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Transverse-size critical exponent of directed percolation from Yang-Lee zeros of survival probability
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By using transfer-matrix method we compute survival probabilities for the directed percolation problem on
strips of a square lattice, and get very precise estimates of their Yang-Lee zeros lying closest to the real axis
in the complex plane of occupation probability. This allows us to get accurate values for transverse-size critical
exponent and percolation threshold.
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I. INTRODUCTION

A close connection between the zeros of the partition
function in the complex plane of an appropriate control pa-
rameter and the onset of phase transition was first pointed
out by Yang and Lee [1,2]. It was shown that the loci of
these zeros have a simple structure for many important mod-
els of equilibrium statistical mechanics. For a model with
discrete energy levels, partition function can be expressed
as a polynomial with positive coefficients, so that its zeros
occur in complex-conjugate pairs or they lay on the negative
real axis of pertinent complex plane, while the positive part
of real axis is free of zeros for a finite system. For a large
but finite system, the pairs of complex-conjugate zeros lying
closest to the positive real axis (to be referred to as first
zeros) are of special interest, since they exert direct influence
on the onset of phase transition. According to this picture,
singular behavior of the partition function and its derivatives
can develop only in the thermodynamic limit, provided that
some of its zeros in this limit tend towards the positive real
axis, and the associated phase transition point emerges as an
accumulation point of these zeros [1,2]. Soon after publication
of their works, the Yang-Lee (Y-L) approach was adopted as
a valuable tool in investigation of phase transitions, and it
was used in many different studies, especially in the case of
spin model systems (see, e.g., Refs. [3,4] for a review of early
studies, and Ref. [5] for an account of more recent works). In
addition, the Y-L approach has been successfully applied to
some other models of equilibrium statistical physics, such as
those relevant to polymer phase transitions [6–13], or simple
models of biological interest [14,15].

To the best of our knowledge, there is no rigorous proof for
the applicability of the Y-L approach to the case of statistical
systems out of equilibrium. Nevertheless, the method has been
successfully tested on certain examples of nonequilibrium
steady-state phase transitions [5,16], first on simple models,

*knez@ff.bg.ac.rs

such as those describing driven diffusive [17–19], reaction-
diffusion [20], and directed percolation processes [21,22].
Subsequently, the Y-L strategy has been extended and applied
to a variety of more complex models, including quantum
systems [23,24]. Recently, interest for this methodology has
been further enhanced, due to the fact that Y-L zeros of some
real physical systems can be accessed experimentally [25–30].

Directed percolation process has attracted a lot of attention
over the past two decades, mainly due to the fact that a
wide range of simple models of nonequilibrium processes
having a transition into an absorbing state share the directed
percolation universality class [31]. As we mentioned above,
directed percolation problem was one of the first examples of
a nonequilibrium system where the Y-L approach was proven
to be successful [21,22]. These authors derived analytical
expressions for a sequence of finite-time survival probabil-
ities on a square lattice, and they provided clear numerical
evidence that the first zeros of these functions, in the complex
plane of associated occupation probabilities, indeed approach
corresponding real axis as the system evolves in time. In this
way, they were able to obtain rather good estimates not only
for percolation thresholds, both for bond and site percolation
problem, but also an estimate of universal longitudinal-size
critical exponent; transverse-size critical exponent has not
been examined in these works.

While the approach used in Refs. [21,22] is well suited for
the calculation of longitudinal-size exponent in the framework
of Y-L formalism, it is less convenient for studying percola-
tion cluster sizes in the transverse direction. This motivated us
to reconsider the problem of two-dimensional directed perco-
lation by using a strip geometry, which allows us to control the
perpendicular cluster size as well. Since the object of our main
interest here is the transverse-size critical exponent, we focus
our attention on the case of very long percolation clusters
confined on strips of a fixed width n.

Using transfer-matrix approach we construct (numerically)
exact expressions for the survival probabilities of the site-
directed percolation on the strips of a fixed width and arbitrary
length on the square lattice. Then a numerical analysis of the
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FIG. 1. Directed percolation cluster on the square lattice, made
of 23 sites on a strip of width n = 4. Note that the sites denoted by
1 and 1′, as well as 2 and 2′, are, in fact, the same due to periodic
boundary conditions applied along the vertical axis. The site at the
root is denoted by 0 and the arrow indicates the preferred direction.

first zeros of these functions, combined with a simple scaling
law, enables us to get estimates for the critical percolation
probability and the transverse-size critical exponent. It is
perhaps surprising that the precision of transverse-size critical
exponent is comparable with precision of the best currently
available estimates, although we worked on strips of reason-
ably small widths (for widths going up to n = 19). Extension
of this work to larger strips is possible, but the calculation
becomes a time-consuming process for larger values of n (to
be discussed later). In any case, besides corroborating the
general utility of the Y-L method for directed percolation
revealed previously, our computation on strips shows that
it can be quite competitive with other approaches aimed at
getting accurate values of critical exponents.

The paper is organized as follows. In Sec. II we present our
model, define some quantities of interest, and briefly describe
the transfer-matrix approach on strips. In Sec. III we describe
some details of our numerical approach and give the main
results. In Sec. IV we give an outline of our approach, together
with a summary of the obtained results.

II. MODEL

In this paper we consider statistical properties of directed
percolation clusters on strips of the square lattice with periodic
boundary conditions shown in Fig. 1. In a static interpretation
that we use here, the preferred direction is a spatial direction
(indicated by the arrow in Fig. 1) so that any site of the cluster
can be reached from the site lying in the first column (root)
by a path that never goes opposite to this direction. In the
dynamical interpretation of directed percolation mentioned
above, the preferred direction is time, so that to a cluster
spanning the lattice of length L corresponds the evolution time
equal to L.

We assume that each lattice site is present with occupation
probability p and that it is absent with probability q = 1 − p.
In contrast to the case of usual isotropic percolation, directed

percolation clusters display elongation along the preferred
direction and shrinking in the transverse direction. As a con-
sequence of this, metric properties of such clusters are best
described in terms of two characteristic lengths ξ ‖ and ξ⊥
for longitudinal and transverse directions, respectively. It is
widely accepted that, near the critical occupation probability
pc (percolation threshold) of an infinite system, these lengths
follow the power-law behavior: ξ ‖ ∼ (p − pc)−ν‖

, ξ⊥ ∼ (p −
pc)−ν⊥

, where ν‖ and ν⊥ are the universal longitudinal and
transverse-size critical exponents, respectively.

Main quantity of interest in the percolation problem on
strips is the survival probability PL,n(p) that there is at least
one spanning cluster going from the root to the Lth column for
a given n. The probability PL,n(p) can be expressed as a linear
combination of a finite number of restricted probabilities
PL,n(Ci ), where PL,n(Ci ) is the probability of the spanning
cluster of length L ending with a given site configuration
Ci. Let us note that in our diagonal formulation of directed
percolation problem these configurations refer to sites situated
on a straight line passing through the vertical diagonals of
lattice cells, as depicted in Fig. 1. The width n of the strip
is equal to the number of vertices lying on this vertical line.
The total number of site configurations for a strip of width n is
obviously equal to 2n − 1 (if one omits the configuration with
all empty sites). The transfer-matrix approach is based on the
fact that one can express the probabilities PL+1,n(Ck ) in terms
of PL,n(Ci ) via a set of 2n − 1 linear recursion relations.

The number of recursion relations can be significantly re-
duced by using symmetries of the system. Indeed, in addition
to reflection symmetry with respect to a given point, in the
case of periodic boundary conditions rotational symmetry is
present as well. Owing to the presence of these symmetries
one can classify configurations and make a partition of the
whole set of possible configurations into N = N (n) mutually
disjunct subsets (classes), such that any configuration of a
given subset can be related to any other configuration of the
same subset by a combination of symmetry operations. Since
all members of a given class of configurations are equivalent,
one can take any of them to represent the whole class, which
allows one to write a reduced system of linear recursion
relation

PL+1,n(Ck ) =
N∑

i=1

Mki(p)PL,n(Ci ), (1)

where index i goes over different classes. To obtain the matrix
element Mki(p) of the transfer matrix M, one considers a fixed
configuration Ck at column L + 1 and selects all those config-
urations, lying at the Lth column, and belonging to the class of
configuration Ci that ensure the connectivity of each occupied
site lying at the right column (see Fig. 1). Then one associates
the weight psqt to each allowed pair of configurations, where s
is equal to the number of all occupied sites in the right column,
and t is the number of those empty sites in the same column
having at least one occupied predecessor (nearest-neighbor
occupied vertex) at the left column. For small n all these
matrix elements can be obtained by hand. For larger values
of n one needs a computer code to construct M, since its
size N × N still grows exponentially but more slowly than
2n × 2n (for example, we find N (20) = 27011 � 220 ≈ 106).
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FIG. 2. Survival probabilities as function of the real occupation
probability 0.6 � p � 1 on strips of the square lattice of the length
L = 500 and three different values of n. Derivatives of these func-
tions with respect to p, for the same values of L and n, are presented
in the inset.

For a fixed n, all column states, described through the set of
restricted probabilities, are determined by the root state only,

PL = MLP0, (2)

where PL and P0 denote state vectors whose components
are restricted probabilities corresponding to the Lth col-
umn and to the root, respectively. As a simple example, in
Appendix we depicted the set of seven column states required
for description of site-directed percolation on strips of width
n = 5; corresponding transfer-matrix and state vectors are
given in the same place. In our calculation we usually take
that the root site is present with probability 1, but this choice
is not essential since PL is practically independent of initial
conditions in the limit L � 1.

It is easy to see that the survival probability PL,n(p) can be
expressed as a linear combination of restricted probabilities

PL,n(p) =
N∑

i=1

d (Ci )PL,n(Ci ), (3)

where d (Ci ) is the number of different configurations belong-
ing to the class Ci, or, to say it in simple terms, d (Ci ) is the
number of ways the configuration of type Ci can be embedded
in a column of width n. It is also obvious that these numbers
must satisfy the following sum rule

∑N
i=1 d (Ci ) = 2n − 1.

To get a feeling on the shape of percolation probability for
clusters confined to strips (in fact, cylinders), we computed
PL,n(p) numerically for three representative values of n and
a fixed value of L (see Fig. 2). Derivatives of these functions
are presented in the inset of the same figure. Note that the
height of the maxima of dPL,n(p)/d p grows up, while their
position moves slowly towards the smaller values of p, by

FIG. 3. Yang-Lee zeros for the survival probability PL,n(p) corresponding to n = 14, L = 200. (a) Most of the Yang-Lee zeros pL
n are

located within the frame of this figure, with the exception of a small number of zeros following the lines denoted by 1 and 2 that fall outside
the frame. (b) Portion of Yang-Lee zeros located in the region 0 < Re(pL

n ) � 1, 0 < Im(pL
n ) < 0.8; the arrow indicates the position of the real

physical threshold pc for directed site percolation on the square lattice [37,38].
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increasing n. Such a behavior can be attributed to the onset
of a phase transition that develops gradually on a large strip
when both of its lengths n and L tend to infinity. Indeed, it is
expected that derivative dP (p)/d p for a system on an infinite
square lattice diverges as p → pc from the above, where
percolation threshold pc is a well defined quantity. In the
same limit, the survival probability should be (strictly) equal
to zero in the region p � pc. For finite systems percolation
threshold is not precisely defined (due to rounding effects),
but its value can be roughly approximated by positions of
maxima of dPL,n(p)/d p for sufficiently large n, and L. On
the other hand, letting go L � 1 for a fixed n, positions of
corresponding maxima tend to the point p = 1, reflecting
essentially one-dimensional character of percolation phase
transition on infinite strips having finite widths.

III. NUMERICAL APPROACH AND RESULTS

In this section we examine distribution of zeros of survival
probability in the complex plane of occupation probability
p. For moderate values of n and L, say n � 15, L � 200,
PL,n(p) can be obtained in analytical form using some of
the available packages for symbolic computation. Since so
generated expressions are polynomials, it is not difficult to
calculate all zeros of PL,n(p) for some given values of L and
n. As a typical example, on the left panel of Fig. 3 we present
a map of zeros of PL,n(p) for L = 200 and n = 14. As one
can infer from this picture, pattern of Yang-Lee zeros is rather
complicated: It seems as if most zeros accumulate along a
number of lines that move over the complex plane under a
change of L. According to our numerical insights, number of
these branches is fixed and equal to n − 1, for a given n. Since
a new branch of zeros emerges each time we raise the width by
1, it is clear that the total number of these lines will grow to
infinity for n → ∞, which certainly reflects the complexity
of directed percolation problem. In addition to these n − 1
loci of zeros, the point p = 0 represents a locus of zeros and
accumulation point of these zeros, as a consequence of the fact
that our survival probability allows the simple factorization:
PL,n(p) = pLQL,n(p), where QL,n(p) is a polynomial as well.

For better clarity, distribution of Y-L zeros in the region
of physical interest, 0 < Re(p) � 1, is presented on the right
panel of Fig. 3 for the same values of lattice parameters.
Although much of complexity seen in the left panel is still
present, one can also notice that the ending point of at least
one branch of zeros seems to approach the real axis near the
point of expected percolation threshold. Since one expects that
the zero closest to the real positive axis, lying in the region
0 < Re(p) � 1, follows certain power-law behavior, our goal
is to reveal and describe such a behavior in detail.

Before we continue our numerical analysis, it is worth
mentioning that patterns of Yang-Lee zeros explored in pre-
vious studies of this problem [21,22] resemble those shown in
Fig. 3. It is interesting, however, that associated maps of Y-L
zeros for the sequence of survival probabilities obtained by
method of series expansion, presented by polynomials of an
increasing degree N , display surprisingly simple circularlike
structure. According to our tests, first zeros of the sequence
of such approximations, generated by using data of Ref. [32],
seemingly approach the real axis near the point of expected

percolation threshold. Although at first glance this finding
may seem promising, it is not of great help for computation
of critical exponents by the Y-L method, which usually relies
on some scaling laws for the first zeros, but there is no obvious
way how to express them in terms of control variable N .

It is well known that the first zeros zL of the partition
function of an isotropic equilibrium system of linear size L
usually display the simple leading asymptotic behavior [33]:
zL ∼ z∞ + aL−1/ν , where ν is the critical size exponent, z∞
is the limiting zero corresponding to associated physical
singularity, and a denotes a constant or at least a slowly
varying function of L. The problem of a directed percolation
is certainly more complicated, because one has to deal with
two different lengths. One way to simplify the problem, in
this context, is to take the limit L → ∞ for a fixed n firstly,
through a very large number L � 1 of iterations of (2),
after which one is left with a system depending on n only.
By analogy with the case of equilibrium systems, it seems
reasonable to suppose that the first zeros p∞

n of P∞,n(p) for
a strip of infinite length and finite but large width n, follow
the asymptotic behavior

Re
(
p∞

n

) = pc + a1n−1/ν⊥
, Im

(
p∞

n

) = b1n−1/ν⊥
, (4)

where a1 and b1 denote two real constants.
In order to use the above two relations for calculation of

the percolation threshold pc and the transverse-size critical
exponent ν⊥ we need the values of Re(p∞

n ) and Im(p∞
n ).

A rough estimates of these quantities, at least for strips of
moderate widths, can be done straightforwardly by iterating
the system (2) a large number of times. Direct computation
that we performed in this way indicates that the first zeros
pL

n move more and more slowly towards the real axis by

FIG. 4. Trajectories of the first Y-L zeros, i.e., sets of first
zeros computed for a sequence of lengths Li = L0 + i�L, i =
1, 2, 3, . . . , 42, with L0 = 80, �L = 10, and n = 14, n = 15, and
n = 16. Positions of the end points of these trajectories, correspond-
ing to the limit L → ∞, are indicated by solid symbols. To verify the
scaling law (4), we presented log[Im(p∞

n )] as a function of log(n) in
the inset, together with a straight line that provides the best fit to the
last 12 data points; the slope of this line, −1/ν⊥ = −0.917(1), is in
good agreement with accurate estimates of ν⊥.
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TABLE I. The imaginary part Im(p)0 of the first zeros as function of L for fixed n = 14 (the second and the fourth column). For simplicity,
these quantities are given here with 15 decimal places only, while we use at least 30 decimal places in the actual computation. Three sets
of higher-order extrapolants, Im(p)14, Im(p)15, and Im(p)16, generated by successive applications of the BST procedure with ω = 1, are
shown. Values of the last 36 extrapolants, corresponding to the last seven sequences, rounded to 14 decimal places are indistinguishable:
Im(p) = 0.07868513682378(2), where (2) refers to the error in the last digit, estimated by the BST procedure.

L Im(p)0 L Im(p)0 Im(p)14 Im(p)15 Im(p)16

250 0.080991807352257 380 0.079690840053705
0.07868513682707

260 0.080823070430302 390 0.079639305807927 0.07868513682343
0.07868513682593 0.07868513682373

270 0.080671545711753 400 0.079591537910203 0.07868513682356
0.07868513682519 0.07868513682375

280 0.080535029112434 410 0.079547185109553 0.07868513682364
0.07868513682476 0.07868513682377

290 0.080411651776698 420 0.079505935534455 0.07868513682369
0.07868513682440 0.07868513682377

300 0.080299821526267 430 0.079467511578242 0.07868513682372
0.07868513682420 0.07868513682377

310 0.080198175792862 440 0.079431665535042 0.07868513682374
0.07868513682406 0.07868513682377

320 0.080105543545078 450 0.079398175864034 0.07868513682376
0.07868513682397 0.07868513682378

330 0.080020914309519 460 0.079366843981600 0.07868513682376
0.07868513682391 0.07868513682378

340 0.079943412824683 470 0.079337491498501 0.07868513682377
0.07868513682387 0.07868513682378

350 0.079872278194983 480 0.079309957833496 0.07868513682377
0.07868513682384 0.07868513682378

360 0.079806846661097 490 0.079284098146376 0.07868513682377
0.07868513682382

370 0.079746537292514 500 0.079259781542874

increasing gradually the number L of iterations. The com-
putation based solely on the iteration method is not of great
utility, in particular if one needs high precision of p∞

n . The
major cause of this problem is relatively slow convergence of
the sequence pL

n towards p∞
n . As a consequence of slow con-

vergence, one needs an extremely large number of iterations,
which in turn require an enormous accuracy of the input data.
For example, to ensure an accuracy of about ten significant
digits for p∞

n , one needs about 106 iterations and an accuracy
of the input data of the same order of magnitude, making such
a procedure practically intractable for larger values of n.

To circumvent the numerical difficulties we pointed out,
and get good estimates of the required limiting values p∞

n , in
this work we compute the sequences pL

n up to about L = 500,
and, after that, we extrapolate them by using the Bulirisch-
Stoer (BST) algorithm [34]. The advantage of the BST method
over the other proposed extrapolation schemes, developed to
accelerate the convergence of finite-size sequences, has been
noticed in various studies of critical phenomena during the
last two decades [35,36]. Concerning reliability and precision
of extrapolated value of a given data sequence, it is clear
that they depend primarily on the convergence properties of
the sequence under consideration. But, as it was discussed
in a work devoted to the application of BST algorithm to
extrapolations of the sequences of Y-L zeros for the Ising
model [36], accuracy of the obtained results depends to a great
extent on the precision of the input data as well as on the

length of the sequence. To meet these conditions we generated
rather long sequences of the Y-L zeros pL

n , corresponding
to the set of lattice lengths i�L, with �L = 10, and i =
1, 2, 3, . . . , 50 typically. It turns out that for systems of these
sizes, depending on the value of L, one needs an accuracy of
the input data going up to 200 digits to get pL

n to 30-figure
accuracy; according to our observations, this accuracy is much
less affected by values of n.

In Fig. 4 we presented trajectories of the first Y-L zeros
for three typical values of n, and L going up to L = 500 in
steps of length �L = 10. The end points of these trajectories
are computed by using the BST algorithm. Note that Im(pL

n )
is a decreasing function for all values of L, while Re(pL

n )
increases within an initial interval L < L(n) and decreases
monotonically beyond this region. The values of L(n) slowly
grow with n, and go up to about 160 for the system of the
largest width n = 19 examined in this work. To avoid the
region of nonmonotonic behavior of Re(pL

n ), in the application
of the BST algorithm to the sequence Re(pL

n ), we excluded the
set of values corresponding to the region L < L(n).

To give a flavor of the BST applicability in our case, we
give some details of its application to the sequence Im(pL

n ),
computed for n = 14, and denoted by Im(p)0 in Table I.
After one application of the BST procedure to the initial
sequence Im(p)0 one obtains the first sequence Im(p)1 of
extrapolated data and this process continues iteratively, so that
the sequence Im(p)k is generated from the sequence Im(p)k−1
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(k = 1, 2, 3, . . . , 24, in this example). As the iteration process
proceeds, all extrapolated values become closer to each other.
Since the BST algorithm includes subtraction of extrapolated
values, its application to the high-order sequences causes a
significant loss of accuracy, calling for an enhanced accuracy
of the input data.

The method includes a free parameter ω, which has to
be adjusted self-consistently in order to minimize the error
and fluctuations in the new sequences of estimates generated
by the BST algorithm. Difference between two extrapolated
values of the next-to-last BST sequence is usually taken as
a measure of the error of this procedure [35]. According to
our observations, the best extrapolations with respect to L
(n being fixed) are obtained for ω = 1. Indeed, even some
small changes of ω, ω = 1 ± ε, ε � 10−2, lead to significant
degradation of stability and convergence properties of all
sequences, while the errors of the final extrapolants estimated
by the BST procedure become much larger (by several orders
of magnitude, typically). If one assumes that the leading finite-
size correction term to Im(pL

n ) has the power-law form with
some power ψ , Im(pL

n ) ∼ Im(p∞
n ) + const./Lψ , then a single

application of the BST algorithm eliminates this correction
term providing the adjustable parameter ω is chosen to be
equal to ψ . This strongly indicates that we have: Im(pL

n ) ∼
Im(p∞

n ) + const./L, which provides an additional confirma-
tion of slow convergence of the sequences Im(pL

n ) and Re(pL
n )

that we mentioned above.
As one can infer from Table I, extrapolation procedure

based on a sequence of 26 values of pL
n works fairly well,

giving a reliable and accurate estimate for Im(p∞
n ). Precision

of such estimates can be further enhanced by using longer
sequences of accurate data. For this reason, all estimates
presented in Table II are calculated through the sequences
comprised of (at least) 35 different values.

The reliability of some of the BST estimates we also
checked directly, through the simple brute-force computation.
Of course, this can be done only for moderate values of n.
Thus, for n = 6 and n = 7, we have been able to follow the
evolution of the first zeros with iteration index L going up to
more than 106, by setting accuracy of our input data to 5 × 105

significant digits. We have found that, indeed, these first zeros
steadily approach corresponding values given in Table II. Let
us note, however, that the value of the first zero, obtained
after 1.5 × 106 iteration steps (n = 6), coincides with the BST
value rounded to 12 decimal places. One would therefore need
more than 109 iteration steps to reach the BST precision,
which would be a difficult task for small and let alone for
larger values of n.

Having determined the real parts of the first zeros in the
limit L → ∞, it is not difficult to get an estimate of the
percolation threshold by using an extrapolation procedure to
the sequence Re(p∞

n ) of Table II. Thus, applying the BST
algorithm to the data of the second column of this table, we
get quite stable sets of extrapolants, which allow us to obtain
a fairly accurate estimate of the percolation threshold, pc =
0.70548(1). This value is in agreement with more accurate
estimate pc = 0.70548530(5) obtained through the transfer-
matrix coupled with phenomenological renormalization group
method [38]. Let us note, however, that the latter estimate has
been obtained by using strips of widths going up to n = 24.

TABLE II. Real and imaginary parts of the limiting first Y-L
zeros, L → ∞, estimated through the BST procedure for fixed n.
The sequence ν⊥

n of finite width estimates, obtained through the
relation (5), is shown in the fourth column. Our final BST estimates,
together with the best choices of ω, are given in the last two rows.
Note that the value of ω corresponding to the extrapolation of the
sequences Re(p∞

n ) and Im(p∞
n ), ω = 0.91, is very close to 1/ν⊥,

which is consistent with the scaling form (4).

n Re
(
p∞

n

)
Im

(
p∞

n

)
ν⊥

n

5 0.793865926017881 0.207836151668583
6 0.772811395253383 0.173859835806187 1.02140582748
7 0.759894687856575 0.149974180129320 1.04306484411
8 0.751180675057913 0.132183555112106 1.05749329439
9 0.744910464240068 0.118373603122745 1.06739959914
10 0.740183535535020 0.107316777244130 1.07444120067
11 0.736492340460778 0.098248704871143 1.07959922752
12 0.733529506167153 0.090667073810669 1.08347354098
13 0.731098195607174 0.084227403843044 1.08644534604
14 0.729066597126144 0.078685136823778 1.08876556533
15 0.727343155123767 0.073861605876756 1.09060451710
16 0.725862306538494 0.069623093925899 1.09208093536
17 0.724575873865141 0.065867440443035 1.09327954279
18 0.723447662646138 0.062515190593425 1.09426204067
19 0.722449954172795 0.059503579104875 1.09507418212

∞ 0.70548(1) 0.00001(1) 1.096857(5)

ω 0.91 0.91 0.865

Due to simplicity of the second relation of (4), a rough
estimate of the transverse-size critical exponent ν⊥

n can be
obtained directly, from the slope of straight line that best fits
the set of points [log[Im(p∞

n )], log(n)]; see inset of Fig. 4.
Much better estimate of this quantities can be obtained from
the relation

ν⊥
n = log

[
Im

(
p∞

n

)
/Im

(
p∞

n−1

)]
log[(n − 1)/n]

, (5)

which we used to compute the sequence of finite-width esti-
mates ν⊥

n shown in the fourth column of Table II. To get an
estimate corresponding to the thermodynamic limit n → ∞,
we apply the BST procedure to this data sequence, which
leads to the final estimate ν⊥ = 1.096857(5). Note that this
value of the transverse critical exponent is very close to
the best currently available estimates for this quantity [37]
ν⊥ = 1.096 854(4) and [38] ν⊥ = 1.096 822(2). It is perhaps
surprising that, in our case, precision of transverse-size critical
exponent exceeds that for the percolation threshold. Let us
note, however, that the values of ν⊥

n are noticeably closer
to their limiting values ν⊥ if compared to the corresponding
cases of Re(p∞

n ) or Im(p∞
n ) (see Table II). We believe that

this difference stems from fact that ν⊥
n is determined by

the ratio (5), which eliminates dependence on parameter b1

appearing in (4); for similar reason, it is also possible that the
next-to-leading finite-size correction terms in ν⊥

n are weaker
than in the case of Im(p∞

n ).
The approach that we used here can be, in principle,

extended to the computation of longitudinal-size critical ex-
ponent ν‖. By analogy with the above procedure, one can
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first compute the sequence of the first zeros for a fixed L,
and, after that, make an extrapolation towards the limiting
value pL

∞. It is expected that the asymptotic form (4), with ν⊥
replaced by ν‖ and n replaced by L, is valid for pL

∞. The main
factor that limits practical realization of such a procedure is
evidently the width n of the strips, since the transfer-matrix
size grows exponentially with n. Nevertheless, we have been
able to obtain a rough estimate of ν‖ by this method, which
indicates its applicability although it is not so well suited for
this purpose.

IV. CONCLUSION

In this paper we studied directed percolation problem on
strips of the square lattice by using the method of Yang-Lee
zeros. For this purpose we constructed transfer matrices for
the sets of restricted probabilities which allow us to determine
corresponding survival probabilities. After consideration of
the maps of zeros of survival probabilities, we examined
in detail scaling behavior of the first Y-L zeros. To avoid
complexity related to the anisotropic scaling, we make extrap-
olation towards infinity in two steps: In the first step by letting
the longitudinal length go to very large values L � 1, which is
followed, in the second step, by an extrapolation towards large
values of n. Thus, after the first step, one has to consider a
simpler system, yielding to the natural scaling assumption (4)
for a system having n as the only variable that controls its size.
It seems that similar procedures can be useful in analysis of
some other lattice models, in particular those involving more
than one characteristic length.

In our efforts to build up percolation clusters of very
large longitudinal lengths, and subsequent computation of
the first Y-L zeros of associated survival probabilities, we
have been faced with the problem of slow convergence. To
handle the problem and get sufficient precision of limiting
zeros, we use extensively the BST extrapolation procedure,
validity of which has been justified by various means. In this
way we have been able to obtain very accurate estimates
of the transverse-size critical exponent ν⊥ and the percola-
tion threshold pc, meaning that the presented method is not
only applicable but it can be even competitive with other

approaches aimed at getting accurate description of critical
behavior.
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APPENDIX: TRANSFER MATRIX

As a simple example we give here the recursion relation
PL+1 = MPL for restricted probabilities P(Ci ) in the case of
a strip of width n = 5. Due to symmetry of the system, the
number of required configurations in this case can be reduced
to seven states (instead of 31), as depicted in Fig. 5(a).

For a fixed configuration of sites at the column L + 1,
one selects (from the set of all 31 possible states) all those
configurations of the Lth column that ensure a connection
of each occupied site of the right column (see Fig. 1). After
finding an allowed pair of configurations, one associates the
weight p to each occupied site of the right configuration, and
weight q to each perimeter site, i.e., to each empty site of the
right column providing that it has an occupied predecessor
at the left column. This procedure is illustrated in Fig. 5(b),
where we show how to obtain the matrix element M54. By
analogy, one can obtain all other matrix elements and verify
that the transfer matrix M has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p5 0 0 0 0 5p5 5p5

pq4 2pq 3pq2 4pq3 4pq3 5pq4 5pq4

p2q3 p2 2p2q 3p2q2 3p2q2 5p2q3 5p2q3

p2q3 0 p2q 3p2q2 3p2q2 5p2q3 5p2q3

p3q2 0 p3 2p3q 2p3q 5p3q2 5p3q2

p3q2 0 0 2p3q 2p3q 5p3q2 5p3q2

p4q 0 0 p4 p4 5p4q 5p4q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

(a) (b)

FIG. 5. (a) Schematic representation of column states on a strip of width n = 5, described via seven configurations of empty (open circles)
and occupied sites (filled circles). One associates a restricted probability P(Ci ) to each cluster ending with configuration Ci. (b) There are
two allowed C4 configurations (left columns) giving rise to the matrix element M54 = 2p3q that appears in recursion relation for P(C5) (C5 is
presented by right columns). Due to periodic boundary conditions, two top pairs of sites (enclosed by two rectangles) should be identified with
two corresponding pairs of sites at the bottom of the figure.
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providing that the components of state vector has been cho-
sen so that they follow the order of states as depicted in
Fig. 5(a),

PL = (P1, P2, P3, P4, P5, P6, P7)T , (A2)

where Pi, i = 1, 2, . . . , 7, denotes restricted probability P(Ci )
for a strip of length L (we omitted index L), and similarly in
the case of vector PL+1. It is also easy to see that the state
C1 is unique, d (C1) = 1, while all other states (i �= 1) have
d (Ci ) = 5 different ways to be embedded into a column of
width n = 5.
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