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Lattice Boltzmann modeling of fluid-particle interaction based on a two-phase
mixture representation

Chrysovalantis Tsigginos , Jianping Meng (���) ,* Xiao-Jun Gu , and David R. Emerson
Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

(Received 12 September 2019; revised manuscript received 29 October 2019; published 31 December 2019)

In this work, we derive a lattice Boltzmann model for fluid-particle interaction by considering the system as
a two-phase mixture. A partially saturated type scheme is achieved rigorously without any viscosity-dependent
weight parameter. The scheme is of second-order accuracy in both space and time including the body-force
term. Moreover, we devise a scheme suitable for the scenario where two or more particles intersect a single
computational cell, typically occurring for particles in contact or close to contact. Good performance is found
when the present scheme is validated against three classic problems, namely the flow past a stationary cylinder,
a cylindrical particle settling in a channel under gravity, and the flow around two impacting cylinders.
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I. INTRODUCTION

Applications involving fluid-particle interaction appear in
broad areas, including biological [1,2], chemical [3,4], and
civil engineering [5,6]. Due to its importance, a significant
amount of analytical, experimental, and numerical procedures
have been developed to study fluid-particle interaction.

Numerical modeling of fluid-particle interaction problems
usually employ an Eulerian framework for the fluid and a
Lagrangian framework for the motion and deformation of the
particles. As a consequence, this has led to two approaches
being developed. The first can be classified as a direct method,
treating the fluid-particle interface as a boundary and gen-
erally applying the no-slip boundary condition [7–9]. The
direct method is considered to be more accurate but may
be computationally expensive due to the requirement for
continuous remeshing. In contrast, indirect approaches use
other ways (e.g., force [10–12] and treating a solid particle
as an undeformable fluid [13]) to constrain the velocities of
the fluid and particle at their interface. Such a method does
not require remeshing but may be of lower accuracy since the
no-slip boundary condition may not be properly enforced at
the fluid-particle interface.

For fluid flows, the lattice Boltzmann method (LBM) [14]
has been developing rapidly and offers an attractive approach,
which is based on tracking and updating distribution functions
at the mesoscopic level. The macroscopic variables of interest
(e.g., density, velocity, and pressure) are the first few moments
of the distribution function. Due to its explicit particle-like
nature, which is based on a uniform Cartesian grid, the LBM
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is easy to implement and parallelize. In particular, it is an
excellent candidate for modeling flows around multiple mov-
ing particles. Thus, various direct and indirect schemes have
been developed for LBM to solve fluid-particle interaction
problems [15–20].

A popular indirect method is the immersed boundary
method, originally proposed by Peskin [21]. In this approach,
a restoration force is introduced to indirectly impose the
boundary condition at the fluid-particle interface. In its earlier
version, this force was assumed to be linearly dependant on
a user defined parameter that controls the efficiency [16,21].
More recent work [22–24] has suggested a form of force
that is dependant on the momentum exchange crossing the
fluid-particle interface.

Within the LBM framework, continuous remeshing is not
generally required when applying a direct method. Instead,
the cut-cell meshing technique is well adapted. The simplest
form may be the commonly used staircase approximation of a
curved boundary, although it can lead to reduced accuracy in
simulations [25]. In 1994, Ladd and Verberg [15] employed
this technique to model particulate suspensions by applying
the bounce-back boundary condition at the fluid-solid inter-
face. To improve the accuracy, various interpolated bounce-
back schemes [18–20,26] were proposed. However, these
schemes can have difficulty with mass conservation [27].

Noble and Torczynski [17] proposed the partially saturated
method (PSM), which is a second-order accurate scheme and
also conserves mass [28]. In this scheme, the lattice nodes
are classified as solid, partially saturated, or fluid nodes based
on the solid fraction of a computational cell. An additional
collision operator is introduced to enforce the solid phase
velocity at solid and partially saturated cells. The accuracy of
the scheme varies with a weight parameter, B. If this weight
parameter is chosen as the solid fraction, then first-order
accuracy is observed. In contrast, second-order accuracy is
achieved when this weight parameter becomes a viscosity-
dependent formulation [17]. The accurate representation of
the fluid-particle interface, as well as the localized mapping
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of particles into the fluid domain, makes the PSM a popular
choice to model the fluid-particle interaction generated in
fluidized beds [29–32]. Due to its success, work has often
focused on improving the method. Zhou et al. [33] replaced
the solid fraction with the shortest lattice distance to reduce
the computational cost. Chen et al. [34] introduced a different
form of the weight parameter, B, and replaced the solid
collision operator with the ghost field method [20] in order
to enforce the no-slip boundary condition at the fluid-particle
interface. Wang et al. [35] introduced nonlinear relaxation-
time-dependent terms into the B parameter to reduce the
viscosity dependence. These efforts have generally focused on
the weight parameter while the body-force term has received
less attention. Forcing terms were introduced into the PSM
by Strack et al. [36], but as reported by Tsigginos et al.
[37], the scheme demonstrates a lower order of accuracy (i.e.,
1.5) when body forces are applied to the whole fluid-particle
interaction system.

In this work, we discuss the modeling of fluid-particle
interactions within the lattice Boltzmann framework. First, we
introduce a continuous Boltzmann-BGK (Bhatnagar-Gross-
Krook) equation for the fluid-particle interaction system
which is consistent with mixture theory. For incompressible
flows, the lattice Boltzmann model can be derived from this
equation by using a standard procedure [38–40]. In this way,
we can obtain a second-order accurate scheme in both space
and time including the body-force term. Moreover, we discuss
the treatment of the case where multiple particles intersect
a single computational cell and present the details of the
derivation in Sec. II and its numerical validation in Sec. III.

II. MESOSCOPIC MIXTURE REPRESENTATION
OF FLUID-PARTICLE INTERACTION

In this work, we focus on particle resolved modeling of the
fluid-particle interaction problem. In the fluid part, computa-
tional cells are typically set to be smaller than the character-
istic size of the immersed particles so that the flow details are
fully captured. The motion of a particle can be resolved by
using a suitable Lagrangian solver, e.g., the discrete element
method (DEM). The difficulty in such modeling is related to
the necessity of mapping the particle into the fluid domain and
tracking the fluid-particle interface.

A. Lattice Boltzmann model for fluid flows around
immersed particles

The fluid flow around immersed particles is modeled as
a two-phase mixture. A virtual fluid is introduced to fill the
space occupied by the particles. This virtual fluid has the
same density as the fluid phase but has an infinite viscosity
for mimicking the solid behavior. The impact of the solid
phase on the fluid behavior (e.g., the momentum exchange)
will be first transferred to the virtual fluid and then felt by
the fluid phase (see Sec. II C). The fluid phase together with
the virtual fluid are considered as interpenetrating continua
[41]. To describe such a mixture, we employ the concept of
porosity, ε, and solid fraction, ϕ = 1 − ε [42]. Thus, particles
can be mapped into the fluid domain, and three different types
of computational cells are identified, i.e., pure fluid cells,

ε = 1, pure virtual fluid (solid) cells, ε = 0, or partially
saturated cells, 0 < ε < 1, where each type may occupy a
significant portion of the computational cell. At the meso-
scopic level, a Boltzmann-BGK equation can be written for
the mixture, i.e.,

∂ f

∂t
+ ξ · ∂ f

∂x
+ ε

Fb

ρ
· ∂ f

∂ξ
= ε� = ε

τ
( f eq − f ), (1)

where a distribution function, f (x, ξ, t ), is employed to de-
scribe the motion of the mixture in a space of dimension, d ,
which represents the number of fluid particles in a volume,
dx, centered at position, x, with molecular velocities within,
dξ, around velocity, ξ, at time, t . The density is denoted by
ρ and τ is the relaxation time. A BGK collision term, � =
( f eq − f )/τ [43], is introduced to model the complicated
molecular interaction of the fluid phase, which describes the
relaxation process to the Maxwellian distribution,

f eq = ρ

(2πRT )d/2 exp

[
− (ξ − u)2

2RT

]
. (2)

For the virtual fluid, the collision term is ignored due to its
infinite viscosity (i.e., the collision term becomes zero). The
body force Fb (typically the gravitational force, g) is also
considered for the fluid phase, where its effect on the virtual
fluid will be introduced during the fluid-particle interaction
stage through the updated solid velocities, cf. Eq. (17). For the
isothermal and incompressible flows discussed in this work,
the temperature, T , is constant and equal to the reference
temperature, T0. The pressure, p, is equal to ρRT0 = ρc2

s ,
where the sound speed is defined as cs = √

RT0 and R is the
specific gas constant.

The macroscopic variables including the mixture density,
ρ, the mixture momentum, ρu, and the mixture pressure, p,
can be calculated by integrating the distribution function over
the whole molecular velocity space, ξ, i.e.,

ρ =
∫

f dξ; ρu =
∫

ξ f dξ; p = d

2

∫
(ξ − u)2 f dξ. (3)

It is worth noting that the mixture velocity, u, is the average
of the fluid phase velocity, u f , and virtual fluid phase velocity,
us, i.e.,

u = εu f + (1 − ε)us. (4)

Through the Chapman-Enskog expansion (see Appendix A),
the following Navier-Stokes equations

∂ρ

∂t
+ ∂ (ρui )

∂xi
= 0, (5a)

∂ (ρui )

∂t
+ ∂ (ρu jui )

∂x j
= − ∂ p

∂xi
+ ∂

∂x j

[
μe

(
∂ui

∂x j
+ ∂u j

∂xi

)]
+ εFbi,

(5b)

are recovered for an isothermal and incompressible mixture
system. The mixture viscosity, μe, is

μe = μ f

ε
= pτ

ε
, (6)

where the term μ f = pτ corresponds to the viscosity of the
fluid phase. It can be seen that the mixture viscosity becomes
infinite for the virtual fluid (i.e., ε = 0) as assumed.
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The derived macroscopic equations are consistent with
those previously proposed for mixtures, see Eqs. (99) and
(100) in Ref. [44], where the diffusion velocity is zero since
the densities of the two phases are identical [44]. Moreover,
the mixture viscosity corresponds to the Reuss viscosity of a
mixture [45]. The mixture equations are generally applicable
to colloidal suspensions [13], particle-laden flows with low
loading, bubbly flows, sedimentation, and cyclone separators.

It is possible to numerically solve Eq. (1) by a direct dis-
cretization in physical space, x, and molecular velocity space,
ξ. However, such simulations are very expensive and unneces-
sary for a range of continuum flows, in particular, isothermal
and incompressible flows. For such flows, the continuous
BGK equation, Eq. (1), can be reduced to a much simpler
discrete equation by expanding the equilibrium distribution
function on a Hermite polynomial basis and discretizing
the molecular velocity space, ξ, accordingly [38–40]. Since
the discretization procedure is standard, the details are not
repeated here and only the main equations are summarized.
By choosing an appropriate Gauss-Hermite quadrature with
abscissae, ξα , and weights, wα , the discrete BGK equation is
written as

∂ fα
∂t

+ ξα

∂ fα
∂x

= ε�α + εFα, (7)

where the collision term and the force term are discretized as
�α = ( f eq

α − fα )/τ and Fα , respectively. For isothermal and
incompressible flows, a second-order expansion is considered
to be sufficient, i.e.,

f eq
α = wαρ

[
1 + ξα · u

c2
s

+ 1

2

(
ξα · u

c2
s

)2

− u · u
2c2

s

]
. (8)

Accordingly a second-order force term,

Fα = wα

[
ξα · Fb

c2
s

+ (ξα · u)(ξα · Fb)

c4
s

− u · Fb

c2
s

]
, (9)

is adopted herein [38]. For two-dimensional flows, it is
common to employ the so-called D2Q9 lattice, where the
abscissae are chosen as

ξ0 =
√

3cs(0, 0),

ξ1 =
√

3cs(1, 0), ξ2 =
√

3cs(0, 1),

ξ3 =
√

3cs(−1, 0), ξ4 =
√

3cs(0,−1),

ξ5 =
√

3cs(1, 1), ξ6 =
√

3cs(−1, 1),

ξ7 =
√

3cs(−1,−1), ξ8 =
√

3cs(1,−1),

(10)

and the weight factors are

w0 = 4
9 , w1..4 = 1

9 , w5..8 = 1
36 . (11)

A second-order strategy [46] is used to integrate Eq. (7) where
a trapezoidal integration is applied to the right-hand side and
the left-hand side can be integrated precisely, and we obtain

fα (x + ξα
t, t + 
t ) − fα (x, t )

= ε

t

2
[�α (x + ξα
t, t + 
t ) + �α (x, t )]

+ε

t

2
[Fα (x + ξα
t, t + 
t ) + Fα (x, t )]. (12)

To eliminate the implicitness, a new variable, f̄α [46], can be
introduced, i.e.,

f̄α = fα − ε
t

2
�α − ε
t

2
Fα, (13)

and Eq. (12) is rewritten as

f̄α (x + ξα
t, t + 
t )

= f̄α − ε
t

τ + 0.5ε
t

(
f̄α − f eq

α

) + ετ
t

τ + 0.5ε
t
Fα. (14)

By using f̄α , the density and momentum can be calculated as

ρ =
∑

α

f̄α, (15a)

ρu =
∑

α

ξα f̄α + ε

2
Fb
t . (15b)

A second-order accurate lattice Boltzmann scheme is
therefore obtained for flows around immersed particles based
on a mixture representation of the fluid-particle interaction
system. For later discussions, it is also convenient to rewrite
Eq. (13)

fα = 2τ̂ f̄α + ε f eq
α + ετ̂
tFα

2τ̂ + ε
, (16)

where the normalized relaxation time, τ̂ , is defined as
τ̂ = τ/
t .

B. Motion of particles

In this study, we assume that particles do not deform so
that their motion can be described through translation and
rotation. For a particle, k, of mass, mk , and moment of inertia,
Ik , Newton’s second law states

mk v̇k = mkg + F, (17a)

Ikω̇k = T , (17b)

where vk and ωk are translation and rotational velocity vectors
of its center of mass. The immersed particle is subjected to a
force, F, and a torque, T , exerted by the surrounding fluid
and the gravitational acceleration, g. It is also convenient to
introduce the velocity of a point, P, in the particle, V P = vk +
ωk × r, where r is the radius vector of the point relative to the
mass center.

C. Momentum exchange between fluid and particle

The core of modeling the fluid-particle interaction system
as a two-phase mixture is the transfer of the solid phase re-
sponse into the virtual fluid phase. To achieve this, the virtual
fluid velocities of solid cells, ε = 0, and partially saturated
cells, 0 < ε < 1, i.e., the second term of the right-hand side of
Eq. (4), will be set to the solid body velocity. These operations
are equivalent to enforcing a no-slip boundary condition at the
fluid-particle interface, and are implemented in conjunction
with other boundary conditions (e.g., wall boundaries) in this
work (see Ref. [37] for detailed discussions).

During complex fluid-particle interactions, it is possible
for two or more particles with different velocities to intersect
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r

r

FIG. 1. Illustration of the vector r for calculating the velocity, V p.

a single computational cell, typically for flows around im-
pacting particles. In this case, special treatment is necessary
compared to the simpler case where there is only one particle
intersecting a computational cell. Therefore, we first discuss
the latter case (named as single-particle scheme) in Sec. II C 1
and further develop the scheme (named as multiple-particle
scheme) for the former one in Sec. II C 2.

1. Single-particle scheme

To enforce the velocity of the virtual fluid phase, us, to
be the velocity of the solid, V P, the collision-like operator
developed in Ref. [17], i.e.,

f ∗
α = fα + (1 − ε)

[
fᾱ − f eq

ᾱ (ρ, u)
]

− (1 − ε)
[

fα − f eq
α (ρ,V P )

]
, (18)

will be adapted to the evolution equation (14) based on
f̄α , where fᾱ , f eq

ᾱ refers to f and f eq for the direction ᾱ

such that ξᾱ = −ξα . This operator reflects the nonequilibrium
part of the distribution function, and conserves mass. For
partially saturated nodes, the calculation of velocity, V p, is
implemented by using the vector r as illustrated by Fig. 1
according to whether the grid point is inside the particle or
not.

To aid the analysis, we make the reasonable assumption
that momentum exchange between the fluid and solid is faster
than the flow variation so that the flow conditions are un-
changed during the operation prescribed in Eq. (18). Thus, the
fluid collision and forcing terms remain unchanged during the
momentum exchange stage (i.e., the fluid collision operator,
�∗

α , and forcing term, F∗
α , after momentum exchange are

equal to the fluid collision operator, �α , and forcing term,
Fα , prior to momentum exchange). Following the definition
in Eq. (13), we are able to replace the left-hand side term and
the first term at the right-hand side with f̄α , i.e.,

f̄ ∗
α +����

1

2
ε�∗

α
t +����
1

2
εF∗

α
t

= f̄α +����
1

2
ε�α
t +����

1

2
εFα
t

+ (1 − ε)
[

fᾱ − f eq
ᾱ (ρ, u)

]︸ ︷︷ ︸
1©

−(1−ε)
[

fα − f eq
α (ρ,V P )

]︸ ︷︷ ︸
2©

.

(19)

Substituting Eq. (16) into 1© and 2©, we obtain

1© = τ̂

τ̂ + 0.5ε

(
f̄ᾱ − f eq

ᾱ

) + 1

2

ετ̂

τ̂ + 0.5ε
Fᾱ
t (20)

and

2© = τ̂

τ̂ + 0.5ε

[
f̄α + ε

2τ̂
f eq
α − τ̂ + 0.5ε

τ̂
f eq
α (ρ,V P )

]

+ 1

2

ετ̂

τ̂ + 0.5ε
Fα
t . (21)

After a few algebraic manipulations, Eq. (19) can be written
as

f̄ ∗
α = f̄α + τ̂ (1 − ε)

τ̂ + 0.5ε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ f̄ᾱ − f eq

ᾱ︸ ︷︷ ︸
�s

I

−
[

f̄α + ε

2τ̂
f eq
α − τ̂ + 0.5ε

τ̂
f eq
α (ρ,V P )

]
︸ ︷︷ ︸

�s
II

+ ε
t

2
(Fᾱ − Fα )︸ ︷︷ ︸

�s
III

⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (22)

Equation (22) is an exact transformation of Eq. (19) in terms
of f̄α , which can be grouped into three subterms �s

I , �s
II, and

�s
III. The term �s

I represents the reflection of the nonequilib-
rium part of f̄α , while in �s

II the momentum is transferred
from the solid body to the virtual fluid. The term �s

III is due
to the dependency of f̄α on the body force, Fα . However, for
partially saturated nodes, Eq. (22) can lead to an inconsistency
between the virtual fluid phase velocity, us, and solid point
velocities, V P, i.e., the virtual fluid phase velocity should be
driven to V P by the momentum exchange rather than a mix of
u and V P. This can make the simulation relatively inaccurate,

as identified in Sec. III. To improve the accuracy, the term �s
II

is revised as

�s
II = f̄α − f eq

α (ρ,V P ) (23)

and Eq. (22) becomes

f̄ ∗
α = f̄α + (1 − ε)τ̂

τ̂ + 0.5ε

[
f̄ᾱ − f eq

ᾱ − f̄α + f eq
α (ρ,V P )

]
+ 1

2

ε(1 − ε)τ̂

τ̂ + 0.5ε

t (Fᾱ − Fα ). (24)
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FIG. 2. Illustration of two particles “1” and “2” intersecting a
computational cell around grid point xn.

Based on the form of �s
II, we denote the scheme utilizing

Eq. (22) as the momentum exchange scheme I (MES-I),
and the second one employing Eq. (24) as the momentum
exchange scheme II (MES-II). The performance of the two
schemes will be further discussed in Sec. III.

The force F and torque T exerted from the fluid to the solid
body can be calculated as

F = −
xd


t

∑
n

(1 − εn)τ̂

τ̂ + 0.5εn

∑
α

(
�s

I − �s
II + �s

III

)
ξα, (25a)

T = −
xd


t

∑
n

(1 − εn)τ̂

τ̂ + 0.5εn
rn ×

∑
α

(
�s

I − �s
II + �s

III

)
ξα,

(25b)

where n corresponds to grid points that are in contact with the
solid body.

It is worthwhile to note that the derived scheme can be used
in applications where multiple particles move with different
velocities, provided that only a single particle intersects a
computational cell at any given time. Moreover, the scheme
can also be used in the case where more than one particle
intersects the computational cell if all particles have the same
velocity. In the following section, we will elaborate on the
multiple-particle scheme.

2. Multiple-particle scheme

For flows around particles in contact or close to contact,
it is likely that multiple particles with different velocities
can occupy a single computational cell (see Fig. 2). In this
case, the calculation of the fluid-particle interaction based on
the single-particle scheme, Eq. (25), is problematic since the
intersecting particles are treated as a single entity with an
ambiguous solid velocity. Thus, the solid fraction, φk , and the
associated term, �k

II, have to be calculated for each particle,
k, that intersects with the grid cell. Meanwhile, the terms �s

I
and �s

III are invariant to the number of particles that intersect

with the cell, since these terms are defined in terms of the total
solid fraction, ϕ = ∑

k φk , and macroscopic fluid properties.
Based on the above, Eq. (22) is rewritten as

f̄ ∗
α = f̄α + ϕτ̂

τ̂ + 0.5(1 − ϕ)
�s

I + τ̂

τ̂ + 0.5(1 − ϕ)

∑
k

φk�
s,k
II

+ ϕτ̂

τ̂ + 0.5(1 − ϕ)
�s

III, (26)

where �s,k
II is the �s

II component calculated based on the
velocity of particle, k.

The force, Fk , and torque, T k , exerted from the fluid to the
kth particle can be calculated as

Fk = −
xd


t

∑
n

φk
n τ̂

τ̂ + 0.5(1 − ϕn)

∑
α

(
�s

I − �s,k
II + �s

III

)
ξα,

(27a)

T k = −
xd


t

∑
n

φk
n τ̂

τ̂ + 0.5(1 − ϕn)
rk

n

×
∑

α

(
�s

I − �s,k
II + �s

III

)
ξα, (27b)

where φk
n is the ratio of the volume occupied by the particle,

k, at the computational cell, n, i.e., the cell around grid point,
xn, to the cell volume.

D. Remarks

For convenience, we list the steps in a full time cycle of the
present LBM model in Fig. 3. Although there is a difference
on whether treating the momentum exchange between fluid
and particle at the collision term (see Ref. [37] for detail), the
scheme bears a close resemblance to the PSM proposed by
Noble and Torczynski [17]

fα (x + ξα
t, t + 
t )

= fα (x, t ) + (1 − B)�α
t + B�s
α + (1 − B)Fα
t, (28)

where �s
α is equal to

�s
α = [

fᾱ − f eq
ᾱ (ρ, u)

] − [
fα − f eq

α (ρ,V P )
]
. (29)

In both models, the concept of the solid fraction and/or
porosity are adopted so that the complex fluid-particle inter-
action problem can be simulated in a straightforward manner.
In the present work, these concepts are linked to the macro-
scopic mixture theory, Eq. (5), by using a Chapman-Enskog
expansion over Eq. (1), see Appendix A. In this way, we gain
further understanding of the model, and are able to rigorously
derive the lattice Boltzmann scheme.

In the PSM [17], two forms of the parameter B were
suggested, i.e., the solid fraction ϕ and

B = τ̂ ϕ

τ̂ + (1 − ϕ)
, (30)

where the normalized relaxation time, τ̂N , of Noble and
Torczynski [17] in the absence of body forces is defined as
τ̂N = τ̂ + 0.5.
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FIG. 3. A time cycle of the present LBM modeling of fluid-particle interaction.

Based on the process of deriving Eq. (14) from Eq. (7),
it is not difficult to identify that the PSM using, B = ϕ,
is a first-order discretization in space and time of Eq. (7).
This explains the observed first-order accuracy in numerical
simulations [17]. To achieve second-order accuracy, the for-
mulation of Eq. (30) was suggested in a heuristic way, which
can lead to an inaccurate treatment of the body force. Instead,
a consistent formulation is derived for the body force in the
present work, where improved performance is observed in
Sec. III B. Importantly, there is no viscosity-dependent free
parameter like Eq. (30); only porosity and/or solid fraction
are introduced and then all formulations can be obtained from
the numerical discretization procedure.

III. NUMERICAL VALIDATIONS

To numerically validate the proposed model, three bench-
mark cases have been considered, i.e., flow around a cylinder,
particle settling in a channel, and flow around two impacting
cylinders. For simplicity, we will carry out two-dimensional
simulations although the extension to three dimensions is
straightforward and only requires the calculation of the solid
fraction in three dimensions. To calculate the solid fraction,
several strategies have been proposed including numerical
integration [37,47], cell decomposition [48], and polygonal
approximation [31]. In the following simulations, a fourth-
order Gauss integration scheme is employed which is suffi-
cient for the present second-order lattice Boltzmann scheme.

A. Flow past a cylinder

We employ a computational domain of length, L, and
width, W , to simulate both confined and unconfined flows past
a stationary infinite cylinder of diameter, D, which is placed
at the center (L/2, W/2) of the domain, see Fig. 4. If the flow
is confined in a channel, then the top and bottom boundaries
are set to be solid walls. Moreover, a wall correction factor, λ,

dependent on the aspect ratio, κ = D/W , is often introduced
to describe the confined effects of a channel wall. It is defined
as the ratio of the drag force, F , to the drag force developed
in unconfined flows, i.e.,

λ = F (κ )

umμ f
, (31)

where the drag force in unconfined flows is considered to be
proportional to the product of the maximum velocity, um, at
the inlet and the fluid viscosity. Faxén [49] obtained a form of
correction factor, λF , i.e.,

λF = 4π

h1(κ ) + g1(κ )
, (32)

where h1(κ ) and g1(κ ) are

h1(κ ) = A0 − (1 + 0.5κ2 + A4κ
4 + A6κ

6 + A8κ
8) ln (κ ),

g1(κ ) = B2κ
2 + B4κ

4 + B6κ
6 + B8κ

8,

A0 = −0.9156892732, B2 = 1.26653975,

A4 = 0.05464866, B4 = −0.9180433,

A6 = −0.26462967, B6 = 1.8771010,

A8 = 0.792986, B8 = −4.66549.

κ = D
W

FIG. 4. Computational domain for flows around a cylinder.
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100
E
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MES-II

FIG. 5. Accuracy of the present LBM simulations with MES-I
and MES-II for a channel flow past a stationary cylinder. For conve-
nience, a guide line of slope −2 is added.

As a benchmark case, we considered a channel of width
2.5D, i.e., κ = 0.4. A preliminary study shows that the length
of 40D is sufficient for the development of a fully resolved
fluid flow, since an increase of 50% of the channel length led
to a 0.001% increase of the correction factor.

A parabolic velocity profile with a maximum speed of
um = 10−6 in lattice units is prescribed at both the inlet
and outlet to simulate the Poiseuille flow, see Fig. 4. The
fluid density, viscosity, and particle diameter are set to be
1, 0.005, and 1, respectively, in the lattice unit, which leads
to a Reynolds number, ρumD/μ, of 2×10−4. The no-slip
boundary condition is implemented at the top and bottom
wall using the equilibrium diffuse reflection (EDR) boundary
scheme [50]. Simulations are run with a few different grids,
i.e., D/
x = [12, 16, 20, 30, 40], and the scheme accuracy is
measured by comparing the calculated wall correction factor
with λF via

Eλ =
∣∣∣∣λ − λF

λF

∣∣∣∣. (33)

As has been shown in Fig. 5, simulations with both MES-I
and MES-II demonstrate accuracy higher than second order
(2.37 for MES-I and 2.55 for MES-II), which is consistent
with their theoretical accuracy. However, MES-I induces sig-
nificantly higher errors in comparison to MES-II for the same
grid.

We believe that the performance drop of MES-I compared
to MES-II is related to the term, �II, i.e., if the corresponding
terms can properly enforce the solid point velocity, V P, at
partially saturated nodes. In MES-II the formulation of �II

directly enforces V P at both partially saturated nodes ϕ < 1
and solid (virtual fluid) nodes. On the contrary, the terms that
MES-I utilizes only satisfies the same condition at solid nodes,
ϕ = 1. For partially saturated nodes, the enforced velocity is
also dependant on the fluid phase velocity.

A further assessment of the two schemes reveals that
their optimal range of normalized relaxation time, τ̂ , is dif-
ferent. Specifically, simulations using MES-II shows better
performance for normalized relaxation times in the range

1 2 4 7 10 20 30 40
Re

1

2

3

5

7

10

20

C
d

MES-II
Tritton [52]

FIG. 6. Drag coefficient Cd predicted by MES-II for unconfined
flows past a cylinder at various Reynolds numbers. The experimental
results in Ref. [52] are included for comparison.

of [0.1, 0.55] while the first scheme performs better in the
range of [0.6, 0.9]. Due to its better performance, we will
employ MES-II by default in the following validations unless
otherwise specified.

We also consider unconfined flows past an infinite cylinder.
For this case, we set the domain length and width to be 50D
which is considered as adequate since an increase of 50%
of the domain size leads to roughly 2% increase of the drag
coefficient at Re = 40. A constant velocity uI is imposed at
the inlet using the EDR scheme, while the pressure is specified
as unity in lattice units at the outlet using the implementation
discussed in Ref. [51]. The top and and bottom boundaries are
implemented as a fixed velocity (equal to the inlet velocity)
boundary using the EDR scheme. At Re = 2, we also tested
the zero-gradient boundary condition for the top and bottom
boundary and found negligible difference in drag force cal-
culation. The viscosity, μ f , and particle diameter, D, are set
to 0.001 and 1 in all simulations and the inlet velocity, uI, is
adjusted to simulate flows with Reynolds number, ρuID/μ f ,
ranging from 0 to 40. Based on the results in Fig. 5, we choose
the lattice space 
x to be D/30. For steady flows, Re � 40,
the simulations were carried out until converged (i.e., the
velocity residual is less than 10−7) and the drag coefficient
is computed as

Cd = 2F

ρu2
I D

. (34)

The calculated drag coefficient is compared with the experi-
mental results of Tritton [52] in Fig. 6. For Reynolds numbers
above 1, the calculated drag coefficients show good agreement
with the experimental data. For Re = 1, a better agreement
was found with the analytical solution 8π/Re(2.002 − ln Re),
Eq. (9.19) in Ref. [53], where the relative error is 4.4%
compared to 10.3% with the experimental values.

B. Settling of a particle in a channel under gravity

To verify the accuracy for fluid flows driven by a body
force, we considered the case of an infinite cylindrical particle
settling in a channel under gravity, g. Initially, the particle
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g

FIG. 7. Computational domain for case of a particle settling
inside a channel under gravity.

is at rest and a drag force is developed as it starts moving
under gravity. At some point, the drag force will become
large enough so that gravity is balanced. From this point, the
particle moves with a constant velocity, Vc, which is called the
terminal velocity. For small Reynolds number, Re < 0.001,
the terminal velocity for a particle of density ρs and diameter
D can be estimated as [54]

Vc = πgD2(ρs − ρ)

4μ f λF (κ )
, (35)

where μ f is the fluid viscosity. Faxén’s correction factor, λF ,
for a cylindrical particle moving between two parallel plane
walls [49] is equal to

λF = 4π

A0 − ln (κ ) + A2κ2 + A4κ4 + A6κ6 + A8κ8
, (36)

where

A0 = −0.9156892732, A2 = 1.7243844,

A4 = −1.730194, A6 = 2.405644,

A8 = −4.59131,

and κ is the aspect ratio of the channel defined as κ = D/W
(Fig. 7). The formulation, Eq. (35), is believed to be valid for
κ � 0.2. To compare with Eq. (35), we consider a channel of
width 5D which leads to an aspect ratio κ of 0.2. To minimize
the influence of the channel height, it was set to 80D. No-
slip boundary conditions are prescribed at the boundaries
of the channel. The particle density is set to 2.6 in lattice
units and the fluid viscosity is 0.005. The diameter of the
infinite cylinder is set to 1. The magnitude of the gravita-
tional acceleration is specified such that the Reynolds number,
ρVcD/μ f , is equal to 5×10−4. The accuracy of the proposed
scheme is evaluated by running simulations with five different
lattices, i.e., D/
x = [12, 16, 20, 30, 40], and measuring the
error,

Ev =
∣∣∣∣Vc − Vc

Vc

∣∣∣∣, (37)

10 20 30 40
D/ x

10-4

10-3

10-2

10-1

100

MES-II
PSM

Slope = 2.6

Slope = 1.5

FIG. 8. Accuracy of MES-II and PSM for a cylindrical particle
settling in a channel under gravity.

between the calculated terminal velocity, Vc, and the one given
by Eq. (35).

The results are shown in Fig. 8. For convenience, we
also include the predictions of the original PSM where the
force term is treated in the way described in Eq. (28). While
both schemes converge to Eq. (35), the present LBM model
with MES-II shows better performance by demonstrating an
accuracy order of 2.6 and much smaller error. In contrast, the
PSM shows an accuracy order of 1.5, which is lower than
the one for cases without body force [17,36]. As discussed in
Sec. II D, this deficiency can be attributed to the inappropriate
treatment of the body-force term.

C. Flow around two impacting cylinders

Complex flows are generated when the fluid interacts with
particles that are in contact or near contact. The simplest case
of such flows is the flow around two impacting cylinders,
where the fluid is initially stationary [55–58]. This case is used
to assess the performance of Eq. (14) for more complex flows
as well as the performance of the multiple-particle scheme
discussed in Sec. II C 2. Although a multiple-particle type
scheme has been discussed in the context of LBM and PSM by
Noble and Torczynski [17], as far as we know, this is the first
time we can fully assess the performance of multiple-particle
schemes.

Two infinite cylinders with an identical diameter, D, were
positioned in a square box of width 50D with an initial gap, G,
of 2D (Fig. 9). The fluid viscosity is set to be 0.0015 in lattice

FIG. 9. The setup of two infinite cylinders of diameter D moving
toward each other with an initial velocity of U/2. The initial gap of
the two cylinders is 2D.
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D x
D xC

t

d

FIG. 10. Evolution of the drag coefficient for flow past two
impacting cylinders against the dimensionless time t∗ at Re = 50
using two sets of D/
x. The results of Bampalas and Graham [55]
are included for comparison.

units. The cylinders are moving toward each other with the
same speed, U/2, that leads to a Reynolds number, ρUD/2μ f ,
of 50. The square box is enclosed by four stationary walls
and the no-slip boundary condition is imposed using the EDR
scheme. Two grids with a ratio D/
x equal to 12 and 30 are
utilized to discretize the computational domain. The multiple-
particle scheme is applied to model the momentum exchange
between the fluid and particle.

The evolution of the drag coefficient is presented in Fig. 10
where the time is normalized as t∗ = U (t − timpact )/D by
using the relative speed U of the cylinders, and the time
of cylinder collision, timpact = 2D/U . For comparison, the
finite-element results of Bampalas and Graham [55] are also
depicted in Fig. 10. For the finer grid, the multiple-particle
scheme is equivalent to the single-particle scheme when the
gap, G, between the cylinders is larger than 0.033D (t∗ =
−0.033), while for the coarser grid, this critical gap becomes
0.083D (t∗ = −0.083). For t∗ less than −0.3, the LBM
predictions agrees well with the finite-element predictions of
Bampalas and Graham [55] independent of grid size D/
x.
However, the finer grid appears to be necessary for capturing
the force exerted from the fluid to an individual cylinder
when the gap between the two cylinders is smaller than 0.3D
(t∗ = −0.3) as the performance using the coarser grid is less
satisfactory. For the coarser grid, Fig. 10, the transition from
the single-particle scheme to the multiple-particle scheme is
smooth at around t∗ = −0.083, and the transition does not
affect the accuracy of the proposed scheme since the diver-
gence from the finite-element results occurs earlier (i.e., at
t∗ ≈ 0.25) which we believe to be associated with the coarser
grid. In general, the multiple-particle scheme condition allows
the calculation of the drag force of an individual particle,
which cannot be achieved with the single-particle scheme
since it cannot distinguish two or more different particles in
the same computational cell and Eq. (25) becomes invalid.
Moreover, better performance is expected if particles move
with different velocities.

IV. CONCLUSIONS

We derived a lattice Boltzmann model for fluid-particle
interaction by considering the fluid-particle system as a two-
phase mixture. A virtual fluid, which has the same density as
the actual fluid and an infinite viscosity, was introduced to
transfer the momentum from the solid phase (i.e., particle) to
the two-phase mixture. Based on this concept, a Boltzmann-
BGK equation that is consistent with existing macroscopic
mixture equations (via a Chapman-Enskog expansion) was
devised. By employing the time and spatial discretization of
He et al. [46], we derived a scheme that is second-order
accurate in both time and space including the force term.
In contrast to the popular partially saturated method pro-
posed in Ref. [17], the proposed scheme is mathematically
rigorous and does not require the introduction of a weight
parameter, B, that nonphysically depends on fluid viscosity to
achieve second-order accuracy. The present model introduces
a second-order treatment of the forcing term, a condition
that is not fulfilled by the PSM. Moreover, we devise a
multiple-particle scheme, which is suitable for cases where
two or more particles intersect a single computational cell,
typically occurring for particles in contact or close to contact.
The proposed scheme was validated against three typical
problems, namely the flow past a stationary cylinder, a cylin-
drical particle settling under gravity, and the flow around two
impacting cylinders. Good performance was observed in all
cases. In particular, the case of a particle settling under gravity
confirms the appropriateness of the body-force treatment and
the ability of the model to achieve second-order accuracy in
the presence of body forces, a condition that was not achieved
by the original PSM.
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APPENDIX A

A Chapman-Enskog expansion [28] is performed to find
the macroscopic equations recovered by the Eq. (1) at the
continuum limit. The solution of the distribution function is
assumed to be an asymptotic series,

f = f 0 + ε f (1) + ε2 f (2) + . . . , (A1)

where the symbol ε plays the role of the Knudsen number.
It is further assumed that these terms satisfy the following
conditions:∫

f (k)dξ = 0,

∫
ξ f (k)dξ = 0,

∫
ξ · ξ f (k)d3ξ = 0 k > 0.

(A2)
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Furthermore, the time and spatial derivatives as well as the
forcing term are expanded as follows:

∂

∂t
= ε

∂(1)

∂t
+ ε2 ∂(2)

∂t
+ · · · , (A3a)

∂

∂xi
= ε

∂(1)

∂xi
, (A3b)

Fi = εF (1)
i . (A3c)

Substituting Eq. (A1), the derivatives and the force expan-
sion Eq. (A3) into Eq. (1), we obtain

O(ε (0) ) : f 0 = f eq, (A4a)

O(ε (1) ) :
∂(1)

∂t
f eq + ξi

∂(1)

∂xi
f eq + ε

F (1)
b,i

ρ

∂

∂ξi
f eq = − ε

τ
f (1),

(A4b)

O(ε (2) ) :
∂(2)

∂t
f eq +

[
∂(1)

∂t
+ ξi

∂(1)

∂xi

]
f (1)

+ε
F (1)

b,i

ρ

∂

∂ξi
f (1) = − ε

τ
f (2). (A4c)

Taking the zeroth to second moment of Eq. (A4), the O(ε)-
order macroscopic equations are as follows:

∂(1)

∂t
ρ + ∂(1)

∂xi
(ρui ) = 0, (A5a)

∂(1)

∂t
(ρui ) + ∂(1)

∂x j
�

eq
i j − εF (1)

b,i = 0, (A5b)

∂(1)

∂t
�

eq
i j + ∂(1)

∂xk
�

eq
i jk = − ε

τ
�

(1)
i j . (A5c)

The terms �
eq
i j , �

eq
i jk , and �

(1)
i j are defined as

�
eq
i j =

∫
ξiξ j f eqdξ = ρuiu j + ρc2

s δi j, (A6a)

�
eq
i jk =

∫
ξiξ jξk f eqdξ = ρc2

s (uiδ jk + u jδik + ukδi j )

+ ρuiu juk, (A6b)

�
(1)
i j =

∫
ξiξ j f (1)dξ. (A6c)

In a similar manner, the zeroth and first moments at O(ε2)
are

∂(2)

∂t
ρ = 0, (A7a)

∂(2)

∂t
(ρui ) + ∂(1)

∂x j
�

(1)
i j = 0. (A7b)

Collecting the O(ε) and O(ε2) terms, we can obtain the
following equations:

∂ρ

∂t
+ ∂ (ρui )

∂xi
= 0, (A8a)

∂ (ρui )

∂t
+ ∂�

eq
i j

∂x j
− εFi = −∂�

(1)
i j

∂x j
, (A8b)

where Eq. (A8) is the continuity equation. To find an explicit
form for Eq. (A8), we need some more algebraic manipula-
tions based on Eq. (A5c) (for more details see Ref. [59]) and
arrive at

�
(1)
i j = −ρc2

s τ

ε

(
∂ui

∂x j
+ ∂u j

∂xi

)
(A9)

and
∂ (ρui )

∂t
+ ∂ (ρu jui )

∂x j

= − ∂ p

∂xi
+ ∂

∂x j

[
μe

(
∂ui

∂x j
+ ∂u j

∂xi

)]
+ εFi, (A10)

where the pressure is p = ρc2
s and the mixture viscosity, μe ,

becomes

μe = pτ

ε
. (A11)
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