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Self-diffusion in a quasi-two-dimensional gas of hard spheres
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A quasi-two-dimensional system of hard spheres strongly confined between two parallel plates is considered.
The attention is focused on the macroscopic self-diffusion process observed when the system is seen from
above or from below. The transport equation, and the associated self-diffusion coefficient, are derived from
a Boltzmann-Lorentz kinetic equation, valid in the dilute limit. Since the equilibrium state of the system is
inhomogeneous, this requires the use of a modified Chapman-Enskog expansion that distinguishes between
equilibrium and nonequilibrium gradients of the density of labeled particles. The self-diffusion coefficient
is obtained as a function of the separation between the two confining plates. The theoretical predictions are
compared with molecular dynamics simulation results and a good agreement is found.
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I. INTRODUCTION

The interest in gas and liquid microflows has largely in-
creased in the last decades. This has been motivated by the
development of new technologies allowing the construction
and manipulation of microfluidic devices. The efficiency of
these devices depends rather strongly on the properties of the
transport processes taking place in the fluid. Self-diffusion is
one of these fundamental processes. For instance, the analysis
of self-diffusion provides relevant information on the structure
of porous media. Nevertheless, its experimental measurement,
and also the measurement of the other transport coefficients,
in small channels or porous media presents many difficulties.
Much of what is known follows from molecular dynamics
simulation results [1–3], although there have been also pro-
posals of a general statistical mechanics theory for transport
processes of fluids under confined conditions [4].

In this paper, self-diffusion is studied in a strongly confined
dilute gas of hard spheres, namely, the space accessible to
the particles is limited by two parallel plates separated by
a distance smaller than two particle diameters. As a conse-
quence of this geometry, particles cannot jump onto each other
and the system can be considered as quasi-two-dimensional
(Q2D). Although it is known that in real devices the nature
of the walls plays a crucial role in determining the self-
diffusion process [4], in this paper the interest focuses on
isolating the effect of the confinement, as a restriction of the
space accessible to the system. For this reason, the simplest
model of confining walls is considered: elastic hard walls. For
this system, a Boltzmann kinetic equation has been derived
[5,6]. The equation obeys a modified H theorem implying the
approach to the equilibrium state from any arbitrary initial
condition. Although the equilibrium velocity distribution is
Gaussian, the density is not uniform, as a consequence of the
confinement. There is a density gradient in the direction per-
pendicular to the confining walls. The equilibrium predictions
following from the Boltzmann equation agree with results de-
rived by means of equilibrium statistical mechanics [7,8] and
also with molecular dynamics simulation measurements [5].

From the Boltzmann equation, it is easy to construct the
corresponding Boltzmann-Lorentz equation describing self-
diffusion at equilibrium. Once a kinetic equation has been
formulated to describe the dynamics of a defined system,
there is a well established procedure to derive macroscopic or
hydrodynamic transport equations from it [9]. Although the
method has been mainly applied to study transport processes
in the bulk of a system, and those processes can be quite
different in highly confined geometries, the expectation is
that the method can be adapted to describe also macroscopic
transport in confined systems. On the other hand, one must
be aware that there are significant differences to confront. The
equilibrium state of a strongly confined system is not homoge-
neous, as mentioned, so that the presence of gradients cannot
be identified always with the existence of nonequilibrium
macroscopic flows. Moreover, hydrodynamic length scales,
and hence hydrodynamic behavior, are not to be expected
in the directions of high confinement, in our particular sys-
tem, perpendicular to the confining plates. Hydrodynamiclike
equations can be useful only to describe the macroscopic
motion of the fluid in the directions in which particles of the
fluid can move distances much larger that the mean free path.

Self-diffusion is considered as the prototype of transport
processes. For bulk systems of hard spheres, it has been the
testing ground for many proposed approximations introduced
in the context of nonequilibrium statistical mechanics. It is
worth mentioning that the methods have also been extended to
systems composed of inelastic hard spheres [10–12], although
in this case there is no equilibrium state and the homogeneous
reference state in which self-diffusion is studied is time de-
pendent. This has some similarity with confined systems, as
the one considered here, in which the equilibrium reference
state is inhomogeneous.

In the next section, the Boltzmann equation for the con-
fined Q2D system is reviewed, and particularized for self-
diffusion processes in equilibrium by differentiating between
labeled and unlabeled particles. The expression for the equi-
librium density profile along the direction perpendicular to
the plates is indicated. From the kinetic equation, the exact
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balance equation for the number density of labeled particles
is derived. The equation involves the flux of particles, that in
order to get a closed description must be expressed in terms
of the corresponding density field. The formal procedure to
do the above is discussed in Sec. III, by means of a modi-
fied Chapman-Enskog expansion, that takes into account the
density inhomogeneity of the equilibrium state. In its original
formulation [13,14], the idea of the Chapman-Enskog method
is to obtain a “normal solution” of the kinetic equation in the
form of a gradient expansion around a local-equilibrium state.
A normal solution has the property that all its space and time
dependence occurs through the macroscopic hydrodynamic
fields. In the case of self-diffusion, the only hydrodynamic
field is the number density of labeled particles. Since, in the
particular system we are considering, the stationary equilib-
rium state is not homogeneous, it is clear that the existence
of a density gradient is not enough to imply the presence
of a macroscopic flow of particles in the system. In other
words, the zeroth order approximation in the expansion must
incorporate those gradients that are associated to equilibrium
inhomogeneities. Then, the concept of the normal solution
itself must be generalized. The general issue of formulating
a modified Chapman-Enskog expansion for fluctuations about
a nonequilibrium state has been addressed in a seminal paper
by Lutsko [15]. The expansion employed here differs for the
method developed in that work. A short comparison of both
approaches is presented in Appendix A. The reason for the
difference is that we are dealing with an equilibrium state and
not with a nonequilibrium situation. On the other hand, it must
be stressed that the study of transport processes in systems
exhibiting an inhomogeneous steady state also requires a
modification of the usual Chapman-Enskog expansion, as it
is discussed in this paper.

The practical application of the modified Chapman-Enskog
method requires, as the original one, to make some kind
of approximation to get an explicit expression for the self-
diffusion coefficient. Usually, an expansion in some complete
set of orthogonal polynomials is used, and only the leading
term is kept often. In addition, to render the mathemati-
cal complexity following from the confinement analytically
tractable, an expansion in the separation of the two plates
is performed. Both approximations are discussed in Sec. IV,
where the resulting expression for the self-diffusion coeffi-
cient is given. The theoretical predictions are compared with
molecular dynamics simulation results in Sec. V. There, it
is shown that the projection of the motion of the particles
on a plane parallel to the plates has a diffusive character.
The diffusion coefficient is measured from the simulation
data for the mean square displacement of the particles as a
function of time. The obtained values are in good agreement
with the theoretical expression. The paper ends in Sec. VI
with a short summary of the results and a discussion of
possible extensions. Appendices B and C contain details of
the calculations mentioned throughout the paper.

II. THE KINETIC EQUATION AND
THE CONSERVATION LAW

The system considered is composed of N identical hard
spheres of diameter σ and mass m, confined between two

parallel hard plates located at z = 0 and h, respectively, being
σ � h < 2σ . No external force is acting on the particles. In
particular, the effect of gravity is assumed to be negligible.
Collisions between particles and also of the particles with the
plates are elastic. Although all the spheres are mechanically
identical, Nl of them have a label, or color, that differentiates
them from the others. The one-particle distribution function of
labeled particles, providing the density of particles at a given
position r and with a given velocity v at time t , will be denoted
by fl (r, v, t ), while the one-particle distribution function for
all particles, labeled and unlabeled, will be f (r, v, t ). Here
attention will be restricted to situations in which the system is
very dilute and at equilibrium with a temperature T . Then, it
is known that [7,8]

f (r, v, t ) → feq(z, v) = n0(z)ϕMB(v), (1)

where ϕMB is the Maxwellian distribution,

ϕMB(v) =
(

m

2πkBT

)3/2

e− mv2

2kBT , (2)

and

n0(z) = N

Ab
exp

[
a

(
z − h

2

)2
]

(3)

with

b =
(π

a

)1/2
erfi

[√
a(h − σ )

2

]
. (4)

In the above expressions, kB is the Boltzmann constant, A is
the area of each of the parallel plates, a = πN/A, and erfi(x)
is the imaginary error function:

erfi(x) ≡ π−1/2
∫ x

−x
dy ey2

. (5)

The density profile given by Eq. (3) is a consequence of the
confinement of the system and it has been derived by means
of both equilibrium statistical mechanics methods [7] and
kinetic theory [5,6]. Moreover, it has been shown to be in good
agreement with molecular dynamics simulation results [5].

The distribution function of labeled particles obeys a mod-
ified Boltzmann-Lorentz (BL) equation that follows by repro-
ducing step by step the arguments used in Ref. [6]. Taking into
account that labeled particles collide with labeled as well as
unlabeled particles and that the total system is at equilibrium,
it is readily obtained that(

∂

∂t
+ v · ∇

)
fl (r, v, t ) = �

[
r, v| feq

]
fl (r, v, t ), (6)

where � is the modified BL linear collision operator
defined by

�[r, v| feq]φ(r, v) ≡ σ

∫
dv1

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ |g · σ̂|

×[	(g · σ̂ ) feq(z1, v
′
1)φ(r, v′)

−	(−g · σ̂ ) feq(z1, v1)φ(r, v)], (7)

for arbitrary φ(r, v). Here g ≡ v1 − v is the relative velocity
of the two colliding particles prior to the collision, 	 is the
Heaviside step function, and v′ and v′

1 are the velocities of the
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two particles after the collision defined by the unit vector σ̂

joining the centers of the two particles at contact, so that

v′ = v + (g · σ̂ )̂σ,

v′
1 = v1 − (g · σ̂ )̂σ. (8)

In the coordinate system we are using, it is

σ̂ = {sin θ sin ψ, sin θ cos ψ, cos θ} (9)

with

cos θ = z1 − z

σ
, sin θ � 0. (10)

The operator � has the relevant property that, for any pair of
functions φ(v) and χ (v), it is∫

dv φ(v)�[r, v| feq]χ (v) = σ

∫
dv

∫
dv1

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ

×|g · σ̂|	(−g · σ̂) feq(z, v1)

×χ (v)[φ(v′) − φ(v)]. (11)

Since feq(z, v) is the steady solution of the nonlinear Boltz-
mann equation for the confined gas, it verifies [5]

vz
∂

∂z
feq(z, v) = �[r, v| feq] feq(z, v). (12)

Equation (6) holds inside the system and it must be com-
plemented by appropriate boundary conditions. In our case,
those conditions must be consistent with the form of the
equilibrium distribution function given in Eq. (1). A more
detailed discussion of this issue is given in Ref. [6]. Labeled
particles interchange momentum and kinetic energy with the
rest of particles in the system and, therefore, these quantities
are not collisional invariants of the BL operator �. Only the
number of labeled particles is conserved and, consequently, its
time evolution obeys a conservation law. Define the number
density of labeled particles, nl (r, t ), in the usual way:

nl (r, t ) ≡
∫

dv fl (r, v, t ). (13)

Velocity integration of the BL equation leads to the conserva-
tion law

∂

∂t
nl (r, t ) + ∇ · Jl (r, t ) = 0, (14)

where the flux of labeled particles, Jl , is defined by

Jl (r, t ) =
∫

dv v fl (r, v, t ). (15)

Upon deriving Eq. (13), the property given in Eq. (11) has
been used. Of course, the BL equation admits the steady
solution

fl,eq(z, v) = nl,0(z)ϕMB(v), (16)

with

nl,0(z) = Nl

N
n0(z) = Nl

Ab
exp

[
a

(
z − h

2

)2
]
, (17)

describing the long time equilibrium state, in which the la-
beled particles are spatially distributed in the same way as
the unlabeled ones.. The aim here is to derive an equation for

the transport of labeled particles occurring in the horizontal
plane, i.e., parallel to the confining plates. In other words, we
are interested in the macroscopic motion of labeled particles
when seen from above or from below. Then, we define the
number density of labeled particles in the horizontal plane by

nl=(r=, t ) =
∫ h−σ/2

σ/2
dz nl (r, t ), (18)

where r= denotes the vector projection of r on a plane parallel
to the plates. From Eq. (14), it follows that

∂

∂t
nl=(r=, t ) = −

∫ h−σ/2

σ/2
dz ∇ · Jl (r, t ) (19)

and, taking into account that Jz vanishes at z = σ/2 and h −
σ/2 due to the hard walls [16,17], the above equation becomes

∂

∂t
nl=(r=, t ) = −∇= · J l=(r=, t ), (20)

with

J l=(r=, t ) =
∫ h−σ/2

σ/2
dz

∫
dv v= fl (r, v, t ) (21)

and ∇= defined in the plane z = const. To convert Eq. (20)
into a closed equation for the horizontal density of labeled
particles, one must derive an expression for the flux J = in
terms of nl=(r=, t ) and its spatial derivatives. The standard
procedure to do so, starting from a kinetic equation, is the
Chapman-Enskog expansion [13,14], the goal of which is to
construct a so-called normal solution of the kinetic equation.
The latter is defined as a distribution function in which all the
space and time dependence occurs through the hydrodynamic
fields associated to the conserved quantities. In the present
case, the only hydrodynamic field is the number density
nl (r, t ) and, therefore, a normal distribution has the form

fl (r, v, t ) = fl [v|nl (r, t )]. (22)

This is a functional dependence, so that gradients of all
orders of nl are involved. Notice that the normal distribution
associated to the kinetic equation (5) is a functional of nl ,
while in order to close Eq. (19) we need to express J = in
terms of nl=. It will be later seen how this occurs due to the
peculiarities of the geometry of the system we are dealing
with.

The normal form of the distribution function is assumed to
be reached from any arbitrary initial distribution, fl (r, v, 0),
for large enough times. To find the normal solution, the
Chapman-Enskog algorithm uses perturbation expansion in
the gradients of the hydrodynamic fields. Transport phenom-
ena occur due to deviations from the equilibrium state, that
in the present case happens to be inhomogeneous. Therefore,
gradient expansion of nl,0(z) will be avoided. On the other
hand, it is important to establish that the method to be used
allows for arbitrary large deviations of nl (r, t ) from its equi-
librium value nl,0(z). In particular, no linearization around
δnl ≡ nl − nl,0 will be made.

012102-3



BREY, GARCÍA DE SORIA, AND MAYNAR PHYSICAL REVIEW E 101, 012102 (2020)

III. THE MODIFIED CHAPMAN-ENSKOG EXPANSION
AROUND THE INHOMOGENEOUS EQUILIBRIUM STATE

Let us introduce a dimensionless function, ν(r, t ),
defined by

nl (r, t ) = nl,0(z)ν(r, t ), (23)

so that at equilibrium it is ν = 1. To formulate the perturbation
theory we are going to develop, it is convenient to introduce
a formal uniformity parameter ε, and to decompose the ac-
tion of the gradient operator on the labeled particles density
field as

∇nl (r, t ) = ∇(0)nl (r, t ) + ε∇(1)nl (r, t ), (24)

where, by definition, it is

∇(0)nl (r, t ) ≡ ν(r, t )∇nl,0(z) = ν(r, t )
dnl,0(z)

dz
êz, (25)

∇(1)nl (r, t ) ≡ nl,0(z)∇ν(r, t ). (26)

In Eq. (25), the unit vector along the positive direction of the
z axis, êz, has been introduced.

Given the form of the normal distribution we are looking
for, the above separation of the gradient operator will generate
an expansion of the one-particle distribution function as

fl [v|nl (r, t )] = f (0)
l [v|nl (r, t )] + ε f (1)

l [v|nl (r, t )]

+ ε2 f (2)
l [v|nl (r, t )] + . . . , (27)

where f (0)
l is of zeroth order in ∇ν, f (1)

l is linear in ∇ν, f (2)
l

is linear in ∇2ν and (∇ν)2, etc. On the other hand, at each
order of the perturbation, the distribution can be a function of
the exact density field, nl (r, t ), as well as all gradients of the
equilibrium density, nl,0(z).

The expansion of the one-particle distribution function
generates a similar one for the flux of labeled particles:

Jl (r, t ) =
∞∑
j=0

ε jJ ( j)
l (r, t ), (28)

J ( j)
l (r, t ) ≡

∫
dv v f ( j)

l (r, v, t ). (29)

Space and time derivatives of the distribution function are
related by Eq. (14) and, therefore, it is necessary to carry out
a multiscale expansion of the balance equation, and to write

∂ fl

∂t
= ∂

(0)
t fl + ε∂

(1)
t fl + ε2∂

(2)
t fl + · · · . (30)

In this expansion, it is understood that the normal form of
the distribution function being constructed and the balance
equation (14) are used to express the time derivative at each
order as a function of the gradients of the density field.

The zeroth order distribution, f (0)
l , is defined such that it

gives the exact value of the density field of labeled particles,
i.e., ∫

dv f (0)
l [v|nl (r, t )] = nl (r, t ) (31)

and, consistently, it must be∫
dv f ( j)

l [v|nl (r, t )] = 0, (32)

for j > 0, so that the definition in Eq. (13) is preserved.

Using the ε expansion of the several quantities generated
above, it follows that the zeroth order kinetic equation is(
∂

(0)
t f (0)

l + v · ∇(0)
)

f (0)
l [v|n(r, t )] = �[r, v| feq] f (0)

l [v|n(r, t )]

(33)

and the zeroth order balance equation is

∂
(0)
t nl + ∇(0) · J (0)

s = 0. (34)

Taking into account the definition of the operator ∇(0) given
in Eq. (25), it is seen that Eq. (12) implies

v · ∇(0)ν(r, t ) fl,eq(z, v) = �[r, v| feq]ν(r, t ) fl,eq(z, v), (35)

since the factor ν(r, t ) cancels out at both sides of the equa-
tion. Comparison of this equation with Eq. (33) leads to the
identification of

f (0)
l [v|n(r, t )] = ν(r, t ) fl,eq(z, v) = nl (r, t )ϕMB(v) (36)

as the normal solution of Eq. (33). Indeed, with this identifi-
cation it is

J (0)
s =

∫
dv v f (o)

l [v|n(r, t )] = 0 (37)

and, hence, from Eq. (34),

∂
(0)
t nl (r, t ) = 0 (38)

and, consequently,

∂
(0)
t f (0)

l [v|n(r, t )] = 0. (39)

Moreover, the condition given by Eq. (31) is trivially verified.
The result in Eq. (36) shows that the zeroth order distribu-

tion function is obtained from the equilibrium distribution of
labeled particles by replacing the equilibrium density profile,
nl,0(z), by the actual nonequilibrium density field, nl (r, t ).
This is the extension of the usual concept of local equilibrium
to the present case. The simplicity of this result is due to
the fact that we are considering an equilibrium reference
state, although it is inhomogeneous. The general issue of an
expansion around an arbitrary nonequilibrium state has been
discussed in detail in Ref. [15]. It is worth stressing that the
modified Chapman-Enskog expansion we are developing here
differs formally from that used by Lutsko [15]. A short com-
parison of both expansion procedures is given in Appendix A.

Next, the equation for the first order distribution, f (1)
l , has

to be considered. Collecting terms in the expansion of Eq. (6)
to first order in ε, it is found that

∂
(1)
t f (0)

l + ∂
(0)
t f (1)

l + v · ∇(0) f (1)
l + v · ∇(1) f (0)

l

= �[r, v| feq] f (1)
l . (40)

The first order balance equation is

∂
(1)
t nl (r, t ) = −(∇ · Jl )

(1) = −∇(0) · J (1)
l , (41)

since it has been seen that J (0)
l vanishes. Then, using that f (1)

l
is a normal distribution, Eq. (40) is equivalent to(∇(0) · J (1)

l

)
ϕMB(v)−vz

∂nl,0(z)

∂z
ν(r, t )

∂ f (1)
l

∂nl
+ �[r, v| feq] f (1)

l

= [v · ∇ν(r, t )] fl,eq(z, v). (42)
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We look for solutions to this equation that must be propor-
tional to ∇ν(r, t ) by construction, i.e., they have the form

f (1)
l (r, v, t ) = K(v) · ∇ν(r, t ), (43)

where K(v) can also depend on r and t through nl (r, t ), nl,0(z),
and the derivatives of the latter. Use of this expression into the
expansion of Eq. (21) in powers of ε leads to

J (1)
l= (r=, t ) =

∫ h−σ/2

σ/2
dz

∫
dv v=K(v) · ∇ν(r, t ). (44)

Given the arbitrariness of ∇ν(r, t ), substitution of Eq. (43)
into Eq. (42) yields

∂nl,0

∂z
ϕMB(v)ν(r, t )

∂

∂nl (r, t )

∫
dv′ v′

zK(v′)

−∂nl,0

∂z
ν(r, t )vz

∂K(v)

∂nl (r, t )

+�[r, v| feq]K(v) = v fl,eq(z, v). (45)

Integration of this equation over the velocity leads to a trivial
identity, with no information about the function K(v). Now,
it is noticed that the normal form of the distribution function
requires that

Kj (v) = Cjv j�(v) (46)

(with no implicit summation over the repeated index) since v

is the only vector on which K(v) can depend. The coefficients
Cj may be functions of the density field of labeled particles,
nl (r, t ), and also of nl,0(z) and its derivatives, and � is
an isotropic function of the velocity. Actually, because of
dimensionality reasons and the definitions of ∇ (0) and ∇(1),
the quantities Cj are expected to be proportional to nl,0(z).
Substitution of Eq. (46) into Eq. (45), multiplication of the
equation by vi, and, finally, integration over v gives

Cj

∫
dv vi�[r, v| feq]v j�(v) = δi j

kBT

m
nl,0(z). (47)

By using the explicit form of the � operator, given in Eq. (6),
it is verified that the left hand side of the above equation is
diagonal, i.e., proportional to δi j , as required by consistency.
In the next section, the diffusion equation for the density of
labeled particles will be derived by solving Eq. (47) in some
approximation.

IV. THE DIFFUSION EQUATION IN
THE HORIZONTAL PLANE

A direct consequence of Eq. (46) is that the horizontal flux
of labeled particles given by Eq. (44) takes the form

J (1)
l=,i(r=, t ) =

∫ h−σ/2

σ/2
dz

∫
dv Civ

2
i �(v)

∂ν(r, t )

∂ri
, (48)

where i indicates any of the two components, x or y, of a vector
in the horizontal plane. Because of symmetry, it is Cx = Cy =
C=, so that the above equation is also equivalent to

J (1)
l= (r=, t ) = 1

2

∫ h−σ/2

σ/2
dz

∫
dv C=v2

=�(v)∇=ν(r, t ). (49)

To proceed, the first Sonine polynomial approximation for
K(v) will be considered [9]. In this approximation, �(v) ∼
ϕMB(v), and

J (1)
l= (r=, t ) = kBT

m

∫ h−σ/2

σ/2
dz C=∇=ν(r, t ). (50)

The determination of C= in the first Sonine approximation,
requires one to evaluate the integral [see Eq. (47)]

I= ≡
∫

dv vi�[r, v| feq]viϕMB(v). (51)

Again, it is i = x, y. By using the property given in Eq. (11)
and introducing the center of mass velocity, G ≡ (v + v1)/2,
it is obtained that

I= = σ

2

∫
dg

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ n0(z1)|g · σ̂|2σ̂xgx

×[	(−g= · σ=) − 2	(g · σ̂)θ (−g= · σ=)]χ (g), (52)

with

χ (g) ≡
(

m

4πkBT

)3/2

e− mg2

4kBT . (53)

In the derivation of Eq. (52) use has been made of the identity

	(−g · σ̂ ) = 	(−g= · σ=) − 	(g · σ̂)	(−g= · σ=)

+ 	(−g · σ̂ )	(g= · σ=), (54)

as well as of the symmetry of the integrand under the change
of g into −g. The analytical evaluation of the integrals on the
right hand side of Eq. (52) seems quite involved, and to get
a simple expression some kind of expansion has been consid-
ered. Details of the calculations are given in Appendix B. The
result is

I= = −2π1/2σ

(
kBT

m

)3/2 ∫ h−σ/2

σ/2
dz1 no(z1)(1 − cos2 θ )

+ O(B4[z|n0]), (55)

where

Br[z|n0] ≡
∫ h−σ/2

z/2
dz1 n0(z1) cosr θ. (56)

In the following, terms of order Br with r � 4 will be ne-
glected. More about the meaning of this approximation will
be said later on. Substitution of Eq. (55) into Eq. (47) gives

Cx = −
(

kBT

m

)1/2 nl,0(z)

2π1/2σ

(
N

A
− B2[z|n0]

)−1

≈ −
(

kBT

m

)1/2 nl,0(z)A

2π1/2σN

(
1 + A

N
B2[z|n0]

)
. (57)

Here it has been used that in the approximation we are
considering it is AB2 
 N , as it will be explicitly shown
below. When the above expression for Cx is substituted into
Eq. (49), it is found that

J (1)
l= (r=, t ) = −D0

[
∇=nl=(r=, t ) + A

N

∫ h−σ/2

σ/2
dz nl,0(z)

× B2[z|n0]∇=ν(r, t )

]
. (58)
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The coefficient

D0 = A

2Nπ1/2σ

(
kBT

m

)1/2

(59)

is the same as the equilibrium self-diffusion coefficient for a
two-dimensional system of hard disks of diameter σ with a
superficial density N/A.

The structure of the expression for Cx as given in Eq. (57)
deserves some comments. By construction, f (1)

l is assumed
to have a normal form. Hence, Kx, introduced in Eq. (43),
and also Cx, defined in Eq. (46), must also be normal. But
the expression derived for Cx, and reported in Eq. (57),
depends explicitly on z through B2 and, consequently, some
apparent inconsistency shows up. Nevertheless, the analysis
of the expression of B2 given in Appendix C shows that its z
dependence can be eliminated in favor of nl,0(z), so that no
contradiction exists.

The first term on the right hand side of Eq. (58) has the
form of the flux of particles describing a self-diffusion process
in the horizontal plane. To express the other term in a similar
way, it will be taken into account that the relative variation
of n0(z) along its definition interval, σ/2 < z < h − σ/2, is
small. This is illustrated, for instance, in Fig. 2 of Ref. [5].
Then, the following approximation is made:

B2[z|n0] → B2 = 1

h − z

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1

N (z − z1)2

A(h − σ )σ 2

= N (h − σ )2

6Aσ 2
. (60)

Then, this estimate consists in replacing the equilibrium den-
sity of the fluid by its average along the vertical direction and,
afterwards, in doing the same with the resulting function of z.
Substitution of Eq. (60) into Eq. (58) gives

J (1)
l= (r=, t ) = −D∇=nl=(r=, t ), (61)

with the modified diffusion coefficient given by

D = D0D∗(h), (62)

D∗(h) = 1 + 1

6

(
h

σ
− 1

)2

. (63)

Combination of Eqs. (19) and (61) results in the diffusion
equation of labeled particles as projected on the horizontal
plane:

∂

∂t
nl=(r=, t ) = D∇2

=nl=(r=, t ). (64)

Therefore, the effective self-diffusion coefficient associated to
the quasi-two-dimensional motion observed when the system
is seen from above increases as the separation h between
the two plates increases. This result has been derived when
h is close to σ , and is expected to be qualitatively valid up
to h = 2σ . A point to be noticed is that the correction to
the two-dimensional bulk diffusion coefficient in Eq. (63)
is independent from the density and, therefore, it cannot be
interpreted as a higher order in the density effect.

0 200 400 600 800

t[k
B
T(0)/m]

1/2
/σ

0

20000

40000

60000

<
(Δ

r/
σ)

2 >

h/σ=1.9
h/σ=1.2

FIG. 1. Mean square displacement of the particles as a function
of time for two values of the separation of the two plates, as indicated
in the inset. Both quantities are measured in the dimensionless units
indicated in the labels.

V. MOLECULAR DYNAMICS SIMULATION RESULTS

In order to check the accuracy of the theoretical predictions
obtained in the previous sections, molecular dynamics (MD)
simulations of a system of hard spheres have been performed.
The simulation technique was based on the “event driven”
algorithm [18]. The domain was a square base rectangular
parallelepiped limited by the two plates, and doubly peri-
odic boundary conditions in the plane parallel to the plates
were employed. Initially, all the particles were uniformly
distributed and the velocity distribution was a Gaussian with
temperature T (0). It was checked that the system remained
homogeneous when projected on the horizontal plane and that,
after a transient, a stationary equilibrium state was reached.
The results to be reported in the following correspond to a
system of N = 500 particles and the value of A was such that
N/A = 0.019σ 2.

The diffusion equation (64) implies that the mean square
deviation of the projected position r= of labeled particles after
a time interval t is

〈(�r=)2; t〉 = 4Dt . (65)

The angular brackets denote the average over trajectories
of different labeled particles. The method used to measure
the diffusion coefficient in the simulation is directly based
on the above equation. In Fig. 1, 〈(�r=)2〉 is plotted as a
function of time. The data have been obtained by averaging
over all the particles and also over 20 different trajectories
of the system, in order to reduce the statistical uncertainties.
Results for two different separations h of the two plates are
reported. They correspond to values close to the lowest and
highest limits for which the theory is expected to apply. It is
observed that, after a short transient period of the order of
a few collisions per particle, the mean square displacement
becomes a linear function of time, indicating the diffusive
nature of the motion. Similar results have been obtained
for other values of h. From each value of the slope in the
linear region, the diffusion coefficient D has been computed
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1 1.2 1.4 1.6 1.8 2
h/σ

0.95

1

1.05

1,1

1.15

D
*

FIG. 2. The dimensionless reduced self-diffusion coefficient D∗,
defined in Eq. (62), as a function of the distance h between the two
confining plates. The latter is measured in units of the diameter of
the particles σ . The solid line is the theoretical prediction given by
Eq. (63), while the symbols have been obtained by MD simulations
of a system of hard spheres, as described in the main text.

by means of Eq. (65). The comparison with the theoretical
prediction, Eqs. (62) and (63), is presented in Fig. 2. The solid
line is the theoretical prediction and the symbols correspond to
values obtained from the simulation data. The error bars are of
the same size as the symbols employed to represent the data.
A good agreement is observed for all the range of values of the
distance h. Actually, it is surprising that no systematic increase
of the discrepancy between theory and simulation shows up as
h approaches the limiting value 2σ , since in the theoretical
analysis an expansion in (h − σ )2/σ 2 was carried out, and
only the leading term was kept [see Eq. (55) and the discussion
following it]. The value of the diffusion coefficient changes by
an amount of the order of 15% in the range of h considered.
To properly value the reported results, it is emphasized that
when varying the separation h the effective two-dimensional
number density N/A is kept constant and, consistently, the
three-dimensional density is different for each value of h.

VI. DISCUSSION

In this paper, the self-diffusion process in a Q2D system
of hard spheres has been analyzed starting from a Boltzmann-
Lorentz kinetic equation. The system is confined by means
of two hard parallel infinite plates, separated by a distance
smaller than twice the diameter of a particle. It has been
shown that the standard Chapman-Enskog procedure to derive
a normal solution of a kinetic equation can be extended in a
quite natural way to systems in which the equilibrium state
exhibits density gradients. A particular simplifying feature
of dealing with the equilibrium state is that the expansion
can be carried out in such a way that the zeroth order dis-
tribution in the expansion is obtained from the equilibrium
one by replacing the equilibrium density by the actual den-
sity profile. This does not happens when transport around a
general nonequilibrium state is considered [15]. To study the
quality of the theory developed and the approximations made
in the calculations, comparisons with molecular dynamics

simulations have been presented. The simulation data confirm
the presence of diffusive behavior in the horizontal plane,
i.e., the mean square displacement grows linearly in time for
large times, as does the accuracy of the expression for the
self-diffusion coefficient.

To put the present paper in a proper context, it is worth
emphasizing that no diffusion process is expected to hap-
pen in the vertical direction. In this sense, it differs from
those investigations in which the possibility of projecting
three-dimensional diffusion processes on one direction is
investigated. This is the case, for instance, when consider-
ing diffusion in a channel of varying cross section and it
is described as a one-dimensional diffusion past an entropy
barrier determined by the channel width [19,20]. On the other
hand, it is clear that the effect of strong confinement can be
associated to the presence of an entropic force that restricts the
three-dimensional motion to a Q2D one. Therefore, a natural
extension of the present paper is to study a strong confinement
in which the separation between the two parallel hard surfaces
varies. Of course, this requires one to modify the starting
kinetic equation, but the way to do it seems quite clear.
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APPENDIX A: COMPARISON OF THE EXPANSION
CARRIED OUT IN THIS PAPER AND THAT

USED BY LUTSKO [15]

Lutsko’s expansion [15] adapted to the present problem of
self-diffusion would be as follows. First, define δnl (r, t ) by

nl (r, t ) = nl,0(z) + δnl (r, t ). (A1)

Next the gradient operator is decomposed as

∇nl (r, t ) ≡ ∇(0)′nl (r, t ) + ε∇(1)′nl (r, t ), (A2)

with

∇(0)′nl (r, t ) ≡ ∂nl,0(z)

∂z
êz, (A3)

∇(1)′nl (r, t ) ≡ ∇δnl (r, t ). (A4)

A prime symbol is used to differentiate these definitions from
Eqs. (24)–(26), that define the modified Chapman-Enskog
expansion as formulated here. Both expansions can be easily
related by noting that

ν(r, t ) = 1 + δnl (r, t )

nl,0(z)
(A5)

and, therefore,

∇(1)nl (r, t ) = ∇(1)′nl (r, t ) − δnl (r, t )∇(0)′nl (r, t )

nl,0(z)
. (A6)

Of course, the relation between the operators ∇(0) and ∇(0)′

is the same, but changing the minus sign by the plus sign on
the right hand side in Eq. (A6). In principle, no physical or
mathematical reason seems to exist to prefer any of the two
expansions, being, therefore, just a matter or convenience for
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the specific problem at hand. For the case of self-diffusion
in a system having an inhomogeneous equilibrium state, we
have found more convenient the expansion based on the
decomposition given in Eqs. (24)–(26), because it leads to
a quite simple identification of the zeroth order Chapman-
Enskog solution. Moreover, as mentioned in the main text, this
choice is closely related with the concept of local equilibrium
for systems having a nonuniform equilibrium state.

APPENDIX B: EVALUATION OF THE INTEGRAL
DEFINED IN EQ. (52)

To begin with, the expansion

|g · σ̂|2 = |g= · σ=|2 + |gzσ̂z|2 + 2g= · σ=gzσ̂z (B1)

is substituted on the right hand side of Eq. (52) to get

I= = σ

2

∫
dg

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ n0(z1)σ̂xgx[|g= · σ=|2 + |gzσ̂z|2 + 2g= · σ=gzσ̂z]

×[	(−g= · σ=) − 2	(g · σ̂)θ (−g= · σ=)]χ (g), (B2)

The evaluation of this expression requires one to consider six integrals. Let us study each of them separately. The first one is

I (1)
= ≡ σ

2

∫
dg

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ n0(z1)σ̂xgx|g= · σ=|2	(−g= · σ=)χ (g)

= σ

4

∫
dg

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ n0(z1)(g= · σ=)3	(−g= · σ=)χ (g). (B3)

In the last transformation, we have interchanged vx and vy and changed ψ into π/2 − ψ . The latter is equivalent to interchange
σ̂x and σ̂y. Next, we use that σ= = (sin θ )̂σ=, where σ̂= is a unit vector in the horizontal plane. Moreover, since 0 < θ < π , it is
	(−g · σ=) = 	(−g · σ̂=). It follows that Eq. (B3) is equivalent to

I (1)
= = σ

4

∫
dg

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ n0(z1)(sin θ )3(g= · σ̂=)3	(−g= · σ̂=)χ (g). (B4)

Carrying out the angular and velocity integrals, it is found that

I (1)
= = −2π1/2σ

(
kBT

m

)3/2 ∫ h−σ/2

σ/2
dz1 n0(z1) sin3 θ. (B5)

The next contribution to I= in Eq. (B2) to be considered is

I (2)
= ≡ σ

2

∫
dg

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ n0(z1)σ̂xgxσ̂

2
z g2

z	(−g= · σ=)χ (g). (B6)

By using the same method as for the previous integral, it is obtained that

I (2)
= = −σπ1/2

(
kBT

m

)3/2 ∫ h−σ/2

σ/2
dz1 n0(z1) sin θ cos2 θ. (B7)

The third integral to evaluate is

I (3)
= ≡ σ

∫
dg

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ n0(z1)σ̂xgx(g= · σ=)gzσ̂z	(−g= · σ=)χ (g), (B8)

and it vanishes since the integrand is an odd function of gz. To analyze the next term,

I (4)
= ≡ −σ

∫
dg

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dψ n0(z1)σ̂xgx(g= · σ=)2	(g · σ̂ )	(−g= · σ=)χ (g), (B9)

the formal expansion

	(g · σ̂ ) = 	(g= · σ=) + δ(g= · σ=)gzσ̂z + 1
2δ′(g= · σ=)g2

z σ̂
2
z + . . . (B10)

is used. Here δ′(x) denotes the derivative of the delta function.
When the expansion is introduced in Eq. (B9) it is seen that
the first nonvanishing contribution contains σ̂ 4

z , i.e.,

I (4)
= = O

[∫ h−σ/2

z/2
dz1 n0(z1) cos4 θ

]
. (B11)

By using similar arguments, the same conclusion is reached
for the remaining two contributions to I=. Finally, to get a
consistent approximation, the expansion

sin3 θ = 1 − 3
2 cos2 θ + O(cos4 θ ) (B12)
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is employed in Eq. (B5), while in Eq. (B7) one uses

sin θ = 1 + O(cos2 θ ). (B13)

Then, Eq. (55) follows by collecting the six contributions to
the integral as derived above.

APPENDIX C: THE “NORMAL” PROPERTY OF B2[z|n0]

The global equilibrium density given by Eq. (3) verifies the
equation

∂

∂z
ln n0(z) = 2π

∫ h−σ/2

σ/2
dz1n0(z1)(z − z1), (C1)

as it can be checked by direct substitution. Then, it follows
that

∂

∂z
B2[z|n0] = 2

σ 2

∫ h−σ/2

σ/2
dz1n0(z1)(z − z1)

= 1

πσ 2

∂

∂z
ln n0(z), (C2)

and integration of this equation with respect to z gives

B2[z|n0] = (πσ 2)−1 ln n0(z) + D. (C3)

The integration constant D can be determined, for instance, by
particularizing the expression z = h/2. A simple calculation
shows that

B2[h/2|n0] = − N

2Aaσ 2
+ h

2aσ
n0

(
h

2

)
. (C4)

Use of this result in Eq. (C3) leads to the identification

C = − 1

2πσ 2
+ h − σ

2aσ 2
n0

(
h

2

)
− 1

πσ 2
ln n0

(
h

2

)
. (C5)

Finally, substitution of this value in Eq. (C3) provides the
expression of B2 in terms of the equilibrium density:

B2[z|n0] = 1

πσ 2
ln

n0(z)

n0(h/2)
− 1

2πσ 2

(
1 − n0(h/2)

n0

)
, (C6)

where n0 ≡ N/A(h − σ ). This proves that the expression de-
rived in the main text for f (1)

l is consistent with the formulated
modified Chapman-Enskog expansion, in the sense that it is a
normal solution, with the meaning of normal distribution as
formulated in this paper.
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