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Enhanced magnetoelectric effect near a field-driven zero-temperature quantum
phase transition of the spin-1/2 Heisenberg-Ising ladder
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The magnetoelectric effect of a spin-1/2 Heisenberg-Ising ladder in the presence of external electric and
magnetic fields is rigorously examined by taking into account the Katsura-Nagaosa-Balatsky mechanism. It is
shown that an applied electric field may control the quantum phase transition between a Néel (stripy) ordered
phase and a disordered paramagnetic phase. The staggered magnetization vanishes according to a power law
with an Ising-type critical exponent 1/8, the electric polarization exhibits a weak singularity, and the dielectric
susceptibility shows a logarithmic divergence at this particular quantum phase transition. The external electric
field may alternatively invoke a discontinuous phase transition accompanied with abrupt jumps of the dielectric
polarization and susceptibility on the assumption that the external magnetic field becomes nonzero.
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I. INTRODUCTION

Although early investigations of the magnetoelectric effect
(MEE) date back to the 19th century [1], this phenomenon is
the subject of renewed research interest mainly due to its wide
application potential in modern technologies [2]. A depen-
dence of the magnetization on an electric field and the electric
polarization on a magnetic field can be described by several
alternative mechanisms. According to the Katsura-Nagaosa-
Balatsky (KNB) mechanism [3] the dielectric polarization
pi, j is connected to the spin current ji, j between a pair of
neighboring spins si and s j through the expression

pi, j ∝ ei, j × ji, j, (1)

where ei, j is the unit vector pointing from the ith to jth lattice
site and the spin current ji, j ∝ si × s j is proportional to the
antisymmetric Dzyaloshinskii-Moriya (DM) term [4,5] on the
assumption that two neighboring spins are coupled through an
isotropic exchange interaction.

An experimental observation of the striking magnetoelec-
tric response of certain quasi-one-dimensional magnetic mate-
rials is another reason for the current substantial effort aimed
at a more comprehensive understanding of the MEE condi-
tioned by the KNB mechanism [6,7]. Up to now, rigorous
studies of the MEE arising from the KNB mechanism have
been limited to a few paradigmatic quantum spin chains such
as the XXZ Heisenberg chain [8], the XY chain with a three-
spin interaction [9,10], the XY zigzag chain [11], and the
quantum compass chain [12].

The main goal of the present paper is to extend the afore-
mentioned class of one-dimensional quantum spin models.

*galisova.lucia@gmail.com

For this purpose, we will examine the spin-1/2 Heisenberg-
Ising ladder simultaneously in a longitudinal magnetic field
and an electric field applied along the y axis in space. As
we demonstrate hereafter, the proposed quantum spin model
represents a very good tool for the rigorous study of an
enhanced MEE conditioned by the KNB mechanism near a
continuous quantum phase transition in the ground state.

The outline of the paper is as follows. In Sec. II we define
the quantum model and briefly mention the basic steps leading
to a rigorous solution of its ground state. The most interesting
numerical results dealing with the MEE will be presented in
Secs. III and IV. Finally, some summarized ideas are posted
in Sec. V.

II. MODEL AND ITS SOLUTION

Let us consider the quantum spin-1/2 Heisenberg-Ising
ladder defined through the Hamitonian (see Fig. 1)

H =
N∑

i=1

[
JH s1,i · s2,i + JI

(
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z
1,i+1 + sz
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)
− h

(
sz

1,i + sz
2,i
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)]
, (2)

where sl,i ≡ (sx
l,i, sy

l,i, sz
l,i ) represents the standard spin-1/2

operator for the ith site of the lth leg (i = 1, 2, . . . , N ; l =
1, 2), the parameter JH > 0 denotes the antiferromagnetic
Heisenberg intrarung interaction, JI > 0 (JI < 0) labels the
antiferromagnetic (ferromagnetic) Ising intraleg interaction,
and N denotes the total number of the ladder’s rungs under
the periodic boundary condition sl,N+1 ≡ sl,1. Finally, the last
two terms in Eq. (2) represent the standard Zeeman term as-
sociated with the magnetic field h applied along the z axis and
the inverse DM term connected to the electric field E applied
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FIG. 1. A part of the quantum spin-1/2 Heisenberg-Ising two-
leg ladder. Thick orange (thin black) lines represent the Heisenberg
intrarung (the Ising intraleg) interactions in the system.

along the y axis, which affects the corresponding component
of the dielectric polarization (1), respectively. By supposing
that the ladder’s rungs are aligned along the x axis in space,
i.e., e(1,i),(2,i) = (1, 0, 0) in Eq. (1), the dielectric polarization
py

i = sy
1,is

x
2,i − sx

1,is
y
2,i is prescribed to the ith rung. Note that

the dielectric dipole moment is imposed to be generated on
the Heisenberg rungs only, whereas the Ising bonds along the
legs do not exhibit any magnetoelectric connection.

The DM term associated with the electric field can be elim-
inated from the Hamiltonian (2) by performing a local spin-
rotation transformation around the z axis by the specific angle
ϕ = tan−1(E/JH ) [13]. As a result, one gets the Hamiltonian
of the spin-1/2 Heisenberg-Ising ladder with the effective
XXZ intrarung interaction and the Ising intraleg interaction
in a magnetic field,

H =
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which can be alternatively viewed as a special case of the
frustrated spin-1/2 Heisenberg-Ising ladders exactly solved
in recent works [14–16]. Therefore, it is sufficient to closely
follow the approach elaborated in Ref. [14] to get a rigorous
solution for the ground state of the investigated quantum spin
model. First, we define the eigenstates of the XXZ bonds on
the rungs,

∣∣φi
0,±

〉 = 1√
2

(|↓1,i ↑2,i〉 ± |↑1,i ↓2,i〉),
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2
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where the states |φi
0,±〉 (|φi

1,±〉) belong to the subspace with
(Sz

i )2 = (sz
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2 = 0 (1). In the next step we introduce

the pseudospin notations for the bond states as |φi
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0,
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i )2 = 1 subspace]. We also need to set
new spin operators s̃α

i (α = x, y, z) acting on the pseudospin
basis as well as the binary variable ni = 0 and 1 assigned to
(Sz

i )2 = 0 and 1 states of the ith rung (dimer), respectively.
By straightforward calculation one can establish the following

relations for the spin operators,

sz
1,i = (2ni − 1)s̃x

i , sz
2,i = s̃x

i ,

sx
1,is

x
2,i = s̃z

i

2
, sy

1,is
y
2,i = (1 − 2ni )

s̃z
i

2
, sz

1,is
z
2,i = 1

4
(2ni − 1).

Consequently, it results in the following equivalent pseu-
dospin representation of the Hamiltonian (3),

H =
N∑

i=1

{
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4
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}
. (5)

It has been verified in Ref. [14] that the lowest-energy
eigenstates derived from the effective Hamiltonian (5) of
the spin-1/2 Heisenberg-Ising ladder in zero magnetic field
(h = 0) follow from two exactly solved spin-chain models,
namely, the spin-1/2 Ising chain in a transverse magnetic
field [17] acquired from the effective Hamiltonian (5) by
assuming all rung states in the (Sz

i )2 = 0 subspace (ni =
0) and the spin-1/2 Ising chain in a longitudinal magnetic
field [18] acquired from the effective Hamiltonian (5) by
considering all rung states in the (Sz

i )2 = 1 subspace (ni = 1).
In a nonzero magnetic field (h �= 0) one additionally has to
consider another exactly solvable effective spin-chain model
acquired from the effective Hamiltonian (5) by assuming a
regular alternation of the singlet and triplet states on odd
and even rungs that correspond to n2i−1 = 0 and n2i = 1 or
vice versa [14]. From this point of view, the exact solution
for a ground state of the spin-1/2 Heisenberg-Ising ladder in
electric and magnetic fields defined through the Hamiltonian
(2) is formally completed.

III. MEE IN ZERO MAGNETIC FIELD

The ground-state energy of the spin-1/2 Heisenberg-Ising
ladder in zero magnetic field (h = 0) follows from the formula

EGS ≡ 1

N
〈H〉 = −JH

4
−

√
J2

H + E2 + |JI |
π

E(a), (6)

where E(a) = ∫ π
2

0 dφ
√

1 − a2 sin2 φ is the complete ellip-
tic integral of the second kind with a2 = 4|λ|

(1+|λ|)2 and λ =
JI√

J2
H +E2

. The ground-state energy (6) has a singularity at

|λ| = 1 (|Ec| =
√

J2
I − J2

H ), which relates to a quantum phase
transition between the quantum paramagnetic (QPM) phase
emergent for |λ| � 1 and either a Néel or stripe-leg (SL)
phase emergent for |λ| > 1 depending on whether JI > 0 or
JI < 0, respectively. While the Néel and stripy spin orders are
quite analogous and can be characterized through the nonzero
staggered magnetization, this order parameter becomes zero
within the disordered QPM phase,

mz
s ≡ 1

2

〈∣∣sz
1,i − sz

2,i

∣∣〉 =
{

1
2

(
1 − 1

λ2

)1/8
if |λ| > 1,

0 if |λ| � 1.
(7)

Obviously, the staggered magnetization mz
s displays a steep

power-law decline with the Ising-type critical exponent
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FIG. 2. The density plot of (a) the staggered magnetization mz
s and (b) the dielectric polarization p as ground-state phase diagrams in the

E/JH -JI/JH plane, together with the electric field variations of (c) the staggered magnetization mz
s and the dielectric polarization p, and (d) the

dielectric susceptibility χd for the interaction ratios JI/JH = ±0.5, ±2.0, ±3.0.

β = 1/8 at the quantum phase transition |λ| = 1 [see
Figs. 2(a) and 2(c)]. Contrary to this, the dielectric polariza-
tion is governed by the formula

p ≡ 〈
py

i

〉 = 1

2π

E√
J2

H + E2
[(1 + |λ|)E(a) + (1 − |λ|)K(a)],

(8)

where K(a)= ∫ π
2

0 dφ(1−a2 sin2 φ)−1/2 is the complete elliptic
integral of the first kind. Formula (8) implies a smoother
change of the dielectric polarization with only a weak-
type singularity |p − pc| ∼ (E − Ec) ln |E − Ec| when cross-
ing the respective ground-state phase boundary [see Figs. 2(b)
and 2(c)]. Note furthermore that the dielectric polarization is
much higher in the disordered QPM phase than in the ordered
Néel and SL phases as evidenced by a density plot displayed
in Fig. 2(b). The weak singularity of p at the quantum critical
point [a solid circle in Fig. 2(c)] is more markedly evidenced
through a logarithmic divergence of the dielectric susceptibil-
ity χd = ∂ p

∂E ∼ − ln |E − Ec| at the critical electric field Ec, as
shown in Fig. 2(d).

IV. MEE IN NONZERO MAGNETIC FIELD

Two other ground states may emerge due to a nonzero
magnetic field (h �= 0). At high enough magnetic fields
one may detect the classical ferromagnetic (FM) phase

characterized by

EFM = JH

4
+ JI

2
− h, mz

s = 0, p = 0, χd = 0. (9)

In addition, the staggered bond (SB) phase with a reg-
ular alternation of singlet and polarized triplet states
characterized by

ESB = −1

4

√
J2

H + E2 − h

2
, mz

s = 1

4
,

p = 1

4

E√
J2

H + E2
, χd = 1

4

J2
H(

J2
H + E2

)3/2 , (10)

may appear at moderate magnetic fields provided that the
Ising intraleg coupling is of an antiferromagnetic nature JI >

0. The typical ground-state phase diagram of the spin-1/2
Heisenberg-Ising ladder with ferromagnetic Ising intraleg
coupling is illustrated in Fig. 3 in the form of density plots of
the staggered magnetization mz

s [Fig. 3(a)] and the dielectric
polarization p [Fig. 3(b)] in the E/JH -h/JH plane. Obviously,
Figs. 3(a) and 3(b) repeatedly imply a competitive character of
the magnetic and dielectric spin orders when an enhancement
of the dielectric polarization is accompanied with a reduction
of the staggered magnetization or vice versa.

Furthermore, Figs. 3(c) and 3(d) display a few typical vari-
ations of the dielectric polarization and susceptibility across
continuous and discontinuous phase transitions, which may
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FIG. 3. The density plots of (a) the staggered magnetization mz
s and (b) the dielectric polarization p as ground-state phase diagrams in the

E/JH -h/JH plane for the interaction ratio JI/JH = −2 along with the electric field variations of (c) the dielectric polarization p and (d) the
susceptibility χd for the interaction ratio JI/JH = −2 and three different magnetic fields h/JH = 0.3, 0.6, 1.2.

be apparently controlled by external electric and magnetic
fields. For sufficiently low magnetic fields (e.g., h/JH = 0.3)
the dielectric polarization displays a continuous rise with a
weak singularity at the quantum phase transition between
the SL and QPM phases [a solid circle in Fig. 3(c)], at
which the dielectric susceptibility diverges logarithmically,
as shown in Fig. 3(d). Contrary to this, the dielectric polar-
ization and susceptibility may exhibit abrupt jumps related
to a discontinuous phase transition between the FM and SL
phases at moderate magnetic fields (e.g., h/JH = 0.6) before
achieving the electric-field-driven quantum phase transition
SL-QPM.

As a comparison, a typical ground-state phase diagram of
the spin-1/2 Heisenberg-Ising ladder with antiferromagnetic
Ising intraleg coupling is displayed in Fig. 4 in the form of
density plots of the staggered magnetization mz

s [Fig. 4(a)]
and the dielectric polarization p [Fig. 4(b)] in the E/JH -h/JH

plane. Evidently, the main qualitative difference with respect
to the previous case lies in the presence of a SB phase at
moderate magnetic fields. Owing to this fact, one may detect
a much greater versatility of the electric field variations of
the dielectric polarization and susceptibility, as demonstrated
in Figs. 4(c) and 4(d). At low enough magnetic fields (e.g.,
h/JH = 1.0), the dielectric polarization exhibits a smooth
continuous rise upon strengthening the electric field with
a weak singularity at the respective quantum critical point
[a solid circle in Fig. 4(c)], which becomes more evident

through a logarithmic divergence of the dielectric susceptibil-
ity [see Fig. 4(d)]. By contrast, one may detect a remarkable
dependence of the dielectric polarization on the electric field
with either one or two discontinuous jumps, which relate to
discontinuous phase transitions driven by the external electric
field at moderate and high magnetic fields (e.g., h/JH = 2.1,
2.5, and 3.1).

V. CONCLUSIONS

To conclude, in the present paper, we have exactly exam-
ined a ground state of the spin-1/2 Heisenberg-Ising ladder in
external electric and magnetic fields. It has been demonstrated
that the ground-state spin arrangements may be basically
manipulated through the MEE conditioned by the KNB mech-
anism via an external electric field, which additionally affords
an alternative tool to control the quantum phase transition
between the Néel (or stripy) quantum ordered phase and dis-
ordered quantum paramagnetic phase at zero magnetic field. It
turns out, moreover, that an interplay between the electric and
magnetic fields may cause the existence of either one or two
discontinuous phase transitions as well as a single continuous
quantum phase transition. Although the investigated quantum
spin chain does not exhibit spontaneous multiferroic behavior,
the feedback control of magnetic spin orderings through an
external electric field might be of immense technological
relevance because of the wide application potential of mul-
tifunctional materials.
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FIG. 4. The density plots of (a) the staggered magnetization mz
s and (b) the dielectric polarization p as ground-state phase diagrams in

the E/JH -h/JH plane for the interaction ratio JI/JH = 2 along with electric field variations of (c) the dielectric polarization p and (d) the
susceptibility χd for the interaction ratio JI/JH = 2 and four different magnetic fields h/JH = 1.0, 2.1, 2.5, 3.1.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education, Science, Research and Sport of the Slovak Republic under Grant No.
VEGA 1/0043/16 and by the Slovak Research and Development Agency under Contract No. APVV-16-0186.

[1] M. Fiebig, J. Phys. D 38, R123 (2005), and references therein.
[2] Y. Wang, J. Li, and D. Viehland, Mater. Today 17, 269 (2014).
[3] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett.

95, 057205 (2005).
[4] I. Dzyaloshinskii, J. Phys. Chem. Solids. 4, 241 (1958).
[5] T. Moriya, Phys. Rev. 120, 91 (1960).
[6] Y. Yasui, Y. Naito, K. Sato, T. Moyoshi, M. Sato, and K.

Kakurai, J. Phys. Soc. Jpn. 77, 023712 (2008).
[7] S. Seki, T. Kurumaji, S. Ishiwata, H. Matsui, H. Murakawa, Y.

Tokunaga, Y. Kaneko, T. Hasegawa, and Y. Tokura, Phys. Rev.
B 82, 064424 (2010).

[8] M. Brockmann, A. Klümper, and V. Ohanyan, Phys. Rev. B 87,
054407 (2013).

[9] O. Menchyshyn, V. Ohanyan, T. Verkholyak, T. Krokhmalskii,
and O. Derzhko, Phys. Rev. B 92, 184427 (2015).

[10] J. Sznajd, Phys. Rev. B 97, 214410 (2018).
[11] O. Baran, V. Ohanyan, and T. Verkholyak, Phys. Rev. B 98,

064415 (2018).
[12] W.-L. You, G.-H. Liu, P. Horsch, and A. M. Oleś, Phys. Rev. B
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[14] T. Verkholyak and J. Strečka, J. Phys. A: Math. Teor. 45, 305001

(2012).
[15] T. Verkholyak and J. Strečka, Condens. Matter Phys. 16, 13601

(2013).
[16] W. Brzezicki and A. M. Oleś, Eur. Phys. J. B 66, 361
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