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Attractive versus truncated repulsive supercooled liquids:
The dynamics is encoded in the pair correlation function
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We compare glassy dynamics in two liquids that differ in the form of their interaction potentials. Both systems
have the same repulsive interactions but one has also an attractive part in the potential. These two systems
exhibit very different dynamics despite having nearly identical pair correlation functions. We demonstrate that
a properly weighted integral of the pair correlation function, which amplifies the subtle differences between the
two systems, correctly captures their dynamical differences. The weights are obtained from a standard machine
learning algorithm.
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The central tenet of liquid state theory is that the structural
and thermodynamic properties of liquids are primarily gov-
erned by the short-range repulsive part of their interaction po-
tentials [1,2]. The extension of these ideas to dynamical prop-
erties, however, is still in question. Studies of glass-forming
liquids with purely repulsive potentials show that their relax-
ation times τα are well described using a perturbative analysis
around the hard-sphere limit [3,4]. However, a study of the
Kob-Andersen Lennard-Jones (LJ) mixture and its repulsive
counterpart, the Weeks-Chandler-Andersen (WCA) mixture,
found that the two systems have very different dynamics
despite their structural similarities [5,6]. In particular, the
relaxation time τα is much smaller in the WCA system than
in the LJ one at the same supercooled temperatures. While
hidden potential scale invariances [7], complex structural indi-
cators such as the point-to-set length [8] and triplet correlation
functions markedly differ in these two systems [9,10], the pair
correlation functions are instead very similar. These findings
indicate that long-range attractions strongly affect dynamics
while leaving simple structural features relatively unaffected.

This result is a challenge to theories directly based on the
exact (numerically computed) thermodynamically averaged
pair correlation functions 〈g(r)〉 [11]. Mode coupling theory
is the most prominent example of such a theory, and indeed it
was shown to largely underestimate the difference in dynam-
ics of the WCA and LJ mixtures [12]. From this negative re-
sult, it was argued that 〈g(r)〉 does not contain the physical in-
formation relevant for predicting the dynamical slowdown, at
least not in a way amenable to predictions, and that any theory
of the glass transition based solely on 〈g(r)〉 is bound to fail.

The view that 〈g(r)〉 alone cannot explain the dynamical
difference between the WCA and LJ systems has recently
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been questioned. Combining it with the force-force correla-
tion function and treating the attractive and slowly varying
forces separately, Schweizer et al. [13] proposed an alternative
microscopic theory for the dynamical differences between LJ
and WCA systems. Modeling dynamics as that of a single
particle in an effective caging potential and using the pair-
correlation-based configurational entropy, Ref. [14] points
toward 〈g(r)〉 containing enough information to predict the
transition temperature. A comparison of that theory with
Schweizer’s has recently shown they produce comparable
results, although the latter is more precise [15]. Independently,
approximate measures of the configurational entropy based
on 〈g(r)〉 can be used to estimate the dynamics via the
Adam-Gibbs relation, and it was argued that the resulting
difference of configurational entropy can explain the dynam-
ical difference between the two systems [16–18]. Although
it is unclear why the configurational entropy should play a
role at the temperatures studied, which are above the mode-
coupling temperature, these results [16–18] suggest that the
relationship between 〈g(r)〉 and dynamics should be revisited.

In this Rapid Communication, we demonstrate that a prop-
erly weighted integral of the pair correlation function obtained
by machine-learning (ML) techniques [19–24], the so-called
“softness” designed to correlate strongly with instantaneous
mobility, fully captures the dynamical differences between the
LJ and the WCA supercooled liquids, despite their minute
differences in average structure. Our results offer a simple
explanation of the relationship between g(r) and relaxation
time and show that softness is an important structural finger-
print of dynamics. We emphasize that in contrast to previous
works on softness, here we are able to extract dynamics in
systems with very similar 〈g(r)〉, showing that fluctuations
in g(r) are relevant to the dynamics. We conclude that, at least
in principle, one should be able to compute the relaxation time
of these two liquids on the sole basis of the pair correlation.
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(a) (b)

FIG. 1. Structure and dynamics for WCA and LJ systems.
(a) The AA pair correlation function 〈gAA(r)〉 at T = 0.43, for
the LJ liquid (blue) and the WCA one (red) [vertical bars de-
note the standard deviation of Pr (g)]. (b) Temperature dependence
of the relaxation time τα (1/T ) for the two systems. Arrows indicate
the onset and MCT temperatures. The black dashed line outlines the
initial Arrhenius behavior of the WCA liquid.

Following Berthier and Tarjus [6], we compare two Kob-
Andersen [25,26] binary mixtures of A and B particles, one
with Lennard-Jones interactions and the other with WCA
interactions [2]. The latter system shares the same repulsive
short-range interaction with the LJ system, but possesses no
attractive forces, i.e., the potential is zero at the minimum
r = rcut = 21/6σXY and beyond. The potentials are smoothed
at the cutoff distance, so that their second derivatives are
continuous everywhere. The two liquids are first equilibrated
in the NVT ensemble; we then record particle trajectories
�ri(t ) for ≈ 200τα in the NVE ensemble [27,28] and extract
the relaxation time τα from the decay of the self-intermediate
scattering function. Following Ref. [6], we show in Fig. 1(b)
that τα increases much more rapidly in the LJ system than
in the WCA one when temperature is lowered, while con-
comitantly the differences in the average pair correlation
function 〈g(r)〉AA between systems remain small relative to the
fluctuations within each system, as shown in Fig. 1(a).

In the supercooled regime, particles essentially fluctuate
around a given average position, effectively trapped in a cage
of surrounding particles. From time to time, a rearrangement,
involving a small number of particles, occurs. At the level
of a single particle i, a rearrangement is characterized by
a cage jump, corresponding to a relatively rapid change in
the average position of the particle that is on the scale of
the particle size. Cage jumps taking place during a time
interval W = [t1, t2], for a given particle i, may be captured
by computing the quantity phop(i, t ) [29–32]:

phop(i, t ) ≡
√

〈(�ri − 〈�ri〉U )2〉1/2
V 〈(�ri − 〈�ri〉V )2〉1/2

U , (1)

for all t ∈ W , where averages are performed over the time
intervals surrounding time t , i.e., U = [t1, t], V = [t, t2].
t∗ = argmaxt∈W (phop(i, t )) is the time that best separates the
trajectory �ri([t1, t2]) into two subtrajectories �ri([t1, t∗]) and
�ri([t∗, t2]). We record p∗

hop(i) = phop(i, t∗) and the process is
iterated on each subtrajectory. If the trajectory during the time
interval W is contained within a cage, then p∗

hop(i) is small and
corresponds to the cage’s size. Conversely, if W contains two
distinct cages, then p∗

hop is large and corresponds to the jump’s
amplitude.

We thus interrupt the iteration when p∗
hop < pc, where pc

is chosen as the root-mean-squared displacement (RMSD)
�r(t ), computed at the time where the non-Gaussian

parameter α2 = 3〈r4〉(t )
5〈r2〉2(t )

− 1 has a maximum. This choice is

rather stringent: Only displacements several times larger than
the plateau of the RMSD are considered as jumps. Finally, as
jumps are never instantaneous, we assign phop(i, t ) = p∗

hop(i)
to all times t ∈ [t∗ − t f , t∗ + t f ], where t f = 5 in LJ time
units, i.e., about five ballistic times. This procedure generates
a label that classifies every particle at every instant as caged
or jumping. This constitutes what is called in ML jargon the
ground truth: yGT (i, t ) ≡ �(phop(i, t ) − pc) ∈ {0, 1}.

If dynamics is indeed related to local structure, then there
should be small but significant structural differences between
the local neighborhoods of caged and cage-jumping parti-
cles, respectively. A number of approaches have attempted
to identify these subtle structural signatures in supercooled
liquids [33–35]. They all have in common the fact that they
are based on a deep knowledge of the physics of liquids.
Here, in contrast, we use a ML approach as introduced in
Refs. [19,20,22]. The first step is to identify the structural
observables that we will try to correlate with dynamics. We
focus on �G(i, t ), a vector of 160 descriptors of the local
structure around particle i at time t . Considering particles of
type A, it reads

GY,α (i, t ) = 1

4πr2
α

∑
j∈{Y }

I|�r j−�ri|∈[rα,rα+1], (2)

where Y denotes the type of particles (A, B), and rα =
{0.70, 0.75, . . . , 4.70} is an 80-point binning of the distance
separating pairs of particles. Note that GY,α (i, t ) and the
instantaneous pair correlation, gXiY (rα, t ), are proportional up
to a constant that depends on the binning size. The second
step, called training in the context of ML, consists in fitting
a function f ( �G(i, t )), sign( f (G(i, t ))) = yGT (i, t ), that allows
to predict unobserved occurrences of yGT from the corre-
sponding �G(i, t ). To do so, we use a linear support vector
machine [36,37]; i.e., the function f is an affine function of
the input vector’s coefficients. An intuitive picture is to con-
sider f as encoding the hyperplane which best separates the
two populations yGT (i, t ) = −1 or 1, in the 160-dimensional
descriptor space. In our context, the generic fitting function
f is called softness S:

S(i, t ) = �w · �G(i, t ) + b, (3)

namely the signed distance between the point �G(i, t ) and the
hyperplane defined by b and �w. Concretely, for a given train-
ing set, an iterative optimization routine adapts the coefficients
�w, b so as to minimize the number of errors on the training
examples (an error is when sign( f (G(i, t ))) 	= yGT (i, t ). One
says the model generalizes well when the error rate on a test
set is as low as the training error rate (the test set is typically
drawn from the same distribution as the training set, but
completely uncorrelated from it). The softness characterizes
the local, instantaneous structure of any particle for the two
systems (LJ, WCA), at any temperature. Note that �G(i, t )
and phop(i, t ) are computed using the actual finite-temperature
structures, similar to the method in Ref. [24]; unlike in
Refs. [20,22], we do not use inherent structures (quenches
to the local T = 0 configuration). The training set is built
by sampling uniformly at random Ntrain = 104 spatiotemporal
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FIG. 2. Structure-dynamics relationships. Learning scores ob-
tained using different training sets (WCA or LJ, Ttrain, as indicated
in the legend) and applied to test sets (WCA left-hand side, LJ
right-hand side), at all available temperatures Ttest .

instants (i, t ) with p∗
hop(i, t ) > pc, and the same number from

the other class. Finally, the third step of the procedure tests
whether the algorithm classifies the data correctly by checking
the performance on data that have not been used for training.
For any choice of training set (WCA or LJ, Ttrain), one can
apply the hyperplane �w to all other test data (WCA or LJ,
Ttest) and measure the average classification accuracy (rate
of correct answers) on balanced test sets (50/50 mix of
yGT = −1 and yGT = 1):

Score = P (S > 0|yGT = 1) + P (S < 0|yGT = 1)

2
, (4)

where balance is obtained by downsampling until
P (yGT = −1) = 1/2 = P (yGT = 1). Figure 2 shows how
this score depends on the choice of training set for various test
sets. As expected, the score decreases with increasing Ttest:
Hotter is harder to predict because mobility is less correlated
with structure. More interesting is that Ttrain is not crucial:
Curves corresponding to different Ttrain largely superimpose
for the same training system. The choice of training system,
however, is important: Hyperplanes trained on a given system
perform significantly better on that system. Overall, the high
scores we achieve demonstrate a strong structure [ �G(i, t )] to
mobility [phop(i, t )] relationship encoded in the softness.

From now on, we shall set a unique hyperplane obtained by
training at T = 0.43 and using a balanced mix of WCA and
LJ data. Other choices lead to similar (but slightly less good)
results. We compute the local and instantaneous softness for
each liquid using Eq. (3) and average it over all trajecto-
ries. Figure 3(a) shows that the average softness 〈S〉(1/T ),
a purely structural quantity, is quantitatively different for the
two systems. However, when plotting τα as a function of 〈S〉,
the differences between the dynamics essentially disappear
as shown in Fig. 3(b): Not only does 〈S〉 amplify minute
differences in the structure, it does so in such a way that
the softness, on average, is an excellent structural indicator
of the dynamics. Since the softness is linearly related to the
structural descriptors, one simply has

〈S〉 = �w · 〈 �G〉 + b, (5)

where �〈G〉 ≈ 〈g〉(r), in the limit of vanishingly small binning
width. We thus conclude that the difference in dynamics

FIG. 3. Dynamics and softness. (a) Average softness 〈S〉 as a
function of inverse temperature and (b) relaxation time, τα , as a
function of 〈S〉 for for LJ and WCA. The span of the 〈S〉 axis
respects the dispersion of P(S), as shown in panel (c). (c) Probability
distribution of the softness P (S) for the WCA and LJ systems at the
same temperature T = 0.43 (dashed and full line) and such that they
share the same relaxation time τα ≈ 104 (full and dash-dotted line,
the latter being the WCA system at T = 0.14).

between the LJ and the WCA systems is, to a large extent,
encoded in 〈g〉(r), but in a subtle way. The two populations
of mobile and immobile particles are characterized by dif-
ferent instantaneous local g(r), which our method allows to
collapse into a scalar variable, the softness. Its average value
is therefore related to the average mobility and, hence, to the
relaxation time.

Figure 3(c) shows that the width of the distribution of
softness values is broad compared to the shift of 〈S〉 with
temperature that is shown in Fig. 3(a). Figure 3 compares
the distribution P(S) obtained for the LJ and WCA systems
at low temperature (T = 0.43) and that for the WCA system
at a different temperature, (T = 0.14), such that they share
the relaxation time τα 
 104. As expected, the distribution for
the WCA system is shifted toward higher softness values as
compared to the LJ ones at the same temperature. However,
the distributions have a strong overlap, suggesting that the
softness field is highly fluctuating. One should thus not expect
a deterministic relationship between the local, instantaneous
value of the softness of a particle and the local mobility.

The distributions for the WCA and LJ systems, compared
at different temperatures but at the same relaxation time, are
quite similar and share a common average. Still, a systematic
difference persists on the side of large softness, indicating
again system-specific structure-mobility relationships. On the
other hand, the negative-S tails are very much alike. This last
observation suggests that nonmobile, negative-S particles play
a system-independent role in controlling τα .

From a theoretical viewpoint, the weights w in Eq. (3),
or equivalently the softness field, provide a promising route
toward a better understanding of the relation between the
structure and dynamics of supercooled liquids. These weights
encode the properties of the structural fluctuations and more
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FIG. 4. Weighting the pair correlation function. Weights
wAY (rα ), together with the difference �〈g〉 = 〈g〉WCA − 〈g〉LJ for the
A-A and A-B pairs of particles (T = 0.43), along with the average
〈g(r)〉LJ , shown for comparison (in green).

precisely the fluctuations of gXY (r). Moreover, Eq. (5) shows
that the average softness 〈S〉 is a weighted integral of the
average pair correlation function, where the weights are the
components of �w, obtained from the training phase in the ML
process, which appears directly related to the relaxation time
[Fig. 3(b)]. Figure 4 displays these weights wAX (rα ), together
with �〈gAX 〉 = 〈gAX 〉WCA − 〈gAX 〉LJ , the minute differences
between the average pair correlation functions for X = A and
B. High w corresponds to features most relevant to the dynam-
ics. Apart from the general observation that the short-distance
structure is crucial in triggering dynamics, the weighting is
nontrivial; it is not a mere amplification of modulations in
the pair correlation function. The first minima and maxima
of �〈gAX 〉 are amplified, but less than the tiny differences
observed in the structure of the second shell. Conversely, the
second minimum in �〈gAY 〉 is strongly suppressed by the
weighting.

From a machine-learning point of view, we proceed in an
unusual way since we trained on a binary classification task
(mobile, not mobile) but used the result as in a regression
problem, i.e., focusing not only on the sign of S but also
on its value. In order to determine whether the magnitude of
S has physical meaning, we follow Refs. [20,22] and compute
P(R|S) (left panel of Fig. 5, the probability of observing a
local rearrangement [P(phop(i, t ) > p∗

hop)] for a given range
of softness ∈ [S, S + 0.025], for different 1/T . As expected
intuitively, large S leads to a tighter relationship with mobility,
thus justifying the use of S and not just its sign. As in
Refs. [20,22], we find that log P(R|S) decreases linearly with

= - T.log P(R|S)
(a)

(c)

(b)

FIG. 5. Energy and entropy barriers. (a) The free energy barrier
dependence in S, �F (S), directly related to the rate of activation
P(R|S). [(b), (c)] The coefficients �E (S),��(S) as defined in
Eq. (6).

1/T and that

P(R|S) = exp

[
−�E (S) − T ��(S)

T

]
. (6)

Note that �E and �� depend far more strongly on S for
LJ than for WCA, as shown in Figs. 5(b) and 5(c). Following
arguments of Ref. [20], the observed S dependence leads to a
significantly higher value of the onset temperature, T0, for LJ
than for WCA, consistent with prior calculations [6], as well
as a stronger T dependence as in Fig. 1(b).

In summary, we have shown that the softness field provides
a quantitative, structural characterization of the dynamical
slowdown in the mode-coupling regime, which is precise
enough to distinguish liquids with very similar structures,
namely LJ and WCA mixtures of equal composition. From
the theoretical viewpoint, many questions remain open with
respect to the nature of the softness field. Perhaps the most
important of these questions is whether the kind of fluc-
tuations picked up by the softness are those envisioned in
dynamical facilitation theory [38], connected to mobile de-
fects, or instead are related to the self-induced disorder that
facilitates motion within thermodynamic theories such as
random first-order transition theory [39–41]. This question
can be answered by studying the dynamical evolution of the
softness field and by comparing it to the avalanche dynam-
ics of supercooled liquids. We will address this question in
future work.
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