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In this paper, the original discrete unified gas kinetic scheme (DUGKS) is extended to the arbitrary
Lagrangian–Eulerian (ALE) framework to enable simulation of low-speed continuum and rarefied flows with
moving boundaries. For the proposed ALE-type DUGKS, the mesh motion velocity is introduced in the
Boltzmann–BGK equation and a remapping-free scheme is used to discretize the governing equation. Under
this coupling framework, the complex rezoning and remapping phases implemented in the traditional ALE
method are avoided. In some application areas, large discretization errors are introduced in the simulation if the
geometric conservation law (GCL) is not guaranteed. Therefore, three GCL-compliant approaches are discussed,
and a uniform flow test case is conducted to validate these schemes. Further, to illustrate the performance of the
proposed method, four test cases are simulated, including the continuum flow around an oscillating circular
cylinder, the continuum flow around a pitching NACA0012 airfoil, a moving piston driven by a rarefied gas, and
the rarefied flow caused by a plate oscillating in the normal direction. Finally, an extended test case considering
the rarefied flow over an oscillating circular cylinder is also studied, as this condition is not sufficiently
researched. Consistent and good results obtained from the above test cases demonstrate the capability of the
proposed ALE-type DUGKS to simulate moving boundary problems in different flow regimes.
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I. INTRODUCTION

Moving boundary problems can be found in various sci-
entific and engineering fields; for example, in the field of
aerospace engineering, the separation of the store from an
aircraft body and the motion of the undercarriage during
take-off and landing [1]. For microair vehicles, the design
of rotary and flapping wings, which include a large number
of moving boundary problems, is another application domain
[2]. In the above examples, usually the reference lengths of
flows are considerably larger than the mean free path of gas
molecules. Following the definition of the Knudsen number
[3], these flows are in a continuum flow regime. Similarly,
moving boundary problems are also encountered in the ap-
plication of a rarefied flow regime, such as the sound wave
generated by an oscillating plate and the motion of vanes of
a Crookes radiometer [4]. In general, macromethods based on
Navier–Stokes equations [5] can simulate moving boundary
problems in a continuum flow regime, and the prevailing
direct simulation Monte Carlo (DSMC) method [6] can deal
with the problem in a rarefied flow regime. However, in some
applications, such as flows involving multiple flow regimes,
both macromethods and DSMC will fail because the flow
regimes are outside the scope of these methods. Although
some hybrid methods [2,7] have been developed, they also
face great difficulties due to different temporal and spatial
scales. Therefore, developing and/or improved a method that
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can simulate moving boundary problems in all flow regimes
will have a great value in engineering applications.

Recently, the discrete unified gas kinetic scheme (DUGKS)
proposed by Guo et al. [8] has become a new promising
method to simulate flows in all regimes. This method com-
bines the advantages of the lattice Boltzmann method [9]
(LBM) and the unified gas kinetic scheme [10] (UGKS),
which enables easy calculation of the flux at a cell inter-
face similar to the LBM and reduces the computational cost
compared to that of the UGKS. Some details can be found
in Refs. [8,11–14]. Currently, the DUGKS is implemented
on a stationary mesh. Therefore, this study aims to present
an improved DUGKS that can simulate moving boundary
problems in all flow regimes.

Based on the mesh systems used in the numerical com-
putation, the existing methods to simulate moving boundary
problems can be divided into two categories: the Eulerian
method and Lagrangian method. For the Eulerian method,
the mesh is fixed at each iteration computational step. The
immersed boundary method (IBM) can be considered as an
example of the Eulerian method [15–17]. In this method,
uniform Cartesian grid cells are used near the wall region, and
the moving boundary is discretized into a set of Lagrangian
points. To implement the wall boundary condition, some
interpolation methods between the Eulerian points (Cartesian
grid points) and the Lagrangian points are used to guarantee
the no-slip condition. Except for the applications in con-
tinuum flow regime, the IBM coupled with the UGKS can
also deal with moving boundary problems in a rarefied flow
regime [18]. The primary disadvantage of the IBM is that
in some applications, such as in flows with a high Reynolds
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number, the number of grid cells is extremely large. The
static mesh movement method [19] is another representation
of the Eulerian method. During the numerical simulation, after
an Eulerian step, a new mesh is regenerated based on some
criteria. In general, the tasks of regenerating a new mesh
and implementing some interpolation methods to transfer
flow variables from old to new meshes are time consuming
for most applications. In the Lagrangian method, the mesh
motion velocity is equal to the local fluid flow velocity,
which often makes mesh distortion and tangling unavoidably.
Consequently, the pure Lagrangian method usually performs
well for one-dimensional flow simulations, but face great
difficulties for two- or three-dimensional flow simulations in
most applications [20].

By combining the advantages of the Eulerian and La-
grangian methods, a famous technique called the arbitrary
Lagrangian–Eulerian [21] (ALE) method has been developed
and improved during the last few decades. The ALE method
can also be divided into two types. In the traditional proce-
dure, three steps, namely, the explicit Lagrangian phase, the
rezoning phase, and the remapping phase, are implemented.
Similar to the static mesh movement method developed in
the pure Eulerian method, mesh regeneration or modification
and flow variable transfer are two critical steps in this type of
ALE method. That is, if the mesh quality can be maintained
well during the moving process, then this ALE-type method
becomes a pure Lagrangian method. In another type of ALE
method, usually called the remapping-free ALE, the mesh
motion velocity is introduced in the convection terms of
governing equations to modify the net flux of a cell interface.
In addition, a mesh moving technique is also introduced,
and the mesh motion velocity is constructed on the basis of
the old and new meshes. In the aerospace field, such as in
aeroelastic analysis, this ALE-type method is usually used.
In general, the time required to implement a mesh moving
technique is less than that to regenerate a new mesh; moreover,
the rezoning and remapping phases can also be eliminated.
Therefore, in this study, the remapping-free ALE technique is
used to improve the original DUGKS.

In the simulation of moving boundary problems, one
source of numerical error is the violation of the geometric
conservation law (GCL), which, in some applications, even
leads to erroneous results. Following Chang et al. [22], in
this study, GCL-compliant schemes are considered in order
to exclude this numerical error.

The rest of the paper is organized as follows. In Sec. II,
the original DUGKS is introduced briefly, and the ALE-
type DUGKS and several GCL schemes are illustrated in
detail. In Sec. III, a test case is conducted to verify the GCL
schemes, and five test cases are conducted to validate the
capability of the present method in simulating the moving
boundary problems. Finally, a brief conclusion is presented in
Sec. IV.

II. NUMERICAL METHODS

A. Sketch of the original discrete unified gas kinetic scheme

In this section, the original DUGKS proposed by Guo et al.
[8] is introduced briefly. The starting point of the DUGKS is

the Boltzmann–BGK equation, which can be expressed as

∂ f

∂t
+ ξ · ∇ f = � = − 1

τ
[ f − f eq], (1)

where f = f (x, ξ, η, ζ, t ) is the velocity distribution function
for particles moving in a D-dimensional velocity space with
ξ = (ξ1, . . . , ξD) at position x = (x1, . . . , xD) and time t . η =
(ξD+1, . . . , ξ3) is the rest components of the particle velocity
with length L = 3 − D. ζ is a vector with K dimension,
representing the internal degree of freedom of molecules. τ

is the relaxation time relating to the fluid dynamics viscosity
μ and pressure p with τ = μ/p. Finally, f eq is the Maxwellian
equilibrium distribution function given by

f eq = ρ

(2πRT )(3+K )/2
exp

(
−c2 + η2 + ζ 2

2RT

)
, (2)

where R is the gas constant, T is the fluid temperature, ρ is
the fluid density, and c = (ξ − u) is the peculiar velocity with
u being the macroscopic flow velocity.

To remove the dependence of a distribution function on the
internal variable η and ζ, usually the following two reduced
distributions [23], namely, the density distribution function
g and the energy distribution function h, are introduced into
practical computation:

g(x, ξ, t ) =
∫

f (x, ξ, η, ζ, t )dηdζ, (3)

h(x, ξ, t ) =
∫

(η2 + ζ 2) f (x, ξ, η, ζ, t )dηdζ. (4)

Then, with Eq. (1), the evolution equations for g and h can be
expressed as

∂g

∂t
+ ξ · ∇g = �g = − 1

τ
[g − geq], (5)

∂h

∂t
+ ξ · ∇h = �h = − 1

τ
[h − heq], (6)

respectively, where the equilibrium distribution functions for
geq and heq are given by

geq =
∫

f eqdηdζ = ρ

(2πRT )D/2
exp

(
− c2

2RT

)
, (7)

heq = (K + 3 − D)RT geq. (8)

The macrophysical quantities can be calculated as

ρ =
∫

gdξ, ρu =
∫

ξgdξ, ρE = 1

2

∫
(ξ 2g + h)dξ,

(9)

and with the ideal gas law, p = ρRT , the pressure can also
be obtained. In addition, the relationship between dynamic
viscosity μ and temperature T , based on the hard-sphere (HS)
or variable hard-sphere (VHS) molecules, is given by

μ = μref

(
T

Tref

)ω

, (10)

where ω is the index related to the HS or VHS model, and μref

is the fluid viscosity at the reference temperature Tref.
As Eqs. (5) and (6) are exactly the same, a uniform

expression can be used:

∂φ

∂t
+ ξ · ∇φ = � = − 1

τ
[φ − φeq], (11)
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FIG. 1. Schematics of (a) an unstructured mesh used in the
DUGKS and (b) flux calculation for a cell interface.

where φ represents g or h. In the DUGKS, Eq. (11) is
solved using a finite volume method. The discretization of
this equation can be divided into two steps: velocity-space
discretization and physical-space discretization.

For the particle velocity-space discretization, usually, a fi-
nite set of discretized microvelocities is used [8]; ξi represents
the ith discretized velocity. As the update of macroquantity
depends on the particle microvelocities [Eq. (9)], the values
of these velocities can be set to coincide with the abscissas
of the quadrature rule. For low-speed continuum flows, the
discretized velocities, weights, and the corresponding equi-
librium distribution functions developed in the LBM, such
as the D2Q9 model [24], can be used for the DUGKS. In
addition, this approach builds a connection between the LBM
and DUGKS. For rarefied flows, usually, the Gauss–Hermit
and Newton–Cotes quadrature rules are used to integrate the
macroquantities, and the corresponding set of abscissas is
used as the set of discretized velocities.

For the physical-space discretization, in this study, a finite
volume method based on an unstructured mesh is used. Fig-
ure 1(a) shows the schematic of an unstructured mesh; j is
the center of a triangle cell ABC, and subscript represents the
index number of a cell. If φ j and � j are the average values
of φ and �, respectively, in cell ABC, �t = t n+1 − t n is the
time step, and the midpoint rule for the time integration of the
convection term and the trapezoidal rule for the collision term
are used, then Eq. (11) can be rewritten as

φn+1
j (ξ) − φn

j (ξ) + �t

|Vj |Fn+1/2(ξ) = �t

2

[
�n+1

j (ξ) + �n
j (ξ)

]
,

(12)

where Vj is the volume of cell ABC. Fn+1/2(ξ) is the flux of
the cell surface, which is given by

Fn+1/2(ξ) =
∫

∂Vj

(ξ · n)φ(x, ξ, tn+1/2)dS, (13)

where ∂Vj represents the cell surface, x is the center of the
cell interface, and n is the outward unit vector normal to the
surface. To remove the implicit collision term, the following
two new distribution functions are introduced:

φ̃ = φ − �t

2
� = 2τ + �t

2τ
φ − �t

2τ
φeq, (14)

φ̃+ = φ + �t

2
� = 2τ − �t

2τ + �t
φ̃ + 2�t

2τ + �t
φeq. (15)

Then, Eq. (12) can be rewritten as

φ̃n+1
j = φ̃+,n

j − �t

|Vj |Fn+1/2(ξ). (16)

With the conservative property of the collision term, in prac-
tical computation, φ̃ is solved instead of φ, and Eq. (9) is
rewritten as

ρ =
∫

g̃dξ, ρu =
∫

ξg̃dξ, ρE = 1

2

∫
(ξ 2g̃ + h̃)dξ.

(17)

For the calculation of the interface flux shown in Fig. 1(b),
xb is the center of interface BC and nb is the unit normal
vector of BC with the direction points from cell ABC to BEC.
If Eq. (11) is integrated along the characteristic line within a
half time step s = �t/2, then the original distribution function
φ(xb, ξ, tn + s) in Eq. (13) can be updated as

φ(xb, ξ, tn + s) − φ(xb − ξs, ξ, tn)

= s

2
[�(xb, ξ, tn + s) + �(xb − ξs, ξ, tn)]. (18)

Similar to the treatment of φ̃, the following two new distribu-
tion functions are introduced:

φ̄ = φ − s

2
� = 2τ + s

2τ
φ − s

2τ
φeq, (19)

φ̄+ = φ + s

2
� = 2τ − s

2τ + s
φ̄ + 2s

2τ + s
φeq. (20)

Then, Eq. (18) can be rewritten as

φ̄(xb, ξ, tn+1/2) = φ̄+(xb − ξs, ξ, tn). (21)

If φ̃ in Eq. (17) is replaced by φ̄, then the macroquantities at
a cell interface can also be calculated. Further, with Eq. (19),
the original distribution function at (xb, tn+1/2) is given as

φ(xb, ξ, tn+1/2) = 2τ

2τ + s
φ̄(xb, ξ, tn + s)

+ s

2τ + s
φeq(xb, ξ, tn + s). (22)

Furthermore, as illustrated by Eq. (21) and Fig. 1(b), φn+1/2 at
a cell interface is obtained with φ̄+ at xa = xb − ξs. In addi-
tion, with Eqs. (14), (19), and (20), the relationship between
φ̃ and φ̄+ is built as follows:

φ̄+ = 2τ − s

2τ + �t
φ̃ + 3s

2τ + �t
φeq. (23)

Hence, with φ̃ and φeq stored at x j and with the Taylor
expansion, φ+(xa, tn) is calculated as

φ̄+(xa, tn) = φ̄+(x j, tn) + (xa − x j ) · ∇φ̄+(x j, tn), (24)

where ∇φ̄+ is the gradient of φ̄+. For the calculation of ∇φ̄+
on an unstructured mesh, in this study, a least-squares method
is used:

min
∇φ̄+

j

∑
m

w j,m[φ̄+
j,m − φ̄+

j − ∇φ̄+
j · (x j,m − x j )]

2, (25)

where w j,m = 1/(x j,m − x j )2 is the geometrical weighting
factor and m is the total number of cell neighbors. In addition,
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in practical computation, after φ̄+ is calculated, with Eqs. (15)
and (23), φ̃+ in Eq. (16) is updated as

φ̃+ = 4
3 φ̄+ − 1

3 φ̃. (26)

B. ALE-type discrete unified gas kinetic scheme

1. Discretization of the ALE-type DUGKS

In this section, discretization of the ALE-type DUGKS will
be introduced in detail. Under the ALE framework, during
the simulation, the geometrical information of a grid cell,
such as volume of cell, the location of the cell center, and
the length (or area) of the cell interface, changes temporally.
Following the macromethod based on N–S equations and the
UGKS [25] based on the Boltzmann–BGK equation, a mesh
motion velocity v that modifies the net flux of a cell interface
is introduced, and Eq. (1) is rewritten as

∂ f

∂t
+ (ξ − v) · ∇ f = � = − 1

τ
[ f − f eq]. (27)

Note that in Eq. (27), the calculation of the equilibrium
distribution function f eq does not depend on the mesh motion
velocity v [26], and the macroquantities stored in the global
coordinate are used to update f eq. In other words, velocity v

only influences the calculation of the convection term in the
Boltzmann–BGK equation. The reason presented in Ref. [26]
is that during the coordinate transformation from the global
(physical domain) to the local (computational domain) coor-
dinates, both the microparticle velocity and the macrofluid ve-
locity will include the same expression of velocity v (Eqs. (7)
and (11) in Ref. [26]), so the influence of velocity v to f eq

disappears. Although no coordinate transformation is required
in DUGKS for the calculation of the interface flux, the idea
presented in Ref. [26] can also explain the confusion in the
calculation of f eq.

In the ALE-type DUGKS, by using the discretization
scheme presented in the original DUGKS, Eqs. (12) and (13)
will be rewritten as

φn+1
j (ξ)

∣∣V n+1,∗
j

∣∣ − φn
j (ξ)

∣∣V n,∗
j

∣∣ + �tFn+1/2
ALE (ξ)

= �t

2

[
�n+1

j (ξ)
∣∣V n+1,∗

j

∣∣ + �n
j (ξ)

∣∣V n,∗
j

∣∣], (28)

and

Fn+1/2
ALE (ξ) =

∫
∂Vj

(ξ − v) · nφ(x, ξ, tn+1/2)dS

=
∑

k

(
ξ − v

n+1/2
b,k

) · n∗
b,kφ

n+1/2(xb,k, ξ)S∗
k , (29)

respectively, where V n+1,∗ and V n,∗ are the cell volumes at
n + 1 and n time levels; superscript ∗ means that the values
of volume at corresponding times maybe not equal to the real
values of volume at those times and will be illustrated in the
next section. k is the total number of cell interfaces, v

n+1/2
b is

the motion velocity of the cell interface at n + 1/2 time, and
n∗

b and S∗
b are the outward unit normal vector and the area of

the cell interface, respectively. The computational method for
these three variables will also be illustrated in the subsequent
section.

Similar to the original DUGKS, in the ALE-type DUGKS,
two new distribution functions, φ̃ and φ̃+, are introduced;
Eq. (28) can be rewritten as

φ̃n+1
j =

∣∣∣∣∣
V n,∗

j

V n+1,∗
j

∣∣∣∣∣φ̃+,n
j − �t∣∣V n+1,∗

j

∣∣Fn+1/2
ALE (ξ)

= |Vj,mod|φ̃+,n
j − �t∣∣V n+1,∗

j

∣∣Fn+1/2
ALE (ξ), (30)

where the expressions of φ̃n+1
j and φ̃+,n

j are the same as those
in the original DUGKS. The method for reconstructing φn+1/2

at the cell interface is also the same as that in the original
DUGKS, where xa = xn

b − ξs is used to calculate the location
of interpolating point. In addition, the sign of ξnn

b is used
to judge the upwind direction. Finally, from the perspective
of programming, the following three modifications are made
to the framework of the original DUGKS solver in order
to form an ALE-type DUGKS solver, which can simulate
moving boundary problems in both continuum and rarefied
flow regimes:

(1) addition of an independent module for mesh motion
and updating of geometrical information into the old solver,

(2) introduction of the volume-modified coefficient |Vmod|
into Eq. (16),

(3) replacement of the vector product ξ · n in Eq. (13) by
(ξ − v) · n.

In addition, in this paper, the Laplace smoothing equation
for mesh deformation [27] is solved to update the unstructured
mesh.

2. Geometric conservation law

The concept of the GCL was first defined by Thomas and
Lambard in 1978 [28]. In general, for a uniform flow, if a
scheme based on the moving mesh is GCL compliant, any
disturbance must not be introduced into the flow domain at
any time. Therefore, the ‘free-stream preservation property’ is
a fundamental condition for any ALE schemes [22]. Similar
to the theoretical derivation used in the macromethod, the
Boltzmann–BGK equation is considered here. By integrating
Eq. (27) on a control volume, we have

d

dt

∫
f dV +

∫
∂V

(ξ − vb) · nb fbdS = − 1

τ

∫
[ f − f eq]dV.

(31)

Then, for a uniform flow, that is, the distribution function
f in each cell maintains the original Maxwell equilibrium
state at any time ( f = f eq), and with

∫
nbdS = 0, based on

the semidiscrete scheme, Eq. (31) can be simplified as (here
we assume that ξ is discretized by the method described in
Sec. II A)

d

dt
Vj =

∫
∂V

vb · nbdS =
∑

k

vb,knb,kSb,k =
∑

k

vb,kSb,k .

(32)

Equation (32) is the governing equation of the GCL and it
implies that the volume variation of a moving grid cell equals
the integration of the volume flux (or “sweeping volume”) of
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FIG. 2. Mesh for a uniform flow: (a) initial mesh and (b) instantaneous mesh.

all the moving cell interfaces surrounding the control volume
[22].

In this study, the motion velocity vb of a cell interface in
Eq. (29) is given as

v
n+1/2
b = xn+1

b − xn
b

�t
. (33)

Based on the mesh motion velocity v and the GCL gov-
erning equation, three discretized geometric conservation law
(DGCL) compliant schemes to determine the values of V n+1,∗

j ,
V n,∗

j , and S∗
b are presented.

(1) DGCL scheme 1:
If we set

V n+1,∗
j = V n+1

j ,V n,∗
j = V n

j , (34)

which implies that real values of volume at corresponding
times are used, then following the idea presented in Ref. [29],

S∗
b can be calculated as

S∗
b = S

n+ 1
2

b = Sn+1
b + Sn

b

2
. (35)

With a simple mathematical derivation, Eqs. (34) and (35)
will automatically satisfy Eq. (32) during the mesh motion
process.

(2) DGCL scheme 2:
If we set

V n,∗
j = V n

j , S∗
b = Sn

b, (36)

to satisfy the DGCL, then V n+1,∗ must be modified [22]. With
the first-order Euler temporal discretization scheme, Eq. (32)
can be rewritten as

V n+1
j − V n

j

�t
=

∑
k

v
n+1/2
b,k Sn

b,k, (37)

X

Y

0 5 10 15 200

5

10

15

20
Pressure

0.40
0.39
0.38
0.37
0.36
0.34
0.33
0.32
0.31
0.30

(a)

X

Y

0 5 10 15 200

5

10

15

20
VelocityX

0.12
0.11
0.10
0.10
0.09
0.08
0.07
0.07
0.06
0.05

(b)

FIG. 3. (a) Pressure and (b) velocity contours of uniform flow obtained with a DGCL-violated scheme.
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TABLE I. Spatial errors of numerical solutions for a uniform flow.

Pressure U V

�x (cell size) DGCL scheme L2 L∞ L2 L∞ L2 L∞

1.000 Scheme 1 7.44e-14 1.17e-14 2.29e-13 4.07e-14 3.38e-13 6.02e-14
Scheme 2 1.15e-13 2.14e-14 5.98e-13 1.19e-13 7.47e-13 1.21e-13
Scheme 3 8.07e-14 5.88e-15 1.21e-13 2.04e-14 9.86e-14 2.99e-14

0.500 Scheme 1 3.00e-13 1.52e-14 2.95e-13 3.48e-14 2.56e-13 2.09e-14
Scheme 2 2.63e-13 9.55e-15 2.81e-13 3.29e-14 2.25e-13 1.85e-14
Scheme 3 2.95e-13 1.02e-14 2.27e-13 2.15e-14 1.90e-13 1.31e-14

0.250 Scheme 1 1.10e-12 4.10e-14 7.55e-13 3.84e-14 6.79e-13 2.67e-14
Scheme 2 1.04e-12 1.64e-14 6.48e-13 2.96e-14 5.73e-13 1.80e-14
Scheme 3 9.63e-13 1.52e-14 6.23e-13 2.56e-14 5.48e-13 1.51e-14

0.125 Scheme 1 3.33e-12 5.71e-14 1.96e-12 4.38e-14 1.91e-12 4.45e-14
Scheme 2 2.64e-12 2.10e-14 1.45e-12 2.02e-14 1.47e-12 1.76e-14
Scheme 3 2.73e-12 2.14e-14 1.48e-12 1.94e-14 1.50e-12 1.82e-14

and V n+1,∗
j can be modified as

V n+1,∗
j = V n

j + �t
∑

k

v
n+1/2
b,k Sn

b,k . (38)

(3) DGCL scheme 3:
If we set

V n+1,∗
j = V n+1

j , S∗
b = Sn+1

b , (39)

similar to DGCL scheme 2, then V n,∗
j also must be modified

and it can be calculated as

V n,∗
j = V n+1

j − �t
∑

k

v
n+1/2
b,k Sn+1

b,k . (40)

Since DGCL scheme 1 is considerably easy to implement
and only one time level [Fn+1/2 in Eq. (29)] is needed to calcu-
late the flux at a cell interface, it can naturally be coupled with
the current ALE-type DUGKS. Although DGCL schemes 2
and 3 are relatively more complex, they are suitable for a
further improved ALE-type DUGKS framework, such as a
high-order DUGKS [30] or a multi-time-level implicit scheme
[22], where the geometrical information at those multi-time-
levels is considerably more difficult to define [31]. In addition,
these two schemes are volume constrained; a face-constrained

scheme [22] can also be used, but it is not considered in this
study.

3. Boundary conditions

In this section, the boundary conditions used in this study
will be illustrated in detail.

For the wall boundary condition, depending on whether the
flow condition is continuum or rarefied, the non-equilibrium
extrapolation rule [32] or diffuse-scattering rule [8] will be
used. For a continuum flow, the original distribution functions
at n + 1/2 are given as

f n+1/2
w (ξi ) = f eq

w (ξi; ρw, uw ) + f n+1/2
j (ξi ) − f eq,n+1/2

j (ξi ),

(41)

where subscript w represents the wall boundary, j is the
neighbor cell of a wall interface, and ρw and uw are the density
and velocity at the wall, respectively. In addition, ρw can be
approximated by ρw = ρ j , and f n+1/2

j and f eq,n+1/2
j can be

approximated by the corresponding values at n time. For a
rarefied flow, the distribution function for particles moving in
the direction reflecting from the wall is calculated as

f n+1/2
w (ξi ) = f eq(ξi; ρw, uw ), ξi · nw > 0, (42)
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FIG. 4. Mesh for flow around an oscillating circular cylinder: (a) full domain and (b) near the circular cylinder surface.
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FIG. 5. Dimensionless inline force Fx at different Umax (�t = 0.05, �x = d/256): (a) the full oscillating period T and (b) part of the
enlarged view.

where nw represents a unit vector in the direction normal to
the wall and with a point to the cell. Density at the wall ρw is
determined by the condition that no particles can go through
the wall:

∑
ξi·nw>0

(ξi − uw ) · nw f eq,n+1/2
w (ξi; ρw, uw )

+
∑

ξi·nw<0

(ξi − uw ) · nw f n+1/2
w = 0. (43)

Then it can be calculated as

ρw = −
∑

ξi·nw<0(ξi − uw ) · nw f n+1/2
w∑

ξi·nw>0(ξi − uw ) · nw f eq,n+1/2
w (ξi; 1, uw )

, (44)

where the distribution functions f n+1/2
w with direction ξi ·

nw < 0 can be constructed following the procedure described
in Sec. II B 1.

In this study, for the test cases of flow around obstacles,
the far-field boundary condition will be used. Similar to the
treatment of the wall boundary, the distribution function in

FIG. 6. Pressure isolines at phases (a) 0◦ and (b) 288◦, Dütsch et al. [36] (left) and present (right) results.
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FIG. 7. Velocity profiles at four vertical cross sections x̄ = −0.6, 0, 0.6, 1.2 for phase positions (a) 180◦, (b) 210◦, and (c) 330◦. The
present results are compared with the computational and experimental values of Dütsch et al. [36].

directions reflecting from the boundary can be calculated as

f n+1/2(ξi ) = f eq(ξi; ρ0, u0), ξi · nw > 0, (45)

where ρ0 and u0 are the density and velocity of a free-stream,
respectively.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, several test cases are considered to validate
the proposed ALE-type DUGKS. The first case is a uniform
flow for the GCL-compliant test, showing the importance
of implementing a GCL-compliant scheme. The second and
third cases test the application of the proposed method for
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TABLE II. Drag coefficient cd and added mass coefficient ci for
the flow around a circular cylinder oscillating in the stationary fluid.

Work cd ci

Dütsch et al. [36]a 2.09 1.45
Uzunoğlu et al. [39]a 2.10 1.45
Yuan et al. [17] 2.10 1.47
Present 2.10 1.48

aData are obtained using the finest meshes in Refs. [36] and [39].

low-speed continuum flows around an oscillating circular
cylinder and around a pitching NACA0012 airfoil, respec-
tively; they confirm that the proposed method can achieve
better results compared with that of macromethods. The fourth
and fifth cases test the application of the proposed method
for two low-speed rarefied flow conditions: one is a moving
piston driven by a rarefied gas and another is the flow caused
by a plate oscillating in a direction normal to the boundary,
which is a typical problem in microelectromechanical system
(MEMS) devices but lacks systematic research [33]. Finally, a
test case is also conducted for a rarefied flow around an oscil-
lating circular cylinder, which is also a topic not researched

t/T

F
x/(

ρU
2 m

ax
d)

-2

-1

0

1

2
Present
Dutsch et al.
Morison Eq.

..

FIG. 8. Comparison of inline force Fx with the result of Dütsch
et al. [36] and empirical result obtained by Morison equation [38]
[Eq. (50)].

extensively. For the continuum flow test cases, only the g
(density) distribution function is solved, and a three-point
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FIG. 9. Mesh for flow around a pitching NACA0012 airfoil: (a) full domain and (b), (c), (d) parts of the enlarged view near the airfoil.
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FIG. 10. Time evolutions of drag coefficient at different reduced frequencies k for d = 2◦.

Gauss–Hermite quadrature rule [8] (the D2Q9 lattice model
in the LBM) is used to calculate the macroquantities. For
the rarefied flow test cases, both g (density) and h (energy)
distribution functions are solved, and the Gauss–Hermit and
Newton–Cotes quadrature rules [13] are used.

The ALE-type DUGKS formulation has been coded with
the help of Code_Saturne [34], an open-source computational
fluid dynamics software of Electricite De France (EDF),
France (http://www.code-saturne.org/cms/). We appreciate
the development team of Code_Saturne for their great works.

A. GCL compliance test with uniform flow condition

The uniform flow condition is usually used as a basic case
for the GCL-compliant test, while several additional test cases
can be found in Ref. [22]. For this problem, the computational
domain is a square of side equal to 20, and the number of grid
cells is 40 × 40. The time step is set to �t = 0.2, the initial
velocity is u = U0 = 0.1, v = 0, and the initial density is ρ0 =
1.0. In addition, the far-field boundary condition presented in
Sec. II B 3 is used in this case.

First, the importance of GCL is illustrated. For the mesh
motion method, the grid points oscillate randomly around
their original locations with an amplitude ±0.5�x (�x is the
size of a grid cell). Figure 2 shows the meshes, respectively,
at the initial state and at instantaneous states when the grid

points start moving. It has been demonstrated in Sec. II B 2
that during the update of the distribution function, if Eqs. (34)
and (35) are used, the DGCL will be satisfied automatically.
Otherwise, if Eq. (36) or (39) is used without the volume
constraint, then the DGCL will be violated. Figure 3 shows the
pressure and velocity contours after 10 iterative calculations
when a DGCL-violated scheme is implemented. Clearly, the
pressure and velocity are severely polluted, preventing contin-
uation of the simulation. Consequently, if the grid points are
moved in extremely irregular ways, a large GCL error occurs,
which must be eliminated.

Second, the performance of DGCL schemes used in the
ALE-type DUGKS is verified. In this part, the grid points
also oscillate randomly around their original locations with
an amplitude ±0.5�x, and the spatial errors for pressure and
velocity are calculated at four different cell sizes, that is, with
the number of grid cells equal to 20 × 20, 40 × 40, 80 × 80,
and 160 × 160. As shown in Table I, L2 and L∞ errors of
all schemes are maintained at significantly small values after
1000 iterations, thus indicating that all the DGCL-compliant
schemes can eliminate the GCL error very well.

As the deformation rate of a moving grid cell in above
numerical tests is large and discontinuous, a large GCL error
will be introduced in the computational domain if a DGCL-
violated scheme is implemented. From our further tests, when
the amplitude of random oscillation is dropped to ±0.1�x, the
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FIG. 11. Mean thrust coefficients C̄T at different reduced frequencies k for (a) d = 2◦ and (b) d = 4◦.
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FIG. 12. Vortex shedding patterns at different reduced frequencies k for d = 2◦.
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FIG. 14. Schematics of a moving piston driven by a rarefied gas: (a) initial stage and (b) equilibrium stage.

GCL error is considerably reduced. Consequently, by main-
taining a regular grid point motion, a small GCL error can be
achieved compared with other numerical errors. However, it
has been reported that in some fields such as aero-elasticity
analysis, the GCL error yields erroneous results [35]. There-
fore, following the suggestions proposed in Ref. [22], the
DGCL-compliant scheme is implemented in the following test
cases.

B. Continuum flow around an oscillating circular cylinder

In this section, the continuum flow around an oscillating
circular cylinder is simulated. For this case, the cylinder
oscillates sinusoidally in the horizontal direction, and the
equation of motion can be expressed as

x(t ) = −Asin(2π f t ), (46)

where x is the displacement of the cylinder around its equi-
librium location, A is the amplitude, and f is the oscillating
frequency. Following the set up described in Ref. [36], two
key parameters that dominate the flow patterns, the Reynolds
number Re and the Keulegan–Carpenter number KC, are
defined. They are expressed as

Re = ρUmaxd

μ
, (47)

KC = Umax

f d
, (48)

where d is the diameter of the cylinder, Umax is the maximum
motion velocity of the cylinder in the horizontal direction, ρ is
the fluid density, and μ is the fluid viscosity. In this simulation,
we consider Re = 100 and KC = 5.

Figure 4 shows the mesh used in this case. The size of the
computational domain is [80d × 60d], which is large enough
to eliminate the influence of the far-field boundary condition.
The total number of grid cells is approximately 49 000, with
240 points along the circular cylinder surface. Quadrangular
cells are used to discretize the region near the cylinder surface
with a width of 0.1d , and triangle cells are used to discretize
the other regions of the computational domain. At the initial
stage, the cylinder is located at the center of the computational
domain, with ρ = 1.0 and u = v = 0 to initialize the distri-
bution functions. These values are also used as the far-field
boundary conditions.

First, the numerical convergences of inline force Fx at
different Mach numbers Ma, time steps �t , and minimum
cell sizes �x are conducted. From our numerical tests, the
influence of �x and �t on the results is found to be negli-
gibly small; in the following simulations, �x = d/256 and
�t = 0.05 will be used. Then, tests are conducted with
Ma equal to 0.173 (Umax = 0.1), 0.0866 (Umax = 0.05), and
0.0173 (Umax = 0.01) (considering the sound speed is equal
to 1/

√
3 for D2Q9 lattice model). As shown in Fig. 5, for

an oscillating period T , the inline force Fx is considerably
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FIG. 15. Time histories of piston position at (a) Kn = 0.031 and (b) Kn = 0.31 (the black dash and dot lines represent the theoretical
solutions).
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FIG. 16. Time histories of density fluctuation at the two walls of the piston for (a) Kn = 0.031 and (b) Kn = 0.31 (the red dash and dot
lines represent the theoretical solutions).

influenced by Ma, especially for the amplitude of Fx. In the
framework of the LBM based on the D2Q9 lattice model, the
compressible Navier–Stokes equations are recovered through
the Chapman–Enskog perturbation expansion. Therefore, to
simulate an incompressible fluid flow with a compressible
scheme, a numerical error related to the artificial compress-
ibility will arise and may leads to some undesirable errors in
the numerical simulations [37]. By considering the time costs
of computation, Ma = 0.0866 will be used in the following
simulations.

Second, other results are compared to further validate
the proposed numerical method. Pressure isolines at phase
positions 0◦ and 288◦ are shown in Fig. 6. These isolines
agree well with the numerical results of Dütsch et al. [36].
Furthermore, the velocity profiles ūx and ūy at four vertical
cross sections x̄ = −0.6, 0, 0.6, 1.2 for three phase positions
180◦, 210◦, and 330◦ are compared with the numerical and
experiment results obtained by Dütsch et al. [36]; ūx, ūy, x̄,
and ȳ are defined as

x̄ = x

d
, ȳ = y

d
, ūx = ux

umax
, ūy = uy

umax
, (49)

where x and y are the coordinates relative to the equilibrium
position of the oscillating cylinder, ux and uy are the veloc-
ity components in the horizontal and vertical directions. As
shown in Fig. 7, our results also generally agree well with the
numerical and experiment results of Dütsch et al. [36].

For an oscillating flow, the semiempirical equation of
Morison et al. [38] is widely used to estimate Fx on a body.
When a circular cylinder oscillates in the stationary fluid, the
time-dependent Fx can be expressed as

Fx = − 1
2ρdcd ẋ|ẍ| − 1

4πρd2ci|ẍ|, (50)

where x is the displacement of the cylinder, and cd and ci are
the drag coefficient and the added mass coefficient, respec-
tively. By integrating the pressure and stress along the surface
of the circular cylinder, Fx is calculated. Then, using least-
squares fitting or Fourier analysis, cd and ci are evaluated. The
fitted cd and ci are compared with other author’s numerical
results shown in Table II. Although ci is slightly higher, the
proposed ALE-type DUGKS generally achieves good results.
Given the values of cd and ci, Eq. (50) can be used to evaluate
the empirical values of Fx in an oscillating period. As shown

FIG. 17. Time histories of pressure fluctuation at the two walls of the piston for (a) Kn = 0.031 and (b) Kn = 0.31 (the red dash and dot
lines represent the theoretical solutions).
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FIG. 18. Convergence tests based on different number of abscissas at (a) Kn = 0.031 and (b) Kn = 0.31 (the black dash and dot line
represent the theoretical solution). 28GH: 28-abscissas Gauss–Hermit quadrature rule.

in Fig. 8, our result agrees well with that of Dütsch et al. [36]
and is approximately consistent with the empirical values of
Morison et al. [38].

C. Continuum flow around a pitching NACA0012 airfoil

To study the details of propulsion in case of insects, birds,
fishes, etc., the flow around an oscillating airfoil with a
pitching or heaving motion or both is usually used as the
benchmark test case [40]. In this section, the pitching motion
of a NACA0012 airfoil around its quarter-chord point is con-
sidered to verify the performance of the proposed ALE-type
DUGKS in simulating the rotary motion boundary problems.
The variation in angle of attack (AOA) α for a pitching airfoil
can be expressed as

α = dsin(2π f t ), (51)

where d is the amplitude of the pitching motion and f
is the pitching frequency. Usually, a new parameter, re-
duced frequency k, is defined for the pitching airfoil. The
relationship between k and f is k = 2π f c/U0, where c is
the airfoil chord length and U0 is the velocity of free-stream.
The Reynolds number Re based on c is set at 12 000. The

flow at this Reynolds number can be generally treated as a
laminar flow [41]. Figure 9 shows the mesh used in this case.
The total number of grid cells is 140 831, with 291 points at
the airfoil surface. The region near the airfoil is discretized
into quadrangular cells, with the minimum size of grid cells
being 1.0 × 10−4c. In addition, the mesh in the region with
approximately 15c length behind the airfoil trail is refined
with the Cartesian grid cells to capture the vortex streets. The
number of grid cells used in this case is slightly large, so if
only some results such as the force coefficient are considered,
approximately 50 ∼ 60 × 103 grid cells sufficiently provide
high-accuracy results. In addition, as shown in Sec. III B, a
small value of U0 (U0 = 0.05) must be used to eliminate the
compressible effect.

First, the flow around a stationary airfoil is simulated.
As experimentally revealed by Koochesfahani [42], the phe-
nomenon of vortex shedding can be observed at the Reynolds
number of 12 000, and the equivalent reduced frequency
kequi. based on the vortex shedding frequency is 8.7. Our
numerical result shows kequi. = 8.23, which is close to the
experiment value. In addition, the mesh in the region with
approximately 0.5c length behind the airfoil trail must be
refined. If the mesh in this region is too coarse, such as that of
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O-type mesh, a steady flow will be obtained by the numerical
simulation.

Second, a series of flows around a pitching airfoil is simu-
lated at d = 2◦ and 4◦, respectively, and at different reduced
frequencies k. Figure 10 shows the time evolutions of the
drag coefficient Cd at three values of k. At a small value of
k (k = 4), both the maximum and the minimum Cd values are
greater than zero, which generates a drag force in the flow.
When the k value is increased (k = 8), the minimum of Cd is
less than zero. Although the flow still generates the drag force,
the magnitude of mean Cd reduces. When k is continually in-
creased (k = 12), the absolute value of minimum Cd becomes
greater than the maximum Cd , which generates a thrust force
in the flow. Here, a new force coefficient, CT , is defined, which
represents the thrust coefficient and is given as CT = −Cd .
Figure 11 shows the mean thrust coefficient C̄T at different kd .
In general, the same tendencies are observed as those of other
numerical results [40,43,44] and experimental results [42].
For d = 2◦, when kd is less than 0.2, the numerical results
are consistent with each other as well as with the experiment
values. However, when kd is greater than 0.2, the discrepancy
increases, which can be explained by some reasons presented
in Ref. [43].

Figures 12 and 13 show the vortex shedding patterns at
d = 2◦ and d = 4◦, respectively. For comparison, the vortex
shedding pattern at k = 0 (stationary airfoil) is also presented.
For d = 2◦, at a small value of k, the sizes of vortices
are considerably larger than those generated by a stationary
airfoil. When k increases, as the thrust force is generated,
the original two rows of the vortex street appears to merge
into one row. Moreover, when k < kequi., even though the
region with approximately 15c length is away from the airfoil
trail, clear structures of the vortex street are maintained well.
Otherwise, these structures quickly dissipate at large values of
k. For d = 4◦, a form of undulating vortex sheet is generated
at k = 0.835, whereas at k = 3.09, a double-vortex pattern is
observed, but this structure seems to dissipate and merge into
one another at approximately 2c length behind the airfoil trail.
For k = 2, which is between 0.835 and 3.09, the length of
the undulating vortex sheet is reduced (about 5c behind the
airfoil trail), and the double-vortex features are generated but
not very clear. At large values of k, double-vortex features
disappear, and the vortex streets that are almost a straight line
at small values of k are deflected. Similar patterns of vortex
street also illustrated by Liang et al. [41] with a numerical
simulation and by Koochesfahani [42] with an experiment.

D. A moving piston driven by a rarefied gas

In this section, the case of a moving piston driven by a
rarefied gas is simulated. This problem has been studied by
Dechristé et al. [45] with a deterministic numerical scheme
coupled with the immersed boundary method, and by Shrestha
et al. [6] with the DSMC. Figure 14 shows the schematics of
this problem. The one-dimensional computational domain is
divided into two subdomains by a piston, with the length of
each subdomain being L and the width of the piston being
2l . At the initial stage, the two subdomains are filled with the
same gas, with its density ρ, pressure p, and temperature T
set at the same values. For the right part of the computational
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FIG. 19. Comparisons of time history of piston position at dif-
ferent masses for (a) Kn = 0.031 and (b) Kn = 0.31 (the black dash
and dot line represent the theoretical solution).

domain, as the temperature of wall is set higher than that of
the gas, the gas pressure increases, which pushes the piston
from right to left. Finally, the piston stops moving when the
pressures at the two walls of the piston are the same. By
considering the law of conservation of mass and the state
equation of gas in each part, we have the following [45]:

ρ0L = ρleft (L + xequi.), ρ0L = ρright(L − xequi.), (52)

and

ρleftRT0 = pequi., ρrightRTw = pequi., (53)

where R is the gas constant. Then, the equilibrium location of
the piston can be calculated as

xequi. = L
1 − Tw/T0

1 + Tw/T0
; (54)

FIG. 20. Schematic of the rarefied flow caused by a moving plate
oscillating in its normal direction.
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FIG. 21. Profiles of density at (a) t/2π = 0.1, . . . , 0.5 and (b) t/2π = 0.6, . . . , 1.0 and at two K numbers.

the pressure and density at the equilibrium state for each part
are

pequi. = L

L + xequi.
p0, ρleft = pequi.

RT0
, ρright = pequi.

RTw

.

(55)

Following the set up described by Shrestha et al. [6], the
gas is argon, with atomic mass mg = 6.63 × 10−26 kg, and
atom diameter 3.68 × 10−10 m under a hard-sphere collision
model. The initial values for T0, Tw, and p0 are set to 270 K,
330 K, and 10 Pa, respectively. The initial velocities for each
part are set to zero. By the ideal gas law, the initial density can
also be calculated. In this test case, two computational geome-
tries, L = 0.1 m, l = 0.01 m, and L = 0.01 m, l = 0.001 m,
are considered. Consequently, based on the piston width (2l)
and the given condition of the gas, the flows at two Knudsen
(Kn) numbers, Kn = 0.031 and Kn = 0.31, are simulated.
The mass of the piston M is set to M1 = 3.56 × 10−6 kg and
M2 = 3.56 × 10−7 kg at the two computational conditions,
which are equal to 1/10 of the total mass of the gas in the
computational domain. In addition, 400 grid cells are used to
discretize the computational domain. Finally, the velocity up

and location xp of the piston at the n + 1 time step can be

calculated as

un+1
p = un

p + �t × S

M

(
pn

l − pn
r

)
, xn+1

p = xn
p + �t × un

p,

(56)

where �t is the time step used in the fluid numerical simula-
tion, S is the area of the piston, and pl and pr are the pressure
acting on the two walls of the piston.

Figure 15 shows the time evolutions of the piston location
compared with the DSMC results [6] at two Kn numbers. It
can be observed that the position of the piston at Kn = 0.31
converges much faster with its equilibrium position than that
at Kn = 0.031. Although the convergence processes are dif-
ferent, the time required for the piston to reach its equilibrium
position is almost the same, which is approximately 0.03 s at
Kn = 0.031 (about 0.975xequi. for present result at that time)
and 0.0005 s at Kn = 0.31. In addition, for the result of the
DSMC at a small value of Kn, the piston fluctuates around
that equilibrium position, and several independent runs are
needed to reduce this stochastic fluctuations. On the contrary,
our results are very smooth even at a small value of Kn.
Moreover, the black dash and dot lines shown in figures are
the theoretical solutions [Eq. (54)], and the errors between
the numerical and theoretical solutions are less than 1% for
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FIG. 22. Profiles of velocity at (a) t/2π = 0.1, . . . , 0.5 and (b) t/2π = 0.6, . . . , 1.0 and at two K numbers.

both values of Kn. Figures 16 and 17 show the time evolu-
tions of density and pressure at the two walls of the piston,
respectively. Our numerical results are also consistent with
the theoretical solutions. During the evolutions, the pressure
difference of the two walls of the piston at Kn = 0.31 is larger
than that at Kn = 0.031, which may also indicate that the
piston at a large value of Kn moves faster to its equilibrium
position.

In this case, the Gauss–Hermit quadrature rule is used [13]
to integrate the macroquantities, and the code to calculate the
abscissas and weights is presented in Ref. [46]. Figure 18
shows the convergence tests based on the different number
of abscissas. From our test, for Kn = 0.031, the integral
accuracy based on 28 abscissas is good enough to achieve a
convergent result. However, for Kn = 0.31, 8 abscissas may
also sufficiently provide a good result. Unexpectedly, in this
test case, less discrete velocities are needed at a large value
of Kn, which might entail further research to explain this
observation. In addition, the motion of the piston at different
masses is also considered. As Fig. 19 shows, the effect of the
fluid structure interaction at a large mass is obvious, especially
at a large value of Kn. Further, at a small value of Kn, although
the amplitudes of each oscillation period of the piston are
different, the average positions are almost the same during the

convergence process. Besides, the oscillation of the piston at
a small mass will decay faster than that at a large mass.

E. Rarefied flow caused by a plate oscillating
in its normal direction

This section presents the simulation of another rarefied
flow test case presented in Ref. [33]. Figure 20 shows the
schematic of this problem. In a one-dimensional domain, the
right wall remains stationary and the left wall oscillates with
the cosine function x(t ) = awcos(ωt ) (aw = 0.1 and ω = 1 in
this case). The amplitude of the moving wall is set into a small
value to ensure that this case is a low-speed flow. Following
the set up described in Ref. [33], in the initial stage, the length
of the computational domain is d = 2π

√
5/6, which is the

wavelength of the sinusoidal acoustic wave with an angular
frequency ω in an inviscid (Euler) gas [47]. The Knudsen
number Kn is given as

Kn = 2√
π

K, (57)

where K is the special Kn number, and two K numbers, equal
to 0.5 and 1.0, are considered in this case. ρ0 = 1.0, T0 = 1.0,
and u0 = 0.0 are used to initialize the distribution functions g
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FIG. 23. Profiles of temperature at (a) t/2π = 0.1, . . . , 0.5 and (b) t/2π = 0.6, . . . , 1.0 and at two K numbers.

and h. We use 400 grid cells to discretize the computational
domain at K = 0.5 and 200 at K = 1.0. In addition, in each
oscillating period (T = 2π ), 32 000 iteration computations
are implemented at K = 0.5 and 64 000 at K = 1.0.

Figures 21–23 show the profiles of density, velocity, and
temperature, respectively, at ten moments in each oscillating
period. Generally, our results agree well with that of Tsuji
et al. [33], especially at a large value of K . However, without
more references, it is difficult to identify which result is better.

From these figures, it can be observed that at t/π = 1.0,
the velocity profile is almost sinusoidal shape, but the pro-
files of density and temperature deviate from it significantly.
Furthermore, the velocity profile deviates more from being
sinusoidal shape and tends to attenuate rapidly at a large K
value, especially for the right part of the wave.

To integrate macroquantities in the quadrature rule, the
Newton–Cotes rule is used. At a large K value, since the num-
ber of particles is considerably decreased, the wave generated

FIG. 24. The (a) maximum lift coefficient C′
l and (b) mean drag coefficient C̄d at two Reynolds numbers in a continuum flow regime.

063310-19



YONG WANG, CHENGWEN ZHONG, AND SHA LIU PHYSICAL REVIEW E 100, 063310 (2019)

FIG. 25. The (a) maximum lift coefficient C′
l and (b) mean drag coefficient C̄d at two Kn numbers and at Re = 10.

from the left moving wall and that reflected from the right
stationary wall lead to the singular distribution function [4].
Therefore, to obtain smooth results, the number of abscissas
is increased considerably at a large K value. From our tests,
for K = 0.5, 50 abscissas are enough to obtain convergent and
smooth results, whereas for K = 1.0, about 200 abscissas are
needed to obtain smooth results.

F. Uniform rarefied flow around an oscillating circular cylinder

This section presents the simulation of an extended test
case with a uniform flow around an oscillating circular cylin-
der; this condition is studied in detail in a continuum regime
but insufficiently in a rarefied regime.

First, following the set up described by Mittal et al. [48],
the continuum flow around an oscillating cylinder is simulated
at a Reynolds number Re = 33. Different from the test case
described in Sec. III B, in which the fluid is stationary at
the initial stage, here a uniform flow is used as the initial
condition. In addition, a similar hybrid mesh shown in Fig. 4 is
also used in this case. The motion of a cylinder in the vertical
direction can be expressed as

y(t ) = Asin

(
2π

1

d

U∞
U ∗ t

)
, (58)

where y is the displacement of the cylinder around its equi-
librium location, d is the diameter of the cylinder, A is the

amplitude (A = 0.25d), U∞ is the velocity of free-stream,
and U ∗ is the reduced velocity of the cylinder (1/U ∗ is the
dimensionless oscillating frequency of cylinder). Then, U ∗ =
5–11 is considered in the simulation. As shown in Fig. 24(a),
the forced oscillating cylinder generates a lift force, and the
maximum lift coefficients C′

l at different values of U ∗ agree
well with the results of Mittal et al. [48]. Moreover, the mean
drag force C̄d on the oscillating cylinder is slightly larger than
that on a stationary cylinder [see Fig. 24(b)].

Second, the rarefied flow around an oscillating cylinder is
simulated. To maintain the flow at a low speed, the Reynolds
number is set to Re = 10, and the Knudsen number Kn is
set to 0.01 and 0.05. Besides, a continuum flow (Kn → 0)
at Re = 10 is also presented for comparison. For the stress
force acting on the surface of the cylinder, it can be obtained
from the distribution function [49] in a rarefied flow regime,
since the Newtonian friction law fails in that flow regime.
In the continuum regime, C′

l continues to decline with the
increase in the U ∗ value. This is different in the case of
Re = 33, where the minimum C′

l is reached at U ∗ = 10. The
possible reason is that the influence of vortex separation on the
result is decreased at a low Reynolds number. Furthermore, as
shown in Fig. 25(a), this phenomenon can also be observed
in a rarefied flow regime, where C′

l is shown in logarithmic
coordinates. Due to the rarefied gas effect, the no-slip wall
boundary condition cannot be maintained, and the lift and
drag forces decrease. In addition, for drag force on a circular

tU /d

C l
 &

 C
d
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-2

0
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FIG. 26. Convergence tests for the lift coefficient Cl and the drag coefficient Cd at (a) Kn = 0.01 and (b) Kn = 0.05. Single f : only g is
solved. Double f : both g and h are solved. 16GH: 16-abscissas Gauss–Hermit quadrature rule.
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cylinder at different reduced frequencies, a linear relation
similar to that of lift force can also be observed in the rarefied
flow regime [see Fig. 25(b)]. Consequently, for rarefied flow
at these two Kn numbers, the lift and drag forces on the
oscillating circular cylinder exhibit a linear relation with the
Knudsen number Kn, Reynolds number Re, amplitude of
oscillation A, and oscillating frequency 1/U ∗. Further studies
at other computational conditions will be continued and will
be presented in our future papers.

Finally, we discuss the convergence test case, where the
Gauss–Hermit quadrature rule is used to integrate the macro-
quantities, and U ∗ is set to 5. As shown in Fig. 26(a), for Kn =
0.01, because the Mach number Ma of flow is low (Ma ≈
0.06), only the density distribution function g is solved,
and 16 abscissas sufficiently provide convergent results. For
Kn = 0.05 (Ma ≈ 0.3), although the differences are little [see
Fig. 26(b)], both the density distribution function g and the
energy distribution function h are solved, and 28 abscissas are
used in the simulation to provide convergent results.

IV. CONCLUSION

In the present study, the original DUGKS is extend to an
ALE-type DUGKS. The mesh motion velocity is introduced
in the Boltzmann–BGK equation to modify the net flux of a
cell interface. Consequently, based on the constructed mesh
motion velocity, the remapping-free-type ALE method is used
to develop the current ALE-type DUGKS. To exclude the
GCL error, three DGCL-compliant schemes are discussed. As

for the proposed DUGKS, only the intermediate time level is
needed to calculate the flux of a cell interface, based on the ge-
ometry average, the geometrical information at this time level
is easy to define, which indicates DGCL scheme 1 is the most
suitable. Further improved work such as a high-order or multi-
time-level implicit ALE-type DUGKS, where defining the
geometrical information at multi-time-level is not easy, DGCL
scheme 2 or scheme 3 is the most suitable. A uniform flow test
case indicates that all the three schemes exhibit good perfor-
mances since no disturbances are introduced in the computa-
tional domain. Five test cases of low-speed flow are simulated,
namely, two continuum flow conditions and three rarefied flow
conditions. The results of all the test cases agree well with
existing numerical and experimental results. Therefore, for
continuum flows, similar to the macromethods based on the
N–S equations, the proposed ALE-type DUGKS has the ca-
pability to simulate more complex low-speed moving bound-
ary problems. Further, rarefied flows, which are out of the
computational range for macromethods, can also be handled
by the proposed method. Further works such as parallel com-
puting and implicit accelerated methods will be continued to
enhance the ability of the proposed ALE-type DUGKS to sim-
ulate the moving boundary problems at different flow regimes.
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