
PHYSICAL REVIEW E 101, 010203(R) (2020)
Rapid Communications

Using noisy or incomplete data to discover models of spatiotemporal dynamics
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Sparse regression has recently emerged as an attractive approach for discovering models of spatiotemporally
complex dynamics directly from data. In many instances, such models are in the form of nonlinear partial
differential equations (PDEs); hence sparse regression typically requires the evaluation of various partial
derivatives. However, accurate evaluation of derivatives, especially of high order, is infeasible when the data
are noisy, which has a dramatic negative effect on the result of regression. We present an alternative and rather
general approach that addresses this difficulty by using a weak formulation of the problem. For instance, it allows
accurate reconstruction of PDEs involving high-order derivatives, such as the Kuramoto-Sivashinsky equation,
from data with a considerable amount of noise. The flexibility of our approach also allows reconstruction of
PDE models that involve latent variables which cannot be measured directly with acceptable accuracy. This is
illustrated by reconstructing a model for a weakly turbulent flow in a thin fluid layer, where neither the forcing
nor the pressure field is known.
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I. INTRODUCTION

Macroscopic description of numerous physical, chemical,
and biological systems typically involves one or several partial
differential equations (PDEs). In some instances, these PDEs
represent a physical conservation law, and in others the PDEs
are obtained by homogenization of an underlying microscopic
description. The Navier-Stokes equation governing fluid flow
and the diffusion equation governing heat or mass flux are
examples that incorporate both approaches. Despite the dif-
ferences in their origin, one thing remained constant for
several centuries: PDE models were mainly derived from first
principles. Their coefficients typically involve either funda-
mental physical constants, such as the Planck constant in
the Schrödinger equation, or properties of the system, such
as fluid viscosity or thermal conductivity, that can be either
computed or measured independently.

An alternative approach (the data-driven discovery of
mathematical models, where both the form of the model and
the values of the coefficients are determined based solely on
the available data) has emerged relatively recently [1–5]. In
particular, sparse symbolic regression [6–8] has been applied
successfully to identifying PDE models from data with min-
imal noise (i.e., a standard deviation of 1% or less of the
data range). Unfortunately, since existing approaches based
on sparse regression rely on the explicit evaluation of various
candidate terms using local data, they all experience serious
difficulties in the presence of higher noise levels characteristic
of typical experimental measurements and generally fail to
reconstruct PDE models involving higher-order derivatives.

Another limitation of existing approaches is that they
require that all the variables present in the model be either
directly observable or local functions of the directly observ-
able data. For instance, using direct measurements of the fluid
velocity u, it is possible to reconstruct the vorticity equation
[7], which involves u and the vorticity ω = ∇ × u, but not

the Navier-Stokes equation, which involves u and a latent
variable: pressure. A recently introduced extension of the
sparse regression method circumvents the latter limitation at
the expense of raising the order of all of the derivatives [9].

An alternative approach that treats time evolution as a
Gaussian process [10] was shown to be capable of re-
constructing the coefficients in the two-dimensional (2D)
Navier-Stokes equation without using the pressure field [11].
However, this approach assumes the model to be known a
priori and exhibits noise sensitivity similar to that of sparse
regression-based approaches. To the best of the authors’
knowledge, no method currently exists that can robustly re-
construct PDEs involving latent variables (i.e., variables that
cannot be measured) and/or derivatives of a high order using
data with high levels of noise, which significantly limits the
practical utility of data-driven approach to model discovery.

The present article removes a major roadblock for the data-
driven approach in reconstructing PDE-based mathematical
models by introducing a weak formulation of the sparse re-
gression method, which addresses both of the limitations men-
tioned previously. Below we introduce our approach and il-
lustrate it using three representative examples: the Kuramoto-
Sivashinsky equation, a quasi-two-dimensional fluid flow, and
the λ-ω reaction-diffusion system.

II. DATA-DRIVEN MODEL DISCOVERY

Models of continuous spatially distributed systems tend to
have the form of a PDE

N∑
n=0

cnfn
(
u, ∂t u, ∂2

t u,∇u,∇2u, . . .
) = 0, (1)

where each of the terms depends on the system state u and
its spatial and temporal derivatives of various orders and
cn are coefficients assumed to be constant in this study (an
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extension to coefficients depending on spatial and/or temporal
coordinates is straightforward [6,8]). Symmetry and physical
constraints can be used to narrow down the functional form
of the terms that can appear in the model [9], and sparse
regression can be used to discard unnecessary terms and
determine a parsimonious form of the model and the values
of the corresponding coefficients cn.

We will illustrate the procedure using examples that in-
volve a single term containing a temporal derivative of the
state u. The corresponding coefficient can be set to unity
without loss of generality. Separating this term on the left-
hand -side, we can rewrite (1) as

∂k
t D̂u =

N∑
n=1

cnfn(u,∇u,∇2u, . . .), (2)

where D̂ is typically either an identity or a linear operator
involving only spatial derivatives and k is the order of the
temporal derivative. For instance, k = 1 and D̂ = 1 for the
Navier-Stokes equation, k = 2 and D̂ = 1 for the wave equa-
tion, k = 1 and D̂ = ∇2 for the Orr-Sommerfeld equation, and
so on.

To convert this to a linear algebra problem amenable to
sparse regression, let us multiply the differential equation (2)
by a weight w and integrate the result over a spatiotemporal
domain �k , then repeat this procedure for K different choices
of �k . This will yield a system

q0 =
N∑

n=1

cnqn = Qc, (3)

where Q = [q1 . . . qN ] is the “library” and the “library terms”
qn ∈ RK are column vectors corresponding to different terms
fn in Eq. (2) with entries that correspond to a particular choice
of w and �k , e.g.,

qk
n =

∫
�k

w · fn d�. (4)

The key advantage of this formulation compared to the local
approach investigated previously [6–9] is that, by performing
integration by parts, the action of derivatives can be trans-
ferred from the noisy data u onto the smooth weight w,
dramatically decreasing the effect of noise on terms involving
high-order derivatives. Furthermore, the weight function can
be chosen in such a way that the terms involving latent
variables are eliminated, yielding a problem that can be solved
using standard techniques.

A parsimonious model can finally be determined by choos-
ing K � N and using an iterative sparse regression algorithm
such as SINDY [5]. Each iteration involves computing the
solution

c̃ = Q+q0, (5)

which minimizes the residual of the linear system defined by
Eq. (3), where Q+ denotes the pseudo-inverse of Q. This is
followed by a thresholding procedure to remove dynamically
irrelevant terms with ‖c̃nqn‖ < γ ‖q0‖ for sufficiently small
γ (we choose γ = 0.05). To validate the results of regres-
sion, we use an ensemble of M cases with different random
distributions of the K integration domains �k relative to the

spatiotemporal domain on which the data are available (we
use M = 30 and K = 100).

Our approach is illustrated below using several examples
that highlight different aspects of the problem. In the first
two, we will assume that the form of the model is known,
so that only the coefficients have to be determined. The last
example illustrates how a parsimonious model can be identi-
fied via symbolic regression using a large library of candidate
terms. In each case, we generate the synthetic data using the
reference nonlinear PDE, add noise with standard deviation
σ to this data, evaluate the integrals using the composite
trapezoidal rule, and then solve the sparse regression problem
to reconstruct the reference PDE. Note that, in all cases, the
range of the data is O(1), so that σ = 1 corresponds to 100%
noise. Numerical codes used to generate the datasets and the
MATLAB codes used to identify the governing equations using
these datasets can be found in the GitHub repository [12].

III. HIGH-ORDER DERIVATIVES

The Kuramoto-Sivashinsky equation

∂t u + u∂xu + ∂2
x u + ∂4

x u = 0, (6)

describes the chaotic dynamics of laminar flame fronts [13],
reaction-diffusion systems [14], and coating flows [15]. This
is a notable example of a nonlinear PDE that involves high-
order partial derivatives, which has made it difficult to accu-
rately reconstruct from noisy data. Rearranging this PDE into
the form of Eq. (2), we find c1 = c2 = c3 = −1.

Since the Kuramoto-Sivashinsky equation involves a scalar
variable u, it can be converted to weak form by integrating
its product with a scalar weight w over a set of different
integration domains

�k = {(x, t ) : |x − xk| � Hx, |t − tk| � Ht } (7)

centered around randomly chosen points (xk, tk ). This yields
the system (3) with library terms whose elements are given by

qk
0 =

∫
�k

w∂t u d�, qk
1 =

∫
�k

wu∂xu d�,

qk
2 =

∫
�k

w∂2
x u d�, qk

3 =
∫

�k

w∂4
x u d�. (8)

Integration by parts can be used to move all derivatives
from the noisy field u onto a smooth noiseless w, yielding

qk
0 = −

∫
�k

u∂tw d�, qk
1 = −

∫
�k

1

2
u2∂xA d�,

qk
2 =

∫
�k

u∂2
x w d�, qk

3 =
∫

�k

u∂4
x w d�, (9)

provided w satisfies the conditions required for the boundary
terms to vanish. Specifically, w (and its derivatives up to third
order in space) should vanish along the boundary ∂�k . To
satisfy these boundary conditions, we chose

w = (x2 − 1)p(t2 − 1)q, (10)

where p � 4, q � 1 are integers and the underbar de-
notes nondimensionalized variables x = (x − xk )/Hx and
t = (t − tk )/Ht . Of course, many other choices for w are
possible as well.
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FIG. 1. Space-time plot of the solution to the Kuramoto-
Sivashinsky equation. The x axis is vertical and the t axis is hori-
zontal. The figures below use a similar colormap.

The linear system (3) can now be constructed by evaluating
the integrals in Eq. (9) over a set of domains �k . To test our
sparse regression approach, we generated synthetic data by
solving the Kuramoto-Sivashinsky equation numerically. To
enable direct comparison to the results of Rudy et al. [7],
we used the same integrator [16] to compute the solution of
Eq. (6) on a spatiotemporal domain of size Lx = 32π and
Lt = 100 using a grid with the same density 	x = 0.0982
and 	t = 0.4; the solution is shown in Fig. 1. Gaussian noise
with standard deviation σ was then added to u at each grid
point, after which the integrals in Eq. (9) were evaluated over
integration domains with dimensions Hx ≈ 24.5, Ht = 20.
The weight function used the exponents p = 4 and q = 3.

The results for different noise levels are shown in Fig. 2,
with the accuracy of the model reconstruction quantified by
the relative errors

	cn =
∣∣∣∣ c̃n − cn

cn

∣∣∣∣, (11)

where cn are the coefficients used to generate the numerical
data and c̃n are the coefficients estimated from noisy data by
our sparse regression algorithm. Here and below, the symbols
and the error bars show the mean values and the full range of
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FIG. 2. The accuracy of parameter reconstruction for the
Kuramoto-Sivashinsky equation as a function of the noise amplitude.

the results, respectively, for the entire ensemble. Note that the
reconstruction remains essentially unaffected by noise, with
an error of about 1% or below, until the noise level exceeds
10%. This is a dramatic improvement compared to the original
study [7], which yielded errors of over 50% for all of the
coefficients with just 1% noise.

IV. LATENT VARIABLES

To illustrate our approach applied to systems with latent
variables, we next consider a flow in a thin layer of fluid driven
by a steady but spatially nonuniform force f . The flow can
be described using a generalization of the 2D Navier-Stokes
equation

∂t u = c1(u · ∇ )u + c2∇2u + c3u − ∇p + f, (12)

where u = x̂ux + ŷuy is the flow field, which is considered to
be incompressible, p is the pressure, and the constants c1, c2,
and c3 describe, respectively, the depth-averaged effects of
inertia and viscosity in the horizontal and vertical direction
[17,18]. In this example, both p and f are assumed to be latent
variables that cannot be measured.

To convert Eq. (12) to weak form, we multiply it by a
vector field w and integrate the result by parts over a (now
three-dimensional) spatiotemporal domain �k of size 2Hx ×
2Hy × 2Ht . Assuming again that the boundary terms vanish,
for the linear terms we immediately find

qk
0 =

∫
�k

w · ∂t u d� = −
∫

�k

u · ∂t w d�,

qk
2 =

∫
�k

w · ∇2u d� =
∫

�k

u · ∇2w d�,

qk
3 =

∫
�k

w · u d�. (13)

The nonlinear term can be rewritten in a similar way using the
incompressibility condition ∂iui = 0 (where summation over
repeated indices is implied):

qk
1 =

∫
�k

wiu j∂ jui d� = −
∫

�k

ui∂ j (wiu j ) d�

= −
∫

�k

uiu j∂ jwi d� = −
∫

�k

u · (u · ∇ )w d�. (14)

Finally, for the terms involving the latent variables, we find

qk
4 =

∫
�k

w · ∇p d� = −
∫

�k

p∇ · w d�,

qk
5 =

∫
�k

w · f d�. (15)

In order for the boundary terms to vanish on a rectangular
domain �k centered at (xk, yk, tk ), we need to have w =
0 on ∂�, as well as ∂xw = 0 at x = ±1 and ∂yw = 0 at
y = ±1, where the underbar denotes rescaled variables x =
(x − xk )/Hx, y = (y − yk )/Hy, and t = (t − tk )/Ht . Next the
dependence on the pressure field and the steady forcing can
be eliminated by additionally requiring that

∇ · w = 0 (16)
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and ∫ 1

−1
w dt = 0. (17)

All of the above conditions on w can be satisfied by setting
w = ∇ × (ψ ẑ) = x̂∂yψ − ŷ∂xψ , where

ψ = sin(πt )(x2 − 1)p(y2 − 1)p (18)

and p � 3 (we used p = 3 in this study). This yields qk
4 =

qk
5 = 0 and

qk
0 = −

∫
�k

(ux∂y − uy∂x )∂tψ d�,

qk
1 =

∫
�k

[
uxuy

(
∂2

y − ∂2
x

) + (
u2

x − u2
y

)
∂xy

]
ψ d�,

qk
2 =

∫
�k

(ux∂y − uy∂x )∇2ψ d�,

qk
3 =

∫
�k

(ux∂y − uy∂x )ψ d�. (19)

As in the case of the Kuramoto-Sivashinsky equation, the
linear system (3) can now be constructed by evaluating the
integrals in Eq. (19) over a set of domains �k . Note that
this linear system involves neither the derivatives of the noisy
observable data (components of the u field) nor the latent
variables (p and f fields).

To test our approach, we generated synthetic data u by
solving Eq. (12) with the parameters c1 = −0.826, c2 =
0.0487, and c3 = −0.157, which correspond to the experi-
mental setup of Kolmogorov-like flow described in Ref. [18].
In the experiment, the forcing field f = f (x, y)x̂ is produced
by an array of long bar magnets with alternating polarity
and width equal to unity in nondimensional units; hence
f (x, y) is approximately uniform in the x direction and nearly
periodic in the y direction [cf. Fig. 3(a)], with the “period”
equal to 2 units. Forcing with amplitude maxx,y | f (x, y)| =
1.0649 generates a weakly turbulent flow [a representative
snapshot is shown in Fig. 3(b)], which was computed using

(a) (b)

FIG. 3. The Kolmogorov-like flow: (a) the forcing profile f and
(b) snapshot of the vorticity ω = ∂xuy − ∂yux . The x axis is horizontal
and the y axis is vertical.
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FIG. 4. The accuracy of parameter reconstruction for the 2D
Kolmogorov-like flow model as a function of the noise amplitude.

the numerical integrator described in Ref. [18] on a domain
of size Lx = 14, Ly = 18, Lt ≈ 920, and a computational grid
with 	xc = 	yc = 0.025 and 	tc ≈ 0.02. The data were then
subsampled on a coarser grid with spacing 	x = 	y = 0.1
and 	t = 0.2302, and Gaussian random noise with variance σ

was added to both components of u. The integrals in Eq. (19)
were evaluated over domains �k of size Hx = 11.2, Hy =
14.4, and Ht ≈ 34.5.

As Fig. 4 illustrates, our approach successfully reconstructs
the reference PDE (12). Just like in the case of the Kuramoto-
Sivashinsky equation, noise up to 10% does not meaningfully
affect the accuracy of model reconstruction, with the coeffi-
cients c1, c2, and c3 estimated to within 1% or better. In fact,
even with 100% noise, the coefficients can still be estimated
to within roughly 10%. For reference, the experimental data
[18] obtained using particle image velocimetry has roughly
3% noise, at which level local sparse regression [9] failed
completely.

V. SPARSE REGRESSION

Finally, as an example of how the proposed approach could
be used in the context of sparse regression, we consider the
λ-ω reaction-diffusion system [19]

∂t u = D∇2u + λu − ωv,

∂tv = D∇2v + ωu + λv, (20)

where ω = −β(u2 + v2), λ = 1 − u2 − v2, and β = 1 and
D = 0.1 are constants. This system can be cast in the form of
Eq. (2) by defining a vector u = [u, v]. To test our approach,
we applied sparse regression to a generalization of Eq. (20),
where the reaction terms are given by polynomials in u and
v up to third order. In total, the generalized model involves
a total of 20 different terms (two diffusion terms and 18
polynomial terms). Correspondingly, 20 unknown coefficients
need to be determined.

The sparse regression problem for the λ-ω system can be
block-diagonalized by using a weight function w = [w, 0]
(or w = [0,w]) to reconstruct the first (or second) equation
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(a) (b)

FIG. 5. A typical snapshot of the fields (a) u and (b) v for the λ-ω
reaction diffusion system. The x axis is horizontal and the y axis is
vertical.

in Eq. (20), yielding two independent linear systems (3)
with ten library terms each. The integration domains �k are
three dimensional as in the previous example. The integrals
involving terms such as uαvβ do not require integration by
parts. The two integrals involving the Laplacian terms are
integrated by parts twice to get rid of derivatives on u and
v, e.g.,

qk
1 =

∫
�k

w∇2u d� =
∫

�k

u∇2w d�. (21)

In both cases, the corresponding boundary terms vanish if we
choose

w = (x2 − 1)p(y2 − 1)p(t2 − 1)q, (22)

where p � 2 and q � 1 (we chose p = 2 and q = 1).
The synthetic data were obtained by computing the solu-

tion of Eq. (20) using the integrator employed in Ref. [7];
a typical snapshot is shown in Fig. 5. The computational
domain of size Lx = 20, Ly = 20, Lt = 10 was discretized
using a grid with spacing 	x = 	y = 0.0391 and 	t = 0.05,
and Gaussian random noise with standard deviation σ was
added to both u and v at each grid point. The dimensions of
the integration domains �k were chosen as Hx = Hy ≈ 1 and
Ht = 1.25.

The results of sparse regression are shown in Fig. 6. We
find that, for noise levels of up to 5%, the model was re-
constructed correctly (with no spurious or missing terms) for
each distribution of �k in our ensemble, with all parameters
estimated to an accuracy of better than 1%. With 10% noise,
the model is identified correctly in about 95% of cases, and
at 30% noise, the model is identified correctly in about 20%
of cases, with the remaining cases featuring spurious terms
(linear in u and v) that are not present in the λ-ω model.
For reference, sparse regression based on local evaluation
of derivatives [7] failed to correctly identify this model,
generating spurious terms in the presence of as little as 1%
noise.

It should be noted that using ensemble sparse regression
makes it easy to detect the presence of spurious (missing)
terms and eliminate (add) them while still preserving the
accuracy with which all of the correct terms are estimated
(in our case, about 3% for the worst case offenders with 10%
noise). It is also worth pointing out that, unlike the standard

10-4 10-3 10-2 10-1 100

10-3

10-2

10-1

100

FIG. 6. The accuracy of parameter reconstruction for the λ-ω
reaction-diffusion system as a function of the noise amplitude.
Shown is the largest error, which corresponds to one of the diffusion
coefficients.

approach [7], weak formulation requires no intermediate noise
reduction.

Predictions of all three reconstructed models are compared
to synthetic data in the Supplemental Material [20].

VI. DISCUSSION

The examples presented here illustrate the power of the
weak formulation of sparse regression applied to noisy and/or
incomplete data. For instance, high-order PDEs such as
the Kuramoto-Sivashinsky equation simply cannot be recon-
structed with meaningful accuracy from data with realistic
levels of noise using the original (differential) form of the
model. The main culprit is the term in the model involving
a fourth-order derivative, which is extremely sensitive even
to minute amounts of noise. The weak formulation involves
integrals of the data rather than derivatives, which makes it
much more robust with respect to noise. While the weak
formulation may not eliminate all of the derivatives in some
models (e.g., in nonlinear terms), it can reduce the order of the
derivatives that remain, which is extremely beneficial when
noisy data are involved.

We also demonstrated that the weak formulation of sparse
regression can be applied successfully to models with latent
variables, as in the example of the fluid flow in a thin layer,
where neither the pressure field nor the forcing field are
accessible. Needless to say, the weak formulation by itself
simply eliminates rather than reconstructs the terms that in-
volve the latent variables. One needs to impose additional
physical constraints [9] to determine their functional form.
Nonetheless, the approach presented here has substantial ad-
vantages compared to the method described in Ref. [9], which
involves taking additional spatial and/or temporal derivatives
of the model equation to eliminate the latent variables. As
discussed previously, the higher the order of the derivatives,
the more sensitive the sparse regression is to noise. As a result,
the model (12) could only be reconstructed with acceptable
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accuracy in that study for noise levels of 0.01% or less. The
present approach gives better accuracy for data with as much
as 30% noise.

In conclusion, let us point out that we made no attempt to
optimize our approach here. Several options are available to
make it even more robust and accurate [21]. As an example,
the size of the integration domains �k could be varied relative
to the size of the spatiotemporal domain on which the data are
available. Furthermore, we only used a single weight function,
while in principle one could also use a set of different weight
functions w j . Additionally, the shape of the weight functions
could be optimized to improve the accuracy even compared
to the substantial results presented here. For instance, simply
increasing the powers p and q beyond the minimal possible

values (determined, respectively, by the highest order of the
spatial and temporal derivatives in the model) can reduce the
error in estimating the coefficients of the model by orders
of magnitude. In contrast, we found the details of the sparse
regression procedure itself to have a relatively minor impact
on the results.
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