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Positive quantum Lyapunov exponents in experimental systems with a regular classical limit
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Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become
common to equate the exponential behavior of out-of-time order correlators (OTOCs) with quantum chaos.
The quantum-classical correspondence between the OTOC exponential growth and chaos in the classical limit
has indeed been corroborated theoretically for some systems and there are several projects to do the same
experimentally. The Dicke model, in particular, which has a regular and a chaotic regime, is currently under
intense investigation by experiments with trapped ions. We show, however, that for experimentally accessible
parameters, OTOCs can grow exponentially also when the Dicke model is in the regular regime. The same holds
for the Lipkin-Meshkov-Glick model, which is integrable and also experimentally realizable. The exponential
behavior in these cases are due to unstable stationary points, not to chaos.

DOI: 10.1103/PhysRevE.101.010202

Classical chaos in Hamiltonian systems is typically defined
by means of the sensitive dependence on initial conditions,
which leads to positive Lyapunov exponents (LEs) [1]. But
this alone is not a complete definition of chaos. Consider,
for example, the simple pendulum. Its upright position cor-
responds to a stationary point that is unstable. It has a positive
LE, as any genuine chaotic system, although it is completely
integrable. The pendulum does not exhibit chaotic behaviors,
such as nonperiodicity and mixing [2]. Its unstable point and
the phase-space orbits emanating from it have measure zero
with respect to the rest of the phase space. In this work,
we investigate what happens to such unstable points in the
quantum domain.

It was argued in [3] that quantum mechanics can bring
chaos to classical systems that are nonchaotic. This idea was
inspired by Ref. [4], where a standard nonchaotic classical bil-
liard became chaotic when the point particle was substituted
by a finite-size hard sphere. By making a parallel between
the semiclassical dynamics of a quantum wave packet and the
motion of a finite-size classical particle, it was shown in [3]
that quantum chaos can emerge in regular classical billiards.
Quantum chaos in this case refers to the exponentially fast
growth of the out-of-time ordered correlator (OTOC) at short
times.

The OTOC quantifies the degree of noncommutativity in
time between two operators. It was introduced in the context
of superconductivity [5] to measure the instability of the
trajectories of electrons scattered by impurities. Recently,
the OTOC became a key quantity in definitions of many-
body quantum chaos [6–14], analysis of the quantum-classical
correspondence of chaotic systems [15–23], and studies of
the scrambling of quantum information [24,25] and quantum
phase transitions [26,27]. The OTOC has been measured
experimentally with ion traps [28] and nuclear magnetic reso-
nance platforms [29–31].

Depending on how the OTOC is computed, it may be
called microcanonical OTOC (MOTOC) [17], fidelity OTOC
(FOTOC) [25], thermal OTOC [8], and OTOC for specific
initial states [3,15]. The exponential growth rate of the latter,
of the MOTOC [18], and of the FOTOC [25] was shown to
be related with the classical LE of chaotic systems. This has
justified referring to the OTOCs exponential growth rates as
quantum LEs and associating their exponential behavior with
the notion of quantum chaos.

However, based on a semiclassical quantization approach,
it was recently shown that, in general, the OTOC can grow
exponentially fast also in one-degree-of-freedom quantum
systems that are not globally chaotic, but are critical [32].
Here, we show that this happens also for the Dicke model,
which has two degrees of freedom and is used to describe
strongly interacting light-matter systems [33–35]. The Dicke
model presents chaotic and regular regimes and is of great
experimental relevance. It has been realized experimentally
with cold atoms [36–39], by means of cavity Raman transi-
tions [40,41], and with ion traps [42]. We study the FOTOC,
because this quantity is directly measured by trapped ion
experiments, and consider parameters and initial states used
in these experiments.

The Dicke model has unstable points that give rise to
positive LEs in the regular regime. These points and the
orbits emanating from them have measure zero [43]. In the
quantum domain, on the other hand, we find that the FOTOC
grows exponentially not only for initial states centered at the
classically unstable point, but also for generic states centered
at the surrounding points with zero classical LEs. Quantum
mechanics therefore generates instability in a region where
the classical dynamics is stable. Following the current termi-
nology, we then refer to these regions as “quantum chaotic,”
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although one may ponder whether, similarly to the above
discussion about classical chaos, additional conditions, on
top of the exponential growth of the OTOCs, are needed for
defining quantum chaos.

The OTOC grows exponentially also at the critical point of
the Lipkin-Meshkov-Glick (LMG) model [44]. This is a one-
degree-of-freedom classically integrable system introduced in
nuclear physics [45] and realized experimentally with cold
atoms [46,47] and nuclear magnetic resonance platforms [48].
By studying the FOTOC, we show that the exponential behav-
ior persists in the vicinity of this critical point as well.

The unstable points of the LMG and Dicke models. In a
classical Hamiltonian system with real first-order differential
equations dx/dt = F (x), where x = (q, p) are the general-
ized coordinates and momenta, a point x = x0 is stationary
when F (x0) = 0. This point is unstable when at least one
of the positive-negative pairs of eigenvalues of the Jacobian
matrix of F evaluated at x0 has a nonzero real part. The LE of
this point equals the maximum of these real part values [see
Supplemental Material (SM) in [49] for more details]. Both
the LMG and the Dicke model in the classical limit present
stationary points with positive LEs.

The LMG model [45] describes the collective motion of a
set of N two-level systems mutually interacting. Its quantum
Hamiltonian is given by

ĤLMG = �Ĵz + 2ξ

N
Ĵ2

x , (1)

where h̄ = 1, � is the energy difference of the two-level
systems, ξ is the coupling strength, Ĵx,y,z = (1/2)

∑N
n=1 σ (n)

x,y,z
are the collective pseudospin operators given by the sum of
Pauli matrices σ (n)

x,y,z for each two-level system n, and j = N/2
gives the size of the system, with j( j + 1) being the eigen-
value of the total spin operator Ĵ

2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . This model

has been employed, for example, in studies of ground state
quantum phase transitions (QPTs) and excited state quantum
phase transitions (ESQPTs) [50–53], entanglement [54,55],
and quantum speed limit [56].

The classical LMG Hamiltonian is obtained by taking the
expectation value of ĤLMG/ j on Bloch coherent states |z〉 =
(1 + |z|2)− jezĴ+| j,− j〉, where | j,− j〉 is the state with the
lowest pseudospin projection and Ĵ+ is the raising operator.
Defining z in terms of the canonical variables (Q, P) as z =
(Q − iP)/

√
4 − (Q2 + P2) and neglecting O(1/ j) terms, the

classical LMG Hamiltonian reads

HLMG(Q, P) = �

2
(Q2 + P2) − � + ξ

(
Q2 − Q2P2

4
− Q4

4

)
.

(2)
Hamiltonian (2) is regular, but its stationary point

x0 = (Q = 0, P = 0) is unstable and presents a positive LE
given by

λ =
√

−(�2 + 2�ξ ) (3)

when � < −2ξ (see [44] and SM [49]). Figures 1(a) and
1(b) show the energy surface of the classical LMG model
for ξ = −1 and two values of �. When � � −2ξ , x0 is a
minimum, while for � < −2ξ , x0 becomes a saddle point and
is therefore unstable.

(a) � = 1 (b) � = 3

FIG. 1. Top: Energy surface for the classical LMG model for
two values of the parameter � fixing ξ = −1. The stationary point
x0 = (Q = 0, P = 0) is marked with a red sphere. It is a saddle point
for � = 1 (a) and a minimum for � = 3 (b). Panel (c): Each colored
point corresponds to the maximal classical Lyapunov exponent for
the Dicke model in a plane resulting from the intersection of an
energy shell (with energy indicated by the vertical axis) and the
hyperplane p = 0. This is done for different values of ω0 as indicated
by the horizontal axis. We fix γ = 0.66 and ω = 0.5. The red square
at ω0 = 3 is the unstable point studied in Fig. 3. The green circle at
ω0c = 3.48 is the critical point that marks the ground state quantum
phase transition.

In the quantum domain, this saddle point is associated with
an ESQPT. A main signature of ESQPTs is the divergence
of the density of states at an energy denoted by EESQPT. In
the mean-field approximation, it has been shown that this
energy coincides with the energy of the classical system at the
saddle point [50,57], that is, for the LMG model, ELMG

ESQPT/ j =
HLMG(x0) = −�.

The Dicke model is a collection of N two-level atoms of
level spacing ω0 coupled to a quantized radiation field of
frequency ω. The Hamiltonian is given by

ĤD = ω

2
(q̂2 + p̂2) + ω0Ĵz + 2

√
2

γ√
N

Ĵx q̂ − ω

2
, (4)

where q̂ = (â† + â)/
√

2 and p̂ = i(â† − â)/
√

2, with â (â†)
being the annihilation (creation) operator, and γ is the atom-
field interaction strength. As in the LMG model, in the sym-
metric atomic subspace, j = N/2.

The Dicke model was first used to explain the collec-
tive phenomenon of superradiance [33,58]. It is now used
in studies of QPTs and ESQPTs [58–63], quantum chaos
[64–67], monodromy [68,69], entanglement creation [70],
nonequilibrium dynamics [71–75], OTOC behavior [25,76],
and quantum batteries [77].

The classical Dicke Hamiltonian [67,78,79] is obtained by
taking the expectation value of ĤD/ j between the product
of Bloch coherent states and Glauber coherent states |α〉 =
e−|α|2/2eαâ† |0〉, where α = √

j/2(q + ip) ∈ C, and |0〉 is the
photon vacuum. In terms of the canonical variables (Q, P) for
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the pseudospin and (q, p) for the field [49], it reads

HD = ω

2
(q2 + p2) − ω0 + ω0

2
(Q2 + P2)

+ 2γ

√
1 − 1

4
(Q2 + P2)qQ. (5)

The stationary point of the Dicke model is x0 = (q = 0,

p = 0, Q = 0, P = 0). The LE associated with it can be cal-
culated in terms of ω, ω0, and γ , as (see SM [49])

λ = 1√
2

√
−(

ω2 + ω2
0

) +
√(

ω2 − ω2
0

)2 + 16γ 2ωω0. (6)

When ω0 < ω0c = 4γ 2/ω, this equation gives a positive
value for the LE and the stationary point is unstable. When
ω0 > ω0c, Eq. (6) has pure imaginary values and the LE is
zero. The critical point ω0c marks the ground state QPT of the
Dicke model. For ω0 < ω0c, the system is in the superradiant
phase, and for ω0 > ω0c, it is in the normal phase. The
unstable point is therefore in the superradiant phase.

Energy surfaces similar to those in Figs. 1(a) and 1(b) can
also be drawn for the Dicke model, but in higher dimension.
The saddle point of this model is also associated with an
ESQPT [62], which happens at ED

ESQPT/ j = HD(x0) = −ω0.
We stress that, contrary to common belief, the ESQPT in
the Dicke model is not directly related with the transition to
classical chaos [67,80].

In Fig. 1(c), we show the largest LEs of the Dicke model as
functions of the classical excitation energy HD/ω0 and of the
atomic frequency ω0, for γ = 0.66 and ω = 0.5. Employing
frequency units of kHz/2π , these values coincide with those
used in the experiment with ion traps [25,42]. The blue line
in the figure depicts the ground state energy and the gray
area under it is forbidden. The color gradient indicates the
presence or absence of chaos: black represents regular regions
and light areas have large LEs. The bright horizontal line at the
ESQPT, HD/ω0 = −1, indicates very large LEs and reflects
the instability.

According to Eq. (6), the maximum LE is obtained for
ω0 = 0.649, which is approximately the value used in [25].
As one sees in Fig. 1(c), this classical instability is immersed
in a chaotic region of the phase space with positive LEs,
so we show some results for it only in the SM [49]. Here,
our main focus is on the unstable point at ω0 = 3, which
is marked in the figure with a red square. The phase-space
region surrounding this unstable point is regular, with zero
LEs everywhere, except for the phase-space orbits emanating
from it [67,81]. This is the unstable point that we use in our
studies in Fig. 3. But before showing those results, let us
describe how the quantum and classical evolutions are carried
out and compared.

Quantum-classical correspondence. The OTOC measures
the degree of noncommutativity in time between operators Ŵ
and V̂ , Otoc(t ) = −〈[Ŵ (t ), V̂ (0)]2〉. It is known as FOTOC
when Ŵ = eiδφĜ, where Ĝ is a Hermitian operator and δφ is
a small perturbation, and V̂ = |�0〉〈�0| is the projection op-
erator onto the initial state. In the perturbative limit, δφ � 1,
the dynamics of the FOTOC agrees with that of the variance

0.5 1.0 1.5 2.0
� Ω

ΛΛ

0.2

0.4

0.6

0.8

1.0
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j=5000
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Λ,

(a) LMG model (b) Dicke model

FIG. 2. The classical LE λ (solid line) and the quantum LE 


(symbols) for the LMG (a) and the Dicke (b) model at the unstable
point. The results for 
 for the LMG model are obtained with
the exact quantum evolution and for the Dicke model, the TWA is
used. For the LMG model, the FOTOC corresponds to σ 2

Q(t ) + σ 2
P (t ),

ξ = −1, and j = 500. For the Dicke model, the FOTOC is σ 2
Q(t ) +

σ 2
P (t ) + σ 2

q (t ) + σ 2
p (t ), ω = 0.5, γ = 0.66, and the j’s are indicated.

of Ĝ (see [25] and SM [49]),

σ 2
G(t ) = 〈Ĝ2(t )〉 − 〈Ĝ(t )〉2, (7)

so we refer to this variance as FOTOC and denote its expo-
nential growth rate by 2
. In what follows, we refer to 
 as
the quantum LE.

The FOTOC enables a direct visualization of the quantum
evolution in terms of the dynamics in phase space. It measures
the spread of the size of the wave packet and can thus be
compared with the variance of the canonical variables in phase
space.

To compute the FOTOC, we consider initial Bloch coher-
ent states for the LMG model, and initial products of Bloch
and Glauber coherent states for the Dicke model. In Fig. 2, we
compare the quantum LE obtained for the FOTOC with the
classical LE for the LMG (a) and the Dicke (b) model at an
unstable point. For the LMG model, the quantum evolution is
done exactly. Since the wave packet spreads in both directions
in phase space, we analyze the growth of σ 2

Q(t ) + σ 2
P (t ). The

agreement between λ from Eq. (3) and 
 is perfect.
A great advantage of the FOTOC is that it can be computed

with semiclassical phase-space methods, such as the truncated
Wigner approximation (TWA) [82–85], which makes accessi-
ble system sizes that are not achievable with exact diagonal-
ization. This is particularly useful for the Dicke model, which
is nonintegrable and where the number of bosons in the field
is not limited.

The basic idea of the TWA [83] is to compute the dynamics
using the classical equations of motion, but averaging the ob-
servable over a large sample of initial conditions and replacing
the classical probability distribution with the Wigner function
[86] and the classical observable with the Weyl symbol of the
corresponding quantum operator [87]. The random sampling
reproduces the quantum fluctuations of a quantum initial state.

The FOTOC that we study for the Dicke model is σ 2
Q(t ) +

σ 2
P (t ) + σ 2

q (t ) + σ 2
p (t ). Employing an efficient basis for the

convergence of the eigenstates [88], we evaluate the exact
quantum evolution for j = 100, where the truncated Hilbert
space has 24 453 converged eigenstates. We verify that for
this size, which is already large for exact diagonalization,
the exact quantum evolution and the evolution done with the
TWA agree extremely well from t = 0 up to times beyond
the exponential growth of the FOTOC (see SM [49]). This
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assures us that we can use the TWA to calculate 
 for
larger j’s. For coherent states, the initial Wigner functions are
positive and approximately given by normal distributions. Our
sampling is done by means of a Monte Carlo method [84] over
∼104 random points (see details in SM [49]). As one increases
j from 500 to 5000, the agreement between λ from Eq. (6) and
the quantum LE improves, as seen in Fig. 2(b).

For our set of parameters, the Dicke model can be separated
in fast and slow modes at the ESQPT energy [89]. For the slow
mode, an ESQPT as in an effective one-degree-of-freedom
Hamiltonian emerges. This confirms the conjecture in [32]
that their results might apply also to models with more than
one degree of freedom.

Quantum activation of the instability. The results above
make evident that, despite the regularity of the systems, both
classical and quantum LEs coincide and are positive at the
unstable points. We now investigate what happens at the
vicinity of the unstable point of the LMG model with � = 1
and of the Dicke model with ω0 = 3. Classically, the LEs in
these surrounding regions, in orbits not asymptotically going
to or coming from the unstable point, are zero. To analyze
what happens in the quantum domain, we study the behavior
of the FOTOC as one moves away from the unstable point.

The unstable point is marked as O in the energy surface
of the LMG model in Fig. 3(a) and of the Dicke model in
Fig. 3(c). Points O, A, B, and C correspond to the center of
the coherent states used in the calculation of the FOTOC. The
choices of A, B, and C are done such that the trajectories do
not go (come) asymptotically to (from) the unstable point. To
guarantee this, since the LMG model has only one degree of
freedom, the points A, B, and C have decreasing energies,
while for the Dicke model, it is enough to select different
values of Q with the same energy HD = −ω0.

For any of the points (and for those in between them), the
initial evolution of the FOTOC is exactly the same as the
one for O, with the same exponential growth rate 2
 ≈ 2λ,
as clearly seen in Fig. 3(b) [Fig. 3(d)] for the LMG [Dicke]
model. What changes is the duration of the exponential be-
havior, which becomes shorter as one gets further from O, and
also the saturation value of the dynamics, which gets lower
and shows larger oscillations.

Figure 3 demonstrates that, in absolute contrast with the
classical dynamics, quantum instability is not only possible,
but is the rule for generic states in the vicinity of an unstable
point. One needs to move quite far from the unstable point to
get rid of any reminiscence of an exponential growth.

Discussion. Classical systems in the regular regime, as
the LMG and the Dicke model considered here, can exhibit
unstable points with equal positive classical and quantum LEs.
This parallel ceases to hold in the vicinity of the unstable
points. Classically, this surrounding area has zero LEs. In
the quantum domain, on the other hand, generic states in
this region still give positive quantum LEs. Therefore, while
one can say that in the vicinity of the unstable points, the
quantum-classical correspondence still holds, given that the
exact quantum evolution and the TWA match, the same does
not hold for the correspondence between the quantum and
classical LEs.

Our results are of particular relevance for ongoing experi-
ments with ion traps that aim to investigate quantum chaos in
the Dicke model. We show that for quantities, initial states and

(a) (b)

(c) (d)

FIG. 3. Energy surface of the LMG model (a) and of the Dicke
model with P = p = 0 (c). FOTOC σ 2

Q(t ) + σ 2
P (t ) for the LMG

model (b) and FOTOC σ 2
Q(t ) + σ 2

P (t ) + σ 2
q (t ) + σ 2

p (t ) for the Dicke
model (d). The FOTOC is computed for coherent states centered
at the unstable point O and around it, at points A, B, and C. The
(black) straight line in (b) and (d) corresponds to the exponential
curve with rate given by twice the classical LE. The initial growth
rate of the FOTOC for all points and for both models is 2
 ≈ 2λ.
For the LMG model: ξ = −1, � = 1, j = 500. The points A, B,
and C have constant P = 0 and Q = 0.1, 0.2, and 0.3, respectively.
For the Dicke model: ω = 0.5, γ = 0.66, ω0 = 3, and j = 500.
The points A, B, and C have P = p = 0, Q = 0.1, 0.2, and 0.3,
respectively, and q is chosen so that HD = −ω0 for all four points.

parameters probed by these experiments, they may eventually
detect the effects of unstable points, not necessarily of chaos.

We stress, however, that there is not yet agreement on
what quantum chaos really is. If we were to adopt here the
simplified and widespread view that it means the exponential
growth of OTOCs, we would no longer be able to associate it
with the presence of positive classical LEs. Resorting to the
more traditional definition of quantum chaos based on level
statistics as in random matrix theory does not circumvent the
problem either, since Wigner-Dyson distributions have been
found also in systems that are classically regular [90,91]. The
question “What are the unquestionable signatures of classical
chaos in the quantum domain?” remains open.
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