energy at the curved interfaces, there
appears a growing characteristic length associated with the
coarsening regime, �d (t ) ∼ t1/zd , with zd = 2 [4].

The existence of a characteristic length obviously does
not imply that the system is homogeneous, with domains
similarly sized. A possible measure of the diversity of the
actual sizes is the cluster size heterogeneity previously dis-
cussed, extended here to out-of-equilibrium configurations.
While both the initial and the asymptotic equilibrium values of
Heq have been measured [15], there are many questions related
to the intermediate time evolution of H (t ). In particular,
since Heq seems very responsive to the percolative equilib-
rium properties, does the dynamical size heterogeneity give
information on the two regimes, approaching and departing
from the critical percolation point, before the dynamics is
dominated by coarsening? How distinct are these regimes? Is
H (t ) monotonic in time or is there one or two peaks related to
the equilibrium behavior? Is it possible for a single parameter
to give information on the two length scales associated with
coarsening? How do different initial and final temperatures
change the behavior? We address some of these questions,
showing that the dynamical cluster size heterogeneity, H (t ), is
indeed a suitable observable that not only distinguishes among
different dynamical regimes, but also provides quantitative
access to the scaling laws related to the growth of correlations
and of percolative clusters during the dynamics. Furthermore,
we show that the time evolution of H (t ) correlates with the
nature of the correlations present in the initial state, whether
long-range if the quench is performed from T0 = Tc, or ab-
sent from T0 → ∞. It is also noteworthy that the short-time
regime of H (t ) resulting from the dynamics triggered from
T0 → ∞ to T = 0 allows a quantitative connection with the
percolation-related peak observed in the equilibrium hetero-
geneity, Heq(T2).

II. DYNAMICAL CLUSTER HETEROGENEITY

Following different temperature quench protocols that
drive the system out of equilibrium, we study the 2D Ising
model whose Hamiltonian is

H = −J
∑
〈i j〉

σiσ j, (1)

where J > 0, σi = ±1 is the spin at site i, and the sum is
over all nearest-neighbor sites on an L × L square lattice with
periodic boundary conditions (L is measured in units of the

n(A, t)

A
A0

FIG. 1. Schematic cluster size distribution for a single, finite
sample. Differently from an infinite system or averaged distribution,
some sizes have no realizations. The smallest missing size, A0, is
indicated by a vertical dashed line, separating the dense region of the
distribution, A < A0, from the sparse one, A > A0. Those sizes that
are indeed present in the specific configuration define a measure of
the cluster size heterogeneity (in this example, H = 12).

lattice spacing �0). We choose the initial temperature T0 to
be either infinite or the critical one, these equilibrium states
thus differing by having zero or infinite range correlations,
respectively. The fixed temperature adopted after the quench
is T = 0. The simulations were performed on square lattices
with linear sizes up to L = 5120. Averages up to 1000 sam-
ples were taken for the smaller systems, while larger sizes
require fewer samples (100). When T0 = Tc it is necessary
to equilibrate the system, and 1000 Swendsen-Wang steps
were performed, while during the subsequent temporal dy-
namics, in all cases, a fast version of the single-spin Glauber
algorithm at T = 0 was used [29]. Time is measured in
Monte Carlo steps (MCSs), where one unit corresponds to N
attempts to flip.

Along the time evolution of the system, we measure the
dynamical cluster size heterogeneity H (t ), taking into account
only the nonspanning clusters [the presence of one or more
spanning clusters does not have a large influence on H (t ),
except close to the asymptotic state, where it is small]. It is
defined, as in the equilibrium case, as the number of different
cluster sizes present at time t on a finite-size configuration (see
the schematic depiction in Fig. 1). Although different domain
definitions are possible, we consider here only geometrical
domains, i.e., sets of connected parallel spins.

A. Quench from Tc to Tf = 0

After a quench from the equilibrium initial state at the Ising
critical temperature (T0 = Tc), the cluster size distribution of
geometric domains evolves as [18,19]

n(A, t ) � c[λ(t + t ′)]τ−2

[A + λ(t + t ′)]τ
, (2)

where n(A, t )dA is the average number of (nonspanning)
clusters, per unit area, whose size is between A and A + dA.
The constant c � 0.029 [18,19] is very close to the Cardy-Ziff
number [10], ch = 1/(8π

√
3) � 0.023, λ � 2 (time and area

units are unitary) is a temperature-dependent material con-
stant (the chosen value is for T = 0), and t ′ is a microscopic
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FIG. 2. Dynamical cluster size heterogeneity, H (t ), as a function of time (in MCS) after a temperature quench from T0 = Tc down to
Tf = 0. For simplicity, only those samples that converged to a fully magnetized state were considered. (a) In the first regime, t � t0, H (t )
presents a slow variation starting from Heq(Tc ), Eq. (7), while in the power-law regime, the behavior is t−1. The whole behavior is well
approximated by Eq. (6) and shown as solid lines. We consider c � 0.029, λ � 2, and τ to take finite-size effects into account, as a fitting
parameter. (b) The simulation data collapse well onto a universal curve, H (t ) = L f (t/L), using the asymptotic value of the Fisher exponent,
τ = 379/187. The agreement with Eq. (6) is also very good. The inset shows that the values of τ (L) that better fit the data in panel (a) do
converge to the correct value as L increases.

time such that λt ′ � 1. The above distribution is an average
while the heterogeneity H is measured from single configu-
rations as schematically shown in Fig. 1. At the moment of
the quench, there is an already stable spanning cluster, tp � tp1

� 0 [20]. Differently from the averaged distribution of Eq. (2),
for a single sample there are holes in the distribution, as not all
possible sizes may be present. Denoting by A0(t ) the smallest
missing size at time t , the sample cluster size distribution is
dense for A < A0(t ) and sparse above it. If �0 is a microscopic
length and (�0L)2 is the area of the system, A0 is the size such
that (L�0)2n(A0, t )�2

0 ∼ 1. Thus, setting �0 = 1, we obtain that

A0(t ) � (λt + 1)

[(
L
√

c

λt + 1

)2/τ

− 1

]
�(t − t0) (3)

and the dense region of the cluster size distribution, on aver-
age, disappears after a time

t0 � L
√

c

λ
. (4)

The cluster size heterogeneity after the quench, H (t ), is shown
in Fig. 2(a) for different lattice sizes. The coarsening process
moves the whole distribution to the left, removing the smallest
clusters, initially changing very slowly the value of H (t ) up to
t � t0. It then crosses over to a different regime, decreasing
as a power law, when the dense region is about to disappear.
Once the remaining distribution is sparse, almost all present
cluster sizes appear only once, and H (t ) becomes equivalent
to the number of clusters. These two contributions to H (t )
may be approximated by

H (t ) � A0 + L2
∫ ∞

A0

dA n(A, t ), (5)

where the first and second terms correspond, respectively, to
the size of the dense region and the number of clusters in the
sparse one. Using Eqs. (2) and (3) with Eq. (5), we get an

expression for H (t ) at all times:

H (t ) �
⎧⎨
⎩

(λt + 1)
[

τ
τ−1

( L
√

c
λt+1

)2/τ − 1
]
, t � t0,

L2c
τ−1

1
λt+1 , t � t0.

(6)

Notice that H (t → ∞) = 0 in the above expression because,
in our definition, the spanning clusters are not accounted
for. At t = t0 � L

√
c/λ, both terms give H (t0) � L

√
c/(τ −

1) while the initial value, corresponding to the equilibrium
state at Tc, is

H (0) � Heq(Tc) � τ

τ − 1
c1/τ L2/τ . (7)

Figure 2(a) also compares the simulations with the above
expression for H (t ) as solid lines. The agreement is pretty
good, except where there is a change of regime, close to t0,
where n(A, t ) is still significant and there may be more than
one cluster with the same size, originating the small deviation
seen in Figs. 2(a) and 3. Despite its exact value being known,
we have considered τ as a fitting parameter in order to take
finite-size effects into account. The inset of Fig. 2(b) shows
the values of τ (L) obtained from each fit (performed only
for the initial times, t < 10−2) and how they converge to
τ = 379/187 as L → ∞. Figure 2(b) also shows that the same
data, when properly rescaled, present an excellent collapse.
From Eq. (6) we see that the rescaling is H (t ) = L−1 f (t/L),
where f (x) ∼ x−1 (a power-law decay) for x � 1, and x1−2/τ

(a very slow increase) for x � 1. There is a further, subtle
feature of the numerical data, again well captured by Eq. (6),
that can be seen in Fig. 3: H (t ) is not a monotonous function.
It presents a maximum H (tmax ) whose location agrees well
with the numerical data,

λtmax + 1

L
= √

c

(
τ − 2

τ − 1

)τ/2

� 0.004, (8)

012108-3



AMANDA DE AZEVEDO-LOPES et al. PHYSICAL REVIEW E 101, 012108 (2020)

 0.2

 0.25

 0.3

10-3 10-1

L=160
320
640

1280
2560
5120

(λt + 1)/L

H
(t

)/
L

FIG. 3. Zoom into the region close to the end of the plateau, after
a quench from T0 = Tc, showing a very small peak at tmax (vertical
line), Eq. (8). The height of the peak in Eq. (6) depends on the precise
value of c, and the difference from the numerical data appears larger
because of the chosen scale.

although the height has a small deviation (enlarged in Fig. 3
because of the chosen vertical scale).

B. Quench from T0 → ∞ to Tf = 0

When quenching the system from T0 → ∞ down to Tf =
0, the general cluster size heterogeneity behavior can be seen
in Fig. 4(a). At the initial high temperature, despite spins being
uncorrelated, small clusters of parallel spins are present. The
initial heterogeneity is not very large and slowly grows with
the system size, Heq(T → ∞) ∼ ln L [12,14,15], as can be
observed in Fig. 4(a). Soon after the quench, H (t ) presents a
pronounced peak followed by a growing, intermediate plateau
before the final power-law decrease toward the asymptotic

state. The dynamics is eventually attracted [22,24,25,27] to a
state that is either fully magnetized or contains on- or off-axis
stripes. Although the results are similar, for simplicity we kept
only those samples that got, eventually, fully magnetized.

Differently from the previous case, the initial equilibrium
state at T0 → ∞ is not critical. Nonetheless, before entering
the scaling regime, the system first approaches the random site
percolation critical state [18,19], with an average cluster size
distribution given by a power law A−τp whose Fisher exponent
is τp = 187/91. As discussed in the Introduction, the first
occurrence of a percolating, albeit unstable, cluster is at the
early time tp1 , while at tp it becomes stable. After the cluster
size distribution becomes critical at tp1 , its time evolution is
well approximated by [18,19,21]

n(A, t ) � 2c[λ(t + tp1 + t ′)]τp−2

[A + λ(t + tp1 + t ′)]τp
, (9)

where the factor 2 in the numerator comes from the existence
of clusters with both positive and negative magnetizations,
while in the related percolation problem only particle clusters,
not voids, are accounted for. In analogy to the previous case,
the behavior of H (t ) after a quench from T0 → ∞, calculated
using Eq. (5), is given by

H (t ) �
⎧⎨
⎩

(λt + 1)
[ τp

τp−1

(
L
√

2c
λt+1

)2/τp − 1
]
, tp1 < t � t0,

2L2c
τp−1

1
λt+1 , t � t0,

(10)

where, in this case, t0 � L
√

2c/λ. As in the T0 = Tc case,
H (t ) also has a broad and small maximum before t0, more
precisely at (λtmax + 1)/L = √

2c[(τp − 2)/(τp − 1)]τp/2 �
0.011. However, this maximum does not appear in the
simulation, and H (t ) seems to always decrease. This is

FIG. 4. (a) Dynamical cluster size heterogeneity H (t ) as a function of time (in MCS) after a temperature quench from T0 → ∞ down
to Tf = 0. For simplicity, only those samples that converged to a fully magnetized state were considered. For the largest size, we indicate
the times when a percolating cluster first appears and when it becomes stable, tp1 and tp, respectively. In Ref. [15] it was observed that the
equilibrium heterogeneity, Heq, has a second, larger peak at T2(L), well above T1 � Tc where another, smaller peak is located. The value of
Heq(T2) agrees well with H (tpeak ) and is shown, for the largest simulated size only, as a small horizontal line on top of the peak. (b) Data
collapse. As the system size increases, a region between tp1 and tp, where H (t ) slowly changes, becomes apparent. The behavior for t > tp1

is well approximated by Eq. (10) with τp = 187/91 (solid line). The inset shows, in the upper straight line, the height of the peaks H (tpeak )
and Heq(T2), indistinguishable at this scale, along with Eq. (12), as a function of the system size. The data below (triangles) correspond to the
values of H (tp) and H (tp1 ) that, albeit different, get close as L increases.
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because, for the sizes considered here, the region t � t0 may
not yet be fully developed, or it may be because of the
presence of the initial, precursor maximum that reverses the
behavior below tp1 .

Since Eq. (9) considers an effective initial state at the
percolation threshold, the above expression for H (t ) is not
expected to capture any feature before tp1 . Indeed, t = 0
corresponds to the beginning of the slowly changing region,
which roughly extends between tp1 and tp (and whose width
depends on L), observed in Figs. 4(a) and 4(b):

H (0) � τp

τp − 1
(L

√
2c)2/τp . (11)

In contrast with the T0 = Tc case, H (t ) has a very pro-
nounced peak just before the appearance of the first perco-
lating cluster, i.e., tpeak < tp1 , which is a precursor feature of
the percolating state. After the quench, as the correlations
build larger clusters, the size distribution widens and H (t )
increases. However, as the largest cluster increases, less space
remains for the other clusters. Thus, a state of maximum
heterogeneity occurs slightly before tp1 and the associated
percolation transition. In particular, the height of the peak
seems to correspond to the equilibrium heterogeneity at the
second peak observed in Ref. [15], i.e., for each system size,
H (tpeak ) � Heq(T2), as indicated by a small horizontal line in
Fig. 4(a) (only for the largest L). Moreover, we numerically
observe that it is twice the height at tp1 :

H (tpeak ) � Heq(T2) � 2H (0) � 2τp

τp − 1
(L

√
2c)2/τp . (12)

For t � t0, the power-law behavior of H (t ) is similar to the
T0 = Tc case and accounts for the number of clusters, differing
only by the value of τp and the factor 2 in the numerator. The
data for t > tp1 are well described by Eq. (10), as can be seen
in Fig. 4(b).

Nonetheless, by rescaling both H (t ) and time by L
[Fig. 4(b)], although the finite-size effects are somewhat
stronger than in the T0 = Tc case, both the agreement with
Eq. (10) and the collapse in the same region are very good.

Despite the strong, early peak being a precursor effect of
the percolating cluster that appears soon afterward, tpeak < tp1 ,
it has a strong connection with the equilibrium measures of
Ref. [15]. Indeed, as the temperature is slowly decreased, the
equilibrium peak at T2 [15] also anticipates the first appear-
ance of a percolating cluster. Interestingly, the data collapse
in Fig. 4(b) fails in the very early regime, indicating that the
dynamical scaling length ξ (t ) ∼ t1/2 is not the sole relevant
length scale after the quench. The precursor peak shifts to the
left, indicating that a scaling factor Lα , with α < 1, should
be considered instead of L. Indeed, as seen in Fig. 5, a good
collapse around the peak is obtained with α � 0.22. However,
notice that although the peaks are well collapsed, neither the
black circles indicating tp1 nor the black squares for tp present
a good convergence. Different values of the exponent α can,
on the other hand, collapse those characteristic times. For tp,
it was shown in Ref. [21] that the exponent is 0.4.

To check how universal the H (t ) behavior is, we compare
in Fig. 6, for L = 1280, the behavior of H (t ) for the Ising
model after a quench from T0 → ∞ and the Voter model
(VM) evolving from a fully uncorrelated state. The VM is

FIG. 5. Rescaling of the early time region near the peak of H (t )
after a temperature quench from T0 → ∞. The region that includes
both the peak and tp1 is well collapsed using α � 0.22.

interesting as there is no bulk noise, and detailed balance is
not obeyed. Instead of considering the energy variation for a
putative flip, as in the Ising model, in the VM the spin chooses
and aligns with a single neighbor. As shown in Ref. [30], the
timescales are all larger in the VM, nonetheless the overall
behavior of H (t ) is similar, Fig. 6. Moreover, defining tp1 and
tp as above (even if the critical properties of the percolating
cluster do not correspond to critical percolation [30]), we can
see in Fig. 6 that they are related, respectively, to the end of
the precursor peak and the end of the plateau. A remarkable
feature in this figure is the height of the early peak, which is
roughly the same in both models, suggesting a more general
mechanism.

III. CONCLUSIONS

In equilibrium at high temperatures, domains of parallel
neighboring spins are not large and within a limited range of
sizes, thus the number of different domain sizes in a given
configuration, Heq(T ), is small. Decreasing the temperature,
spins become more correlated and the clusters increase and
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t

H
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FIG. 6. Comparison between the time evolution of H (t ) for the
Ising at T = 0 and the Voter model, both starting from an initially
uncorrelated state (T0 → ∞). The system linear size is L = 1280 and
time is in MCS. Notice that the precursor peak has roughly the same
height for the two models, suggesting a common mechanism.
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diversify, increasing Heq. However, as some clusters get com-
parable to the size of the system, the lack of space tends to
decrease the diversity. In the presence of these competing
mechanisms, one expects a peak in Heq. Remarkably, for
geometric domains, two peaks are present [15], one near the
temperature where the percolating cluster first appears [31]
and a second one very close to Tc. We extended here this
equilibrium measure of how heterogeneous the domains are
in size to nonequilibrium situations, H (t ). Specifically, we
explore its usefulness in the nonconserved order-parameter
dynamics of the 2D Ising model after a sudden quench
in temperature, confirming that this observable unveils the
rich interplay between percolation and ferromagnetism either
close to the phase transition (equilibrium) or at short-time
scales during the dynamics.

For quenches starting at Tc, H (t ) presents an initial plateau
that increases very slowly, attaining a shallow maximum
before crossing over to a power-law behavior. In this latter
regime, the sample size distribution is very sparse and the
probability of two domains having the same size is small.
The heterogeneity does correspond, in this time regime, to the
total number of clusters and decays as a power law. When
the system, instead, is first equilibrated at T0 → ∞ (random
spin configuration), in addition to these regimes after it passes
through the percolation critical point, there is also a very
pronounced peak that is a precursor indication that a giant,
percolating cluster is being built.

The rich behavior of H (t ) suggests that it would be in-
teresting to consider several extensions, both in equilibrium
and after a quench in temperature. While for the Ising model

each domain has a single neighbor and its size decreases at the
same, constant rate, for the (q > 2) Potts model domains may
either decrease or increase as their time evolution, given by
the von Neumann law, depends on their number of sides. The
coarsening behavior is thus richer [32–34]. As a consequence,
domains with the same area but a different number of sides
have a larger probability of evolving into different sizes,
increasing the heterogeneity. Such a mechanism, which breaks
the degeneracy of areas depending on the number of sides,
is absent in the Ising model. Another interesting case is the
Ising model with conserved order parameter [30,35,36] or
disorder [37–39]. Although we focused here on geometric do-
mains, the heterogeneity associated with the Coniglio-Klein
clusters [1] would also be of interest [15], along with the
heterogeneity of perimeters. The dynamics of the 3D Ising
model is more challenging [24,40,41], as multiple frozen
percolating clusters coexist and, for sufficiently large sys-
tems, the ground state is never reached. In addition, the
thermal and percolation transitions do not coincide. Finally,
it would be important to verify our results in experimental
setups [5,9].
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