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Multisector parabolic-equation approach to compute acoustic scattering by noncanonically
shaped impenetrable objects
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Parabolic equation (PE) methods have long been used to efficiently and accurately model wave phenomena
described by hyperbolic partial differential equations. A lesser-known but powerful application of parabolic
equation methods is to the target scattering problem. In this paper, we use noncanonically shaped objects to
establish the limits of applicability of the traditional approach and introduce wide-angle and multiple-scattering
approaches to allow accurate treatment of concave scatterers. The PE calculations are benchmarked against
finite-element results, with good agreement obtained for convex scatterers in the traditional approach, and for
concave scatterers with our modified approach. We demonstrate that the PE-based method is significantly more
computationally efficient than the finite-element method at higher frequencies where objects are several or more
wavelengths long.
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I. INTRODUCTION

Parabolic equation (PE) methods are a powerful technique
to model long-range acoustic propagation in complex en-
vironments [1,2]. While, historically, wave propagation has
been the primary application of parabolic equation methods
in acoustics, a PE technique was demonstrated by Levy and
Zaporozhets for mid- to high-frequency target scattering cal-
culations [3–7]. The primary advantages of this approach rela-
tive to finite-element methods are computational efficiency—
particularly for higher frequencies and limited angular sectors
in the far field—and ease of implementation [1,8].

Parabolic equations have been applied to acoustic target
scattering in two ways: through direct computation, where
the scattered field is marched across the object in different
directions, with the incident field acting as a source on the
boundary of the scatterer [4–7], and the so-called on-surface
radiation condition, which computes the scattered pressure
field or its normal derivatives on the surface of the object
to solve for the far-field directivity [9–11]. Acoustic target
scattering calculations using the former approach were only
benchmarked against objects with easily obtainable analytic
solutions and issues relating to wide-angle and multiple-
scattering phenomena limited the maximum concavity of
objects to which either method could be applied [4,11].

The primary goal of this work is to further benchmark the
direct-computation (which we will call the multisector PE)
algorithm against now-available finite-element method (FEM)
calculations to discern its accuracy and limits of efficacy, as
well as implement improvements that make it applicable to a
larger variety of objects, including highly concave scatterers.
To make the latter improvement, we take inspiration from both
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wide-angle [12,13] as well as iterative and multiple-scattering
[14–17] approaches to propagation using parabolic equations.

In Sec. II, we overview how the parabolic equation can be
used to compute the target strength of a scatterer. In Sec. III,
we benchmark the narrow-angle PE method against FEM
calculations for a variety of convex objects and boundary con-
ditions. Finally, in Sec. IV, we probe where the narrow-angle
PE formulation breaks down and propose and demonstrate
wide-angle and multiple-scattering approaches that make pos-
sible target scattering calculations for concave scatterers.

II. PARABOLIC EQUATIONS AND SCATTERING

The one-way two-dimensional parabolic equation describ-
ing acoustic waves propagating in the paraxial direction x is

∂u

∂x
= −ik(1 − Q)u, (1)

where u = ψe−ikx; ψ is the pressure field;

Q =
√

1

k2

∂2

∂z2
+ n2 ≡

√
1 + q;

q = 1

k2

∂2

∂z2
+ n2 − 1;

k the reference wave number; and n the index of refraction
[7]. We assume the pressure field has standard exp −iωt time
dependence. For simplicity and clarity, the index of refraction
will be taken to be unity in this work, although, in practice,
the ability to propagate the scattered field into a medium
with a slowly varying index of refraction profile is a powerful
advantage of the method.

The total field ψ can be decomposed into its incident
ψi and scattered ψs components. The PE-scattering method
solves for the scattered field, using the incident field as a
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FIG. 1. Schematic of coordinate systems for the multisector
parabolic equation method. Subfigures show the cases where the
scattered paraxial direction x is at an angle of (a) φ = 0 and (b)
φ = π/6 with respect to the incident direction x′. The marching
occurs in the xz plane (defined by the paraxial direction x), with the
object and incident wave defined in the x′z′ plane. The paraxial cone
designates the angular range around the paraxial direction for which
the PE is valid.

source on the boundary of the object. We will primarily be
working with a reduced scattered field, which varies slowly
with space, us = ψse−ikx, where the paraxial direction x is
independent of the direction of propagation of the incident
wave. A schematic detailing the relevant coordinate systems
is shown in Fig. 1. The parabolic equation for the forward-
scattered field is identical to that of the total field,

∂us

∂x
= −ik(1 − Q)us. (2)

A general form of the boundary condition on the object is
given by

α
∂ψ

∂�n + βψ = 0, (3)

where α and β are free parameters and �n is the vector normal
to the boundary of the object; (α = 0, β = 1) and (α =
1, β = 0) correspond to objects with soft (pressure release)
and hard (rigid) boundaries, respectively. In terms of the
incident and scattered fields, we have

α
∂ψs

∂�n + βψs = −α
∂ψi

∂�n − βψi.

Rewriting the boundary condition for the us field,

αnx

(
∂us

∂x
+ ikus

)
+αnz

∂us

∂z
+ βus = −αe−ikx ∂ψi

∂�n − βe−ikxψi,

(4)

where nx, nz are the components of the normal vector to the
object.

To implement this boundary condition in the parabolic
equation formulation, we first must make an approximation
for the operator Q in Eq. (2). The simplest approximation
is to simply Taylor expand the square root in q to first
order: Q ≈ 1 + q/2. This yields the well-known narrow-angle
formulation of the parabolic equation (with index of refraction
n = 1),

∂us

∂x
= i

2k

∂2us

∂z2
. (5)

TABLE I. Coefficients for various Padé approximations of order
(m, n) of the square root of the PE; 	 ≡ ik	x.

Coeff. (2,2) [12] (2,1) [3] (1,0)

a0
3+	

4
	2+3	+3

6(	+1) 0

a1
	2+6	+3

48 0 0
b0

3−	

4
3−2	2

6(	+1) −	

2

b1
	2−6	+3

48
	(	2−3)
24(	+1) 0

The narrow-angle parabolic equation is valid in a cone of
opening angle ∼π/12 around the paraxial direction [1],
shown schematically in Fig. 1. Substituting the right-hand side
of Eq. (5) for the x derivative of Eq. (4) yields the boundary
condition

iαnx

2k

∂2us

∂z2
+ αnz

∂us

∂z
+ (αnxik + β )us

= −αe−ikx ∂ψi

∂�n − βe−ikxψi, (6)

which has no range derivative dependence.
Numerical solutions using the PE-scattering method are

implemented via a finite-difference algorithm on a Cartesian
grid. The scatterer is discretized in a stair-step manner, and
the field is marched in different paraxial directions (multiple
sectors) relative to the scatterer using the parabolic equation,
with the scattered field sourced by the appropriate boundary
conditions as per Eq. (6). On the boundary of the scatterer,
we use one-sided first-order finite-difference approximations;
second-order approximations, especially in three dimensions,
induce instabilities.

The formal solution for the parabolic equation above is

u(x + δx, z) = exp(−ikδx) exp(ikδx
√

Q)u(x, z). (7)

In general, the operator Q or the solution itself can be
better approximated using Padé approximants rather than a
first-order Taylor expansion; the parabolic equation is then
applicable in a wider angular range (dependent on the degree
of the approximation used) around the paraxial direction.

The discretized form of the solution up to a second-order
Padé approximant of the exponential (detailed in Ref. [12])
can be written in the form

um + b0

k2
Zum + b1

k4
Z2um = um−1 + a0

k2
Zum−1 + a1

k4
Z2um−1,

(8)

where Z is the matrix operator corresponding to the dis-
cretized second derivative ∂2/∂z2, and m designates the
marching step or index in the x direction with step size 	x.
Values of coefficients are in Table I. In this work, the second
derivative is discretized as

∂2um
j

∂z2
= um

j−1 − 2um
j + um

j+1

	z2
,

where j is the index in the z coordinate.
In Sec. III, we only use the narrow-angle [i.e., Padé-(1,0)]

formulation, as using wide-angle formulations on the bound-
ary of the scatterer result in spurious oscillations; we will
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return to an implementation of wide-angle approximations
later in the work.

In two dimensions, the discretized Padé-(1,0) ap-
proximation with the above discretization of the sec-
ond derivative—traditionally known as the backward-time
centered-space method when used in finite-difference time-
domain simulations—gives a system of equations represented
by a tridiagonal banded matrix at each range step, while in
three dimensions, one has a sparse matrix with five nonzero
diagonals. These systems can typically be solved very quickly
with modern sparse matrix direct solvers. When using higher-
degree Padé approximations, the sparsity structure of the
matrix becomes more complex, and an iterative solver is most
efficient.

The target strength of an object in the far-field can be cal-
culated from the near-field pressure just beyond the scatterer.
For an incident plane wave of unit amplitude and reference
length 1 m, where the ratio of reflected to incident intensities
is given by Ir/Ii = σ/4π , with σ the differential scattering
cross section [4,18],

TS(φ) = 10 log

[
k cos2 φ

2π

∣∣∣∣
∫ ∞

−∞
dz′ψs(x

′, z′)e−ik sin φz′
∣∣∣∣
2
]
. (9)

We note that due to the reference length, target strength is
valid for ka � 1, i.e., when the object size a (in meters)
is much larger than the wavelength of the incident plane
wave. We also note that this two-dimensional target strength
expression assumes global cylindrical spreading and as such
is used as a computational test for benchmarking the PE
algorithm. The angular range of validity of the target strength
calculation is ±π/12 for the narrow-angle formulation of the
PE, and thus, in two dimensions, 12 runs in different paraxial
directions are necessary to characterize the full angular spec-
trum of an asymmetric object.

All the discussion above is identical in three dimensions,
with

Q =
√

1

k2

∂2

∂y2
+ 1

k2

∂2

∂z2
+ n2.

The narrow-angle parabolic equation is then (with index of
refraction n = 1)

∂us

∂x
= i

2k

(
∂2us

∂y2
+ ∂2us

∂z2

)
, (10)

with boundary conditions given by

iαnx

2k

(
∂2us

∂z2
+ ∂2us

∂y2

)
+ α

(
nz

∂us

∂z
+ ny

∂us

∂y

)
+ (αnxik + β )us

= −αe−ikx ∂ψi

∂�n − βe−ikxψi. (11)

The target strength of an object in three dimensions (3D)
for an incident plane wave of unit amplitude with reference
length 1 m is

TS(θ, φ) = 10 log

[
k2 cos2 θ

4π2

∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞
dy′dz′ψs(x

′, y′, z′)

× e−ik sin θ (y′ cos φ+z′ sin φ)

∣∣∣∣
2]

. (12)

Once again, as with the 2D case, the target strength is a valid
function of ka when ka � 1.

III. VERIFICATION FOR CONVEX SCATTERERS

To verify the method, we will examine a variety of con-
vex scatterers in two and three dimensions and compare the
PE target strength calculations to the finite-element method
results computed using COMSOL Multiphysics [19]. For all
of these simulations, we consider an incident plane wave of
unit amplitude, with—unless noted otherwise—sound speed
c0 = 1500 m/s and frequency f = 1500 Hz, corresponding
to wavelength λ = 1 m and wave number k = 2π m−1. The
density of the medium is taken to be ρ = 1000 kg/m3, which
plays a role when scattering from objects with impedance
boundary conditions. As stated above, we take the index of
refraction to be unity, n = 1. In all PE simulations in this
work, the grid spacing is λ/20 in the paraxial (marching)
direction and λ/10 in the transverse direction(s), while FEM
simulations have maximum element size of λ/6.

We begin by expanding on the results presented in Ref. [4].
In that work, the results from which we have replicated
in Appendix, verification was only presented for soft and
hard boundary conditions. These boundary conditions can
be considered as the extreme cases; most realistic objects
will have boundary conditions with nonzero values for both
the wave-field and its normal derivative, which correspond
to impedances smaller than 1. The results for impedance
boundary conditions for a circle are shown in Figs. 2 and
3. The two cases studied are for (α, β ) = (1, ik), (1, ik/2).
The β/ik = 1 case corresponds to the impedance of an object
of density ρ = 1000 kg/m3 and sound speed c0 = 1500 m/s
(ρc = 1.5 × 106 kg/m2s), which mimics an ideally penetra-
ble object, with the backscattered field close to zero. The
second case, β/ik = 0.5, corresponds to the impedance of
a material with ρ = 1000 kg/m3 and c0 = 3000 m/s (ρc =
3 × 106 kg/m2s). Once again, there is excellent agreement
between the PE and FEM solutions.

Following the promising results above for simple 2D ob-
jects, we consider slightly more irregular objects. Figure 4
shows the target strength of an ellipse with ax = 10 (kax =
20π ) with az = 2 for end-on incidence of plane waves of
unit amplitude. Subfigures are for soft, hard, and impedance
(α = 1, β = ik) boundary conditions. These results are com-
parable to those presented in Refs. [10,11] for the wide-angle
on-surface radiation condition; both methods provide similar
accuracy.

Similarly, Fig. 5 shows the target strength for an ellipsoid
with ax = 5 (kax = 10π ) and ay = az = 2 m, for the same
cases as above. Even for elongated objects, the PE method
matches well with the FEM for all boundary condition cases,
although there are small discrepancies in the backscattering in
the 3D impedance case. The overall signal is around −40 dB,
however, so the deviation could be due to numerical error in
both the PE and FEM calculations.

Next, we consider the cases of ellipses and ellipsoids
rotated an angle of 45◦ with respect to the incident plane
wave. Figures 6 and 7 show the far-field pressure for a
plane wave in the x direction scattered from an ellipse and
ellipsoid, respectively, with ax = 5, az(= ay) = 2 for oblique
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FIG. 2. Two-dimensional target strength a circle with impedance
[as defined in Eq. (6) with α = 1 and β/ik = 1] boundary conditions
for an incident plane wave for (a) ka = 4π and (b) ka = 10π .
Dashed blue lines are from the multisector PE method, and solid red
are finite-element results.

incidence. Subfigures show the results for soft, hard, and
impedance (α = 1, β = ik) boundary conditions. Similarly to
the previous case, there is good agreement between the PE
and FEM in 2D and also in the soft and hard cases in 3D;
there is more variance between the FEM and PE in the 3D
impedance case, although at very low magnitudes of the target
strength. These results indicate that the multisector PE method
is applicable when studying scattering with asymmetric
insonification.

Finally, as an example for an object with sharp edges, we
consider the case of a finite cylinder in three dimensions. The
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FIG. 3. Two-dimensional target strength a circle with impedance
[as defined in Eq. (6) with α = 1 and β/ik = 0.5] boundary condi-
tions for an incident plane wave for (a) ka = 4π and (b) ka = 10π .
Dashed blue lines are from the multisector PE method, and solid red
are finite-element results.

target strength calculations for a circular cylinder of radius
ax = az = 2 m and height h = 5 m and broadside plane-wave
incidence are shown in Fig. 8. Once again, we see good
agreement between the FEM and PE methods for both the soft
and hard objects; the sharp edges of the scatterer do not induce
any spurious oscillations or otherwise incorrect behavior in
the scattered field.

One important advantage of the parabolic equation method
is its speed relative to a finite-element code, especially at
higher ka. To illustrate this, we compare the time it takes to do
a full-sweep of the PE (i.e., 72 wedges for the narrow-angle
formulation) to the time for the full FEM solution. If one is
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FIG. 4. Two-dimensional target strength of an ellipse with
ax = 10 m, az = 2 m (kax = 20π ) with (a) soft, (b) hard, and
(c) impedance [as defined in Eq. (6) with α = 1 and β = ik] bound-
ary conditions for an incident plane wave. Dashed blue lines are
from the multisector PE method, and solid red are finite-element
results.
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FIG. 5. Three-dimensional target strength of an ellipsoid with
ax = 5 m and ay = az = 2 m (kax = 10π ) with (a) soft, (b) hard,
and (c) impedance [as defined in Eq. (6) with α = 1 and β = ik]
boundary conditions for end-on plane-wave incidence. Dashed blue
lines are from the multisector PE method, and solid red are finite-
element results.
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FIG. 6. Two-dimensional target strength of an ellipse angled at
45◦ with ax = 5, az = 2 with (a) soft, (b) hard, and (c) impedance [as
defined in Eq. (6) with α = 1 and β = ik] boundary conditions for
an incident plane wave. Dashed blue lines are from the multisector
PE method, and solid red are finite-element results.
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FIG. 7. Three-dimensional target strength of an ellipsoid
with ax = 5 m and ay = az = 2 m with (a) soft, (b) hard, and
(c) impedance [as defined in Eq. (6) with α = 1 and β = ik] bound-
ary conditions for 45◦ plane-wave incidence. Dashed blue (xz plane)
and green (xy plane) lines are from the multisector PE method, and
solid red (xz plane) and purple (xy plane) are finite-element results.
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FIG. 8. Three-dimensional target strength of a finite circular
cylinder with a = 2 m and h = 5 m for broadside plane-wave inci-
dence, with (a) soft and (b) hard boundary conditions. Dashed blue
(xz plane) and green (xy plane) lines are from the multisector PE
method, and solid red (xz plane) and purple (xy plane) are finite-
element results.

looking at only a few angular sectors for scattering, then this
reduces the number of necessary PE wedges. In addition, one
can utilize symmetry in both the PE and FEM simulations to
reduce the computational domain and thus the computation
time. However, to keep the comparison as direct as possible,
we will compare the time taken by both methods to compute
the full angular spectrum, utilizing no symmetry, for the a =
5 m sphere with hard boundary conditions for a variety of
frequencies.

The results are detailed in Table II and visualized in Fig. 9.
All simulations were run on the same laptop computer with six
CPU cores; COMSOL utilized all cores during the computa-
tion, and the PE code, written in C++, was parallelized such
that each angular sector was run on a single processor. The

TABLE II. Time comparison between finite-element (COMSOL)
and PE methods for scattering from a hard sphere of radius 5 m at
selected frequencies. The FEM solution (parallel-processed on six
cores) is for the full angular spectrum with maximum element size
λ/6, while the two columns for the PE indicate times for a single
angular wedge and the full angular spectrum (parallel-processed on
six cores), respectively, with grid spacing λ/20 in x and λ/10 in the
transverse directions. All times in seconds.

Freq. ka COMSOL PE wedge Full PE

1500 31.4 74 15 180
2000 41.9 153 34 408
2500 52.4 348 49 588
3000 62.8 1193 86 1032
3500 73.3 2152 139 1668

FEM domain is a sphere of diameter 11 m with a perfectly
matched layer (PML) [20] of thickness 0.5 m, while the PE
domain has a size of 11 m × 15 m × 15 m with a 1-m-thick
PML in the y and z directions. The FEM has maximum
element size λ/6, while the PE method uses grid spacing
λ/20 in the marching direction and λ/10 in the transverse
directions. Note that the times given for the FEM code do not
include the time needed for mesh generation, while the PE
time includes the (nearly negligible) time needed to calculate
boundary condition information. The FEM clearly scales at
a rate much greater than the PE, with the PE being more
efficient at ka > 60 in this example. Note that the PE is always
faster when looking at a single angular sector.

As we did above with the sphere, we can compare the
time it takes for the PE and FEM calculations for a full
angular spectrum of an ellipsoid of ax = 7 m, ay = az = 2 m.
The domain for the FEM is a box of size 15 m × 5 m × 5 m

1500 1750 2000 2250 2500 2750 3000 3250 3500
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T
im

e
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FIG. 9. Time comparison between finite-element (COMSOL)
and PE methods for a full angular spectrum solution of scattering
from a hard sphere of radius 5 m. The FEM solution has maximum
element size λ/6, while the PE solution has grid spacing λ/20 in x
and λ/10 in the transverse directions.
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TABLE III. Time comparison between finite-element (COM-
SOL) and PE methods for scattering from an ellipsoid of transverse
radius 2 m and total length 14 m at selected frequencies. The FEM
solution (parallel-processed on six cores) is for the full angular
spectrum with maximum element size λ/6, while the two columns
for the PE indicate times for a single angular wedge and the full
angular spectrum (parallel-processed on six cores), respectively, with
grid spacing λ/20 in x and λ/10 in the transverse directions. All
times in seconds.

Freq. ka COMSOL PE wedge Full PE

1200 35.2 117 8 96
1400 41.1 176 13 156
1800 52.8 392 27 324
2100 61.6 1149 45 540
2400 70.4 2556 67 804

with a PML of 0.5 m on all sides, while the PE method had
a domain size of 15 m × 15 m × 15 m with a 1-m PML in
the transverse directions (kept uniform for all orientations of
the object relative to the marching direction). The results are
detailed in Table III and visualized in Fig. 10. Note, as before,
that the times given for the FEM code do not include the time
needed for mesh generation, while the PE time includes the
time needed to calculate boundary condition information.

The PE is significantly more efficient than the FEM at
frequencies above 1800 Hz and is comparable at lower fre-
quencies. This is unlike the example of the a = 5 m sphere,
where the FEM was faster until frequencies of approximately
2800 Hz. Put into dimensionless units, however, the results
are consistent: The PE method is significantly faster than the
FEM when ka > ∼50. This is primarily because when we
have elongated objects, the PE marching time goes linearly
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FIG. 10. Time comparison between finite-element (COMSOL)
and PE methods for a full angular spectrum solution of scattering
from an ellipsoid of transverse radius 2 m and total length 14 m.
The FEM solution times are for the full angular spectrum with
maximum element size λ/6, while the PE calculation times are for
the full angular spectrum with grid spacing λ/20 in x and λ/10 in the
transverse directions.
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FIG. 11. Bean geometry for three sets of parameters (see text).

with the length of the object when keeping the transverse
domain a constant size. Of course, the transverse domain can
be shrunk when possible, giving a further advantage to the PE
method. For example, there is no need to have a 15 m × 15 m
transverse domain, as we did above, when marching along the
ellipsoid with transverse radius 2 m; this is only necessary
when the paraxial direction is perpendicular to the ellipsoid
and even then it is only necessary in one of the transverse
directions.

IV. SCATTERING FROM CONCAVE OBJECTS

Thus far, all results have been using the narrow-angle
formulation of the parabolic equation. As stated above, we
cannot apply the wide-angle PE on the boundary of the object,
as the boundary conditions then induce spurious oscillations.
It can, however, be applied slightly outside the boundary. We
implement this by using the Padé-(2,1) approximation three
points outside the boundary of the scatterer and the Padé-(2,2)
approximation beyond the scatterer, though the latter is not
necessary for target strength calculations.

To see the effect and extent of improvement from utilizing
the wide-angle formulation, we consider a concave object,
which we will call the “bean.” The object shape is described
by [21] [

α1R cos
(

πx
R

) + z
]2

b2
[
1 − α2 cos

(
πx
R

)] + x2

c2
− R2 = 0. (13)

The 2D geometries, with b = 0.8, c = 1, R = 4 (all in me-
ters), for three different concavity cases (I: α1 = α2 = 0, II:
α1 = α2 = 0.2, III: α1 = 0.3, α2 = 0.4) are shown in Fig. 11.

The target strength results for an incident plane wave
traveling in the positive x direction of frequency 1500 Hz
onto the three above objects with soft boundary conditions
are shown in Fig. 12. For Case I, the FEM, narrow-angle
PE, and wide-angle PE all give results that are in agreement
with each other. As the concavity is increased, however, the
narrow-angle PE starts to fail. Already with Case II, the
narrow-angle PE disagrees with the FEM and the wide-angle
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FIG. 12. Target strength of a soft bean of ka = 8π for three
different sets of parameters (see text) for an incident plane wave.
Red solid lines are FEM calculations, blue dotted are narrow-angle
PE, and green dashed are wide-angle PE.
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FIG. 13. Target strength of a hard bean of ka = 8π for three
different sets of parameters (see text) for an incident plane wave.
Red solid lines are FEM calculations, blue dotted are narrow-angle
PE, and green dashed are wide-angle PE.
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FIG. 14. L-shaped geometry for three sets of parameters (see text).

PE—the latter two agree—in the direction where scattered
rays are “coming out” of the indentation of the object. Case
III is the most extreme, and we find relatively good agreement
between the FEM and the wide-angle PE, although this starts
to break down. The same holds true for the bean shape with
hard boundary conditions, shown in Fig. 13. It is possible
that using an even wider angle approximation of the square
root—beyond Padé-(2,1)—will allow better agreement in the
most extreme cases.

This wide-angle implementation resolves the inaccuracy
for the L-shaped geometry studied in Ref. [4]. If, however,
we flip the L shape horizontally, we run into problems,
as the incident wave undergoes multiple scattering into the
perpendicular and backward directions. This effect cannot
be compensated for by simply implementing the wide-angle
equation as above. The geometries under consideration are
shown in Fig. 14, with the vertical rectangle having width 1 m
and heights 3, 4, and 5 m for Cases I, II, and III, respectively,
and the lower rectangle having width 5 m and height 1 m.

The discrepancy in target strength between the wide-angle
formulation (dotted blue) and the FEM (solid red) is shown in
Fig. 15. If we modify the boundary conditions on the object by
using the forward-scattered field from the horizontal portion
of the L shape (incident on the vertical part) as an additional
source on the vertical part, then we can recover the features
missed by the original method; the PE with the modified
boundary data agrees much more with the FEM (compare
dashed green and solid red lines). This agreement remains
at higher frequencies; the results for 2500 Hz are shown in
Fig. 16.

We note that if one is looking at the entire angular spectrum
of the far-field pressure, this multiple-scattering approach
does not require an additional PE run. For this L shape, the
scattered field from the forward-direction march is combined
with the original incident field as a “modified” incident field,
which is used to source the boundary conditions on the
relevant vertical portions of the object when marching in the
other (backward) directions.
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FIG. 15. Target strength of a soft L shape for a plane wave of
frequency 1500 Hz (ka ≈ 19) for three different sets of parameters
(see text). Red solid lines are FEM calculations, blue dotted are
wide-angle PE, and green dashed are wide-angle PE with multiple-
scattering contributions.
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FIG. 16. Target strength of a soft L shape for a plane wave of
frequency 2500 Hz (ka ≈ 31) for three different sets of parameters
(see text). Red solid lines are FEM calculations, blue dotted are
wide-angle PE, and green dashed are wide-angle PE with multiple-
scattering contributions.
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FIG. 17. Calculations for a plane wave of frequency 1500 Hz in-
cident on a soft bean rotated by 20◦. (a) Full-field pressure (absolute
value) computed using FEM. (b) Target strength computed using FE
and PE methods. Red solid lines are FEM calculations, blue dotted
are narrow-angle PE, and green dashed are narrow-angle PE with
multiple-scattering contributions.

In the ocean environment, realistic scattering situations
(experiments) involve backscattering from incident pressure
waves grazing an undulating ocean floor. One could suppose
that the ocean floor could be modeled by a series of the
bean shaped objects studied in this paper. As such, we can
test the multiple-scattering algorithm for an incident grazing
wave (taken in this case to be at an angle of 20◦) onto
the Case III bean with soft boundary conditions. The FEM
solution is shown in Fig. 17(a). We can clearly see the shadow
zone caused by the leading lobe of the bean, which then
modifies the field incident on the trailing lobe. Figure 17(b)
shows the result of the narrow-angle PE calculation with and
without multiple-scattering modification of the incident field
boundary condition. The narrow-angle PE accurately captures
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FIG. 18. Calculations for a plane wave of frequency 1500 Hz
incident on a forward-pointing chevron with soft boundary condi-
tions. (a) Full-field pressure (absolute value) computed using FEM.
(b) Backscattered field (absolute value) computed using the PE
method without (left) and with (right) multiple-scattering modifica-
tion of the incident field. (c) Target strength computed using FE and
PE methods. Red solid lines are FEM calculations, blue dotted are
wide-angle PE, and green dashed are wide-angle PE with multiple-
scattering contributions.
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FIG. 19. Two-dimensional target strength calculations for a
plane wave scattered from acoustically soft circles for (a) ka = 4π

and (b) ka = 10π . Dashed blue lines are from the multisector PE
method, and solid red lines are finite-element results.

the scattering in the perpendicular and backward directions
perfectly when including the multiple-scattering contribution.

It is important to note that the use of the wide-angle
approximation was not necessary to capture the multiple-
scattering phenomena in this case. This is because the dis-
crepancy between the standard PE method and the FEM
around the φ = 2π/3 direction is caused by the leading lobe
modifying the field incident on the trailing lobe and is not
due to a portion of the incident field being scattered outside
of the paraxial cone. In the former case, it is necessary to
modify the sourcing fields on the boundary of the object when
marching in the φ = 2π/3 direction to take into account this
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FIG. 20. Two-dimensional target strength calculations for a
plane wave scattered from acoustically hard circles for (a) ka = 4π

and (b) ka = 10π . Dashed blue lines are from the multisector PE
method, and solid red lines are finite-element results.

shadowing. In instances where the latter applies, such as in
the first example with the bean, it is more computationally
efficient to use the wide-angle PE.

Finally, as a most extreme case, we can look at a forward-
pointing chevron shape. The finite-element result for a plane
wave incident on this object with soft boundary conditions
is shown in Fig. 18(a). Clearly there are strong multiple-
scattering effects, particularly in the backscattering direction.
To source the correct scattered field in the backward direc-
tion, we use the scattered field calculated from the π/2 and
3π/2 paraxial directions as additional incident sources on the
“legs.” These effects are most prominent in the backscattered
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FIG. 21. Three-dimensional target strength of spheres with soft
boundary conditions for plane-wave incidence for (a) ka = 4π and
(b) ka = 10π . Dashed blue lines are from the multisector PE method,
and solid red are finite-element results.

direction; the difference is shown in Fig. 18(b). The left plot
shows backscattering (i.e., marching in the leftward direction)
without multiple-scattering effects, while the right plot shows
the backscattered field including multiple scatterings. By
comparing the right plot of Fig. 18(b) to Fig. 18(a), we see that
the multiple scatterings give the correct interference pattern
and backscattering peak enhancement. Figure 18(c) shows the
target strength calculations of the PE with and without the
multiple-scattering correction and the FEM benchmark. By
including the multiple-scattering effects, the PE completely
reproduces the backscattering peak that was absent in the orig-
inal calculation. We note that, once again, if one is looking at
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FIG. 22. Three-dimensional target strength of spheres with hard
boundary conditions for plane-wave incidence for (a) ka = 4π and
(b) ka = 10π . Dashed blue lines are from the multisector PE method,
and solid red are finite-element results.

the entire angular spectrum of the far-field pressure, then this
multiple-scattering approach does not require any additional
PE runs.

V. CONCLUSIONS

We have shown that the multisector parabolic equation
scattering method yields accurate and efficient results for
target strength calculations of a variety of scatterers in two
and three dimensions. Computational times are comparable to
finite-element methods at lower frequencies or smaller objects
and are significantly faster at larger ka. We have shown how
wide-angle and multiple-scattering approaches allow accurate
modeling of the target strength of concave scatterers with-
out a large increase in computational cost. The promising
results of the multiple-scattering approach suggest that further
development—such as using iterative methods for multiple
scatterings—could yield good results for multiple objects in
close proximity and for scatterers with more complex shapes
and structures than those studied in this paper.
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APPENDIX: SOFT AND HARD CIRCLES AND SPHERES

In this Appendix, we replicate the results of Ref. [4] for soft
and hard circles (2D) and spheres (3D). The target strength
calculation results are shown in Figs. 19, 20, 21, and 22
for soft circles, hard circles, soft spheres, and hard spheres,
respectively, with subfigures (a) for a = 2 m (ka = 4π ) and
(b) for a = 5 m (ka = 10π ). The numerical results from the
PE calculation match very well with the finite-element cal-
culation, though there are slightly more discrepancies in the
hard case with smaller ka. This discrepancy is possibly due
to the fact that PE properly induces creeping waves on a hard
object, but those that travel more than once around the circum-
ference of the object are not accurately captured by the PE
method [4].
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