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Computational nanoplasmonics in the quasistatic limit for biosensing applications
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The phenomenon of localized surface plasmon resonance (LSPR) provides high sensitivity in detecting
biomolecules through shifts in resonance frequency when a target is present. Computational studies in this field
have used the full Maxwell equations with simplified models of a sensor-analyte system, or they neglected the
analyte altogether. In the long-wavelength limit, one can simplify the theory via an electrostatics approximation
while adding geometrical detail in the sensor and analytes (at moderate computational cost). This work uses
the latter approach, expanding the open-source PYGBE code to compute the extinction cross section of metallic
nanoparticles in the presence of any target for sensing. The target molecule is represented by a surface mesh,
based on its crystal structure. PYGBE is research software for continuum electrostatics, written in PYTHON

with computationally expensive parts accelerated on GPU hardware, via PYCUDA. It is also accelerated
algorithmically via a treecode that offers O(N log N ) computational complexity. These features allow PYGBE

to handle problems with half a million boundary elements or more. In this work, we demonstrate the suitability
of PYGBE, extended to compute LSPR response in the electrostatic limit, for biosensing applications. Using a
model problem consisting of an isolated silver nanosphere in an electric field, our results show grid convergence
as 1/N , and accurate computation of the extinction cross section as a function of wavelength (compared with an
analytical solution). For a model of a sensor-analyte system, consisting of a spherical silver nanoparticle and a set
of bovine serum albumin (BSA) proteins, our results again obtain grid convergence as 1/N (with respect to the
Richardson extrapolated value). Computing the LSPR response as a function of wavelength in the presence of
BSA proteins captures a redshift of 0.5 nm in the resonance frequency due to the presence of the analytes at 1-nm
distance. The final result is a sensitivity study of the biosensor model, obtaining the shift in resonance frequency
for various distances between the proteins and the nanoparticle. All results in this paper are fully reproducible,
and we have deposited in archival data repositories all the materials needed to run the computations again and
recreate the figures. PYGBE is open source under a permissive license and openly developed. Documentation is
available at http://pygbe.github.io/pygbe/docs/.
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I. INTRODUCTION

Localized surface plasmon resonance (LSPR) is an optical
effect where an electromagnetic wave excites the free elec-
trons on the surface of a metallic nanoparticle. The vibrations
of the electron cloud are known as plasmons, and in LSPR
they resonate with the incoming field (see Fig. 1). When
this happens, most of the incoming energy is either absorbed
by the nanoparticle, or scattered in different directions, both
effects creating a shadow behind the scatterer (a.k.a., extinc-
tion). In the case of nanoparticles smaller than 20 nm, ab-
sorption dominates and scattering contributions are negligible
[1,2]. In LSPR, the wavelength of the incoming wave is often
much larger than the size of the nanoparticle, which allows for
valid approximations that simplify the mathematical model.

The phenomenon of LSPR can be used for biosensing, as
the resonance frequency is highly dependent on the dielectric
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environment around the scatterer. The resonance frequency
shifts whenever an analyte binds to the nanoparticle, resulting
in a very sensitive means of detecting its presence [3,4].

Numerical models for LSPR generally rely on the so-
lution of Maxwell’s equations in some form, using finite-
difference time domain (FDTD), boundary element, or finite-
element methods [5]. These methods have been used to study
the optical properties of dielectric or metallic nanoparti-
cles [6–11], interactions between nanoparticles and electron
beams [12,13], and surface plasmon resonance sensors. In the
latter application, researchers have used simple mathematical
models for the interaction between a metallic nanoparticle and
biomolecules, like representing the medium and the dissolved
analytes with an effective permittivity [14–16], or represent-
ing the target molecules as spheres [17,18].

Progress in biosensor research is still predominantly made
through experimental investigations, which can often be
costly and time-consuming. Computational approaches could
assist the design process and play a role in optimizing biosen-
sors, giving access to details that are not available in ex-
perimental settings. For example, empirical studies showed
that the sensitivity of the sensor is highly dependent on the
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FIG. 1. Illustration of the localized surface plasmon resonance
(LSPR) effect of a metallic nanoparticle under an electromagnetic
field.

distance between the nanoparticle and the analyte [4]. These
studies were complemented with models using a discrete
dipole approximation (DDA), which includes the effect of the
analyte through the effective permittivity. Other experimental
studies complemented by modeling fully ignore the presence
of the target molecules. For example, Beuwer et al. [19] and
Henkel et al. [20] used a boundary element method (BEM)
in studies of the sensitivity of plasmonic sensors relying on
(at least) two metallic nanoparticles (one on the sensor and
one attached to the analyte). Explicitly including the target
molecules in the model may be needed in some cases, how-
ever. For instance, despite experimental evidence showing that
LSPR sensors are sensitive enough to detect conformational
changes of the analytes [21], these simplified models are not
able to capture such details.

Even though LSPR is an optical effect, electrostatic the-
ory provides a good approximation in the long-wavelength
limit. This work uses the boundary integral electrostatics
solver PYGBE [22] to compute the extinction cross section
of metallic nanoparticles, and to study how LSPR response
changes in the presence of a biomolecule. We treat Maxwell’s
equations quasistatically [11] and explicitly represent the
target biomolecules by a surface mesh built from the crystal
structures.

PYGBE is a PYTHON implementation of continuum elec-
trostatic theory, used for computing solvation energy of
biomolecular systems. It has also been used to study protein
orientation near charged nanosurfaces [23]. The code was re-
cently extended to allow for complex dielectric constants [24],
aiming toward the LSPR biosensing application. The bound-
ary element solver in PYGBE is accelerated algorithmically
via a treecode—an O(N log N ) fast-summation method—and
on hardware by taking advantage of graphic processing units
(GPUs). With these features, PYGBE is able to easily handle
problems within the order of half a million boundary ele-
ments, or more, allowing for the explicit representation of the
biomolecular surface. Other research software that could be
used in this setting includes BEM++ [25] and a MATLAB

toolbox called MNPBEM [7], which have the capability to solve
the full Maxwell’s equations and the electrostatic approxima-
tion in the long-wavelength limit. We believe in both cases
the size of problems they can solve, in terms of the number of

boundary elements, may not be enough to resolve the details
of target biomolecules from their crystal structure.

The software is shared under the BSD 3-clause license
and is openly developed via its repository on Github [26].
This study also follows careful reproducibility practices, and
all materials necessary to reproduce the results are publicly
available in reproducibility packages. We use the Figshare
and Zenodo services to deposit the computational meshes,
input and configuration files, and file bundles corresponding
to the main figures in the paper. See the figure captions for
references to the open data artifacts.

II. METHODS

The original implementation of PYGBE used continuum
electrostatic theory to compute the solvation energy of
biomolecular systems. In that setting, biomolecules are mod-
eled as dielectric cavities inside an infinite continuum sol-
vent, leading to a Poisson equation inside the molecules and
Laplace or Poisson-Boltzmann in the solvent medium (with
appropriate boundary conditions). This set of partial differen-
tial equations can be expressed with the corresponding bound-
ary integral equation along the molecular interface, which
PYGBE solves using a boundary element method [23,27].

The present work extends PYGBE to the LSPR biosensing
application. In the long-wavelength limit, Maxwell’s equa-
tions can be approximated by a Laplace equation, which
permits using the methods implemented in PYGBE, with
modifications to allow for complex-valued permittivities, and
to include the effect of an external electric field. This sec-
tion describes the mathematical formulation for computing
electromagnetic scattering in the long-wavelength setting, and
develops the associated boundary integral equations and their
discretized form.

A. Scattering of small particles

Electromagnetic scattering is usually modeled with
Maxwell’s equations. When the wavelength of the incoming
wave is much larger than the scatterer, these can be reduced to
a quasistatic first-order approximation [11]:

∇ · E1s = 0, ∇ × E1s = 0,

∇ · E2s = 0, ∇ × E2s = 0,

with interface conditions,

(ε1E1s − ε2E2s) · n = (ε2 − ε1)Ei · n. (1)

In Eq. (1), E1s and E2s are the electric fields of the scattered
wave in the nanoparticle and host regions, respectively (see
Fig. 2), Ei is the field of the incoming wave, and ε1 and ε2 are
the permittivities. This approximation decouples the electric
and magnetic fields, neglects the magnetic field, and describes
the electric field as a curl-free vector field. Hence, we can
reformulate Eq. (1) with a scalar potential (−∇φ js = E js), as
follows:

∇2φ1s = 0, ∇2φ2s = 0, on �1, �2,

ε1
∂φ1s

∂n
− ε2

∂φ2s

∂n
= (ε2 − ε1)

∂φi

∂n
, φ1s = φ2s on �. (2)
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FIG. 2. Nanoparticle interacting with an electromagnetic wave.

Equation (2) is an electrostatic equation with an imposed
electric field Ei = −∇φi, where � is the boundary between
regions �1 and �2.

B. Far-field scattering

In LSPR, the scattered electromagnetic wave is measured
by a detector located far away from the scatterer (nanopar-
ticle), and plasmon resonance is identified when the energy
detected is minimum. In the far-field limit, the scattered field
in the outside region (�2) is given by

E2s = 1

4πε2
k2 eikr

r
(r̂ × p) × r̂, (3)

where k = 2π/λ is the wave number and λ the wavelength, r̂
is a unit vector in the direction of the observation point, and p
is the dipole moment. We can obtain the scattered field using
the scattering amplitude [28]:

E2s(r)r→∞ = eikr

r
F(k, k0), (4)

where F is the scattering amplitude, k is the scattered wave
vector in the direction of propagation, and k0 is the wave
vector of the incident field.

C. Extinction cross section and optical theorem

The extinction cross section (Cext) is a measure of the
energy that does not reach the detector, either because of
scattering in other directions, or absorption. This quantity is
defined as the ratio between the lost energy and the intensity
of the incoming wave, and has units of area. The extinction
cross section peaks at resonance of plasmons.

The extinction cross section is related to the forward-
scattering amplitude via the optical theorem. The traditional
expression for this relationship applies for nonabsorbing
media [11,28]; Mishchenko [29] corrected it for absorbing
media, giving an expression that can be re-written using
Jackson’s notation [28] as follows:

Cext = 4π

k′ Im

[
êi

|Ei|F(k = k0, k0)

]
. (5)

Here, k′ is the real part of the complex wave number,

k = k′ + ik′′ = 2π

λ
n, (6)

and n is the refraction index of the host medium.
Combining Eqs. (3) and (4), we can compute the scattering

amplitude to then obtain the extinction cross section with
Eq. (5).

FIG. 3. Analyte-sensor system under electric field.

D. The boundary element method

1. Electrostatic potential of a nanoparticle under an electric field

Integral formulation. Using Green’s second identity, the
system of partial differential equations in Eq. (2) can be
rewritten as a system of boundary integral equations [30].
Evaluating on the surface �, this becomes

φ1s,�

2
+ K�

L (φ1s,� ) − V �
L

(
∂

∂n
φ1s,�

)
= 0,

φ2s,�

2
− K�

L (φ2s,� ) + V �
L

(
∂

∂n
φ2s,�

)
= 0, (7)

where V and K are the single- and double-layer operators,
respectively:

V �
L (ψ (r� )) =

∮
�

ψ (r′
� )GL(r�, r′

� )d�′, (8)

K�
L (ψ (r� )) =

∮
�

ψ (r′
� )

∂

∂n
GL(r�, r′

� )d�′. (9)

Here, GL is the free-space Green’s function of the Laplace
equation:

GL(r, r′) = 1

4π |r − r′| (10)

Applying the interface conditions of Eq. (2), leads to

φ1s,�

2
+ K�

L (φ1s,� ) − V �
L

(
∂

∂n
φ1s,�

)
= 0,

φ1s,�

2
− K�

L (φ1s,� ) + ε1

ε2
V �

L

(
∂

∂n
φ1s,�

)

= ε2 − ε1

ε2
V �

L

(
∂

∂n
φi,�

)
on �. (11)
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2. Analyte-sensor electrostatic potential under an electric field

The sketch in Fig. 3 shows a metallic nanoparticle (�1)
interacting with an analyte (�3), under an external electric
field. Mathematically, this situation can be modeled as

∇2φ1s = 0, ∇2φ2s = 0 on �1, �2,

∇2φ3s = − 1

ε3

Nq∑
k=0

δ(|r − rk|)qk on �3,

ε1
∂φ1s

∂n
− ε2

∂φ2s

∂n
= (ε2 − ε1)

∂φi

∂n
φ1s = φ2s on �1,

ε3
∂φ3s

∂n
− ε2

∂φ2s

∂n
= (ε2 − ε3)

∂φi

∂n
φ3s = φ2s on �2,

(12)

where qk are the point charges of the atoms inside the protein,
located at rk .

a. Integral formulation. Similar to Eq. (11), we can write
the system of partial differential equations in (12) as

φ1s,�1

2
+ K�1

L,�1

(
φ1s,�1

) − V �1
L,�1

(
∂

∂n
φ1s,�1

)
= 0,

φ2s,�1

2
− K�1

L,�1

(
φ2s,�1

) + V �1
L,�1

(
∂

∂n
φ2s,�1

)
− K�1

L,�2

(
φ2s,�2

) + V �1
L,�2

(
∂

∂n
φ2s,�2

)
= 0,

φ2s,�2

2
− K�2

L,�1

(
φ2s,�1

) + V �2
L,�1

(
∂

∂n
φ2s,�1

)
− K�2

L,�2

(
φ2s,�2

) + V �2
L,�2

(
∂

∂n
φ2s,�2

)
= 0,

φ3s,�2

2
+ K�2

L,�2

(
φ3s,�2

) − V �2
L,�2

(
∂

∂n
φ3s,�2

)
= 1

4πε3

Nq∑
k=0

qk∣∣r�2 − rk

∣∣ , (13)

where V and K are the single- and double-layer operators in Eqs. (8) and (9). In this case, we distinguish between the surface
where the integrals run (subindex), and the surface that contains the evaluation point (superindex).

Applying the interface conditions of Eq. (12), leads to

φ1s,�1

2
+ K�1

L,�1

(
φ1s,�1

) − V �1
L,�1

(
∂

∂n
φ1s,�1

)
= 0,

φ1s,�1

2
− K�1

L,�1

(
φ1s,�1

) + V �1
L,�1

(
ε1

ε2

∂

∂n
φ1s,�1

)
− V �1

L,�1

(
ε2 − ε1

ε2

∂

∂n
φi,�1

)

− K�1
L,�2

(
φ3s,�2

) + V �1
L,�2

(
ε3

ε2

∂

∂n
φ3s,�2

)
− V �1

L,�2

(
ε2 − ε3

ε2

∂

∂n
φi,�2

)
= 0,

φ3s,�1

2
− K�2

L,�1

(
φ1s,�1

) + V �2
L,�1

(
ε1

ε2

∂

∂n
φ1s,�1

)
− V �2

L,�1

(
ε2 − ε1

ε2

∂

∂n
φi,�1

)

− K�2
L,�2

(
φ3s,�2

) + V �2
L,�2

(
ε3

ε2

∂

∂n
φ3s,�2

)
− V �2

L,�2

(
ε2 − ε3

ε2

∂

∂n
φi,�2

)
= 0,

φ3s,�2

2
+ K�2

L,�2

(
φ3s,�2

) − V �2
L,�2

(
∂

∂n
φ3s,�2

)
= 1

4πε3

Nq∑
k=0

qk∣∣r�2 − rk

∣∣ . (14)

b. Discretization and linear system. We discretize the sur-
face into flat triangles, and assume that φ and ∂φ/∂n are
constant within each element. We can then write the layer
operators in their discretized form as follows:

V r�

L,disc

(
∂

∂n
φ(r� )

)
=

Np∑
j=1

∂

∂n
φ
(
r� j

) ∫
� j

GL
(
r�, r� j

)
d� j

Kr�

L,disc(φ(r� )) =
Np∑
j=1

φ
(
r� j

) ∫
� j

∂

∂n

[
GL

(
r�, r� j

)]
d� j,

(15)

where Np is the number of discretization elements on �, and
φ(r� j ) and ∂

∂n φ(r� j ) are the values of φ and ∂φ

∂n on panel � j .

Using centroid collocation, we can write Eq. (11) in matrix
form as

⎡
⎣ 1

2 + K�
L −V �

L

1
2 − K�

L
ε1
ε2

V �
L

⎤
⎦

⎡
⎣ φ1s,�

∂
∂n φ1s,�

⎤
⎦ =

[
0

V �
L

(
ε2−ε1

ε2

∂φi

∂n

)]
. (16)

Equation (14) can be represented as

⎡
⎢⎢⎢⎢⎢⎣

1
2 + K�1

L,�1
−V �1

L,�1
0 0

1
2 − K�1

L,�1

ε1
ε2

V �1
L,�1

−K�1
L,�2

ε3
ε2

V �1
L,�2

−K�2
L,�1

ε1
ε2

V �2
L,�1

1
2 − K�2

L,�2

ε3
ε2

V �2
L,�2

0 0 1
2 + K�2

L,�2
−V �2

L,�2

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

φ1,�1

∂
∂n φ1,�1

φ3,�2

∂
∂n φ3,�2

⎤
⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

0

V �1
L,�1

(
ε2−ε1

ε2

∂
∂n φi,�1

) + V �1
L,�2

(
ε2−ε3

ε2

∂
∂n φi,�2

)
V �2

L,�1

(
ε2−ε1

ε2

∂
∂n φi,�1

) + V �2
L,�2

(
ε2−ε3

ε2

∂
∂n φi,�2

)
1

4πε3

∑Nq

k=0
qk

|r�2 −rk |

⎤
⎥⎥⎥⎥⎥⎦, (17)

where the elements of the matrix are

V �
L,i j =

∫
� j

GL
(
r�i , r� j

)
d� j,

K�
L,i j =

∫
� j

∂

∂n

[
GL

(
r�i , r� j

)]
d� j, (18)

with r�i being at the center of panel �i.
c. Integral evaluation. We evaluate the integrals in

Eq. (18) with Gauss quadrature rules. The 1/r singularity of
the Green’s function poses a problem to obtaining good accu-
racy when the integral is singular or near-singular. Therefore,
we define three different regions, as follows:

(i) Singular integrals: If the collocation point is in the
integration element, the singularity is difficult to resolve with
standard Gauss integration schemes. In this case, we use a
semianalytical technique [31,32] that places Nk quadrature
nodes on the edges of the triangle.

(ii) Near-singular integrals: If the collocation point is close
to the integration element, the integrand has a high gradient,
and high-order quadrature rules are required. We use the rep-
resentative length of the integrated triangle (L = √

2 × Area)
to define a threshold of the nearby region, for example when
the integration panel is 2L or less away from the collocation
point. For near-singular integrals, we use Kfine = 19, 25, or 37
points per triangle.

(iii) Faraway integrals: When the distance between the
collocation point and the integration element is beyond the
threshold, they are considered to be far away. At this point,
the integrand is smooth enough that we obtain good accuracy
with low-order integration, for example, with K = 1, 3, or 4
Gauss quadrature points per boundary element.

3. Boundary integral expression of the dipole moment

As shown in Eq. (3), the scattered electric field in the
faraway limit depends on the dipole moment. The dipole
moment is defined as

p =
∫

�

rρ d�, (19)

and rewriting this equation using Gauss’ law, we obtain

p = −ε2

∫
�

r∇2φ2sd�. (20)

For component i, this becomes

pi = −ε2

∫
�

xi∇2φ2sd�. (21)

Using the identity

∇ · ( f v) = (∇ f ) · v + f (∇ · v) (22)

with f = xi and v = ∇φ2s, we can rewrite Eq. (21) as

− pi

ε2
=

∫
�

∇ · (xi∇φ2s)d� −
∫

�

∇xi · ∇φ2sd�,

and applying the divergence theorem

− pi

ε2
=

∮
�

xi∇φ2s · n d� −
∫

�

∇xi · ∇φ2sd�. (23)

Using the identity (22) again in Eq. (23), this time taking f =
φ2s and v = ∇xi, we get

− pi

ε2
=

∮
�

xi
∂φ2s

∂n
d�

−
[∫

�

∇ · (φ2s∇xi )d� −
∫

�

φ2s∇2xid�

]

=
∮

�

xi
∂φ2s

∂n
d� −

∮
�

φ2s∇xi · n d�

=
∮

�

xi
∂φ2s

∂n
d� −

∮
�

φ2snid�. (24)

Throughout this derivation, the normals are pointing into �1.
However, in our implementation all normals are pointing out-
ward, and we need to include an extra negative sign, yielding

pi = ε2

[∮
�

xi
∂φ2s

∂n
d� −

∮
�

φ2snid�

]
. (25)

Using BEM, we obtain the electrostatic potential and its
normal derivative, on the surface of the nanoparticle, which
we use in Eq. (25) to get the dipole moment, and in Eq. (3)
to obtain the scattered electric field. We can then use Eqs. (4)
and (5) to get the extinction cross section.

E. Acceleration strategies

One disadvantage of the boundary element method (BEM)
is that it generates dense matrices after discretization. Solving
the resulting linear system using Gaussian elimination would
require O(N3) computations and O(N2) storage, whereas for
a Krylov-subspace iterative solver, like the generalized mini-
mal residual method (GMRES), computations drop to O(N2)
because they are dominated by dense matrix-vector products.
This makes BEM inefficient with more than a few thousand
boundary elements, which are the mesh sizes required for real
applications.

In our formulation with Gaussian quadrature and colloca-
tion, the matrix-vector product becomes an N-body problem,
with Gauss nodes acting as centers of mass (sources), and the
collocation points acting as evaluation points for the potential
(targets). To overcome the unfavorable scaling, we accelerate
the matrix-vector product using a treecode algorithm [33,34],
which is a fast-summation algorithm capable of reducing
O(N2) computational patterns like

V (xi ) =
N∑

j=1

q jψ (xi, y j ) (26)

to a computational complexity of O(N log N ). In Eq. (26) q j

is the weight, ψ the kernel, y j the locations of sources and xi

the locations of targets.
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The treecode groups sources geometrically in boxes of an
octree, built ensuring that no box in the lowest level has more
than Ncrit sources. If a group of sources is far away from a
target, their influence is aggregated at an expansion center, and
the target interacts with the box, rather than with each source
independently. If the group of targets is close, the treecode
queries the child boxes. If the box has no children and still is
not far enough, the interaction is performed directly via (26).
The threshold to decide if a box is far enough is called the
multipole-acceptance criterion (MAC), defined as

θ >
rb

r
, (27)

where rb is the box size and r the distance between the box
center and the target. Common values of θ are 1/2 and 2/3.
To approximate the contribution of the sources, we use Taylor
expansions of order P. The treecode allows us to control the
accuracy of the approximation by modifying θ and P. Further
details of the treecode implementation in PYGBE can be found
in [27,35].

F. Code modifications and added features

As mentioned at the beginning of this section, the present
work extends the PYGBE code to allow its application to
nanoplasmonics. The code required the following modifica-
tions and added features:

(i) Rewriting the GMRES solver to accept complex num-
bers.

(ii) Splitting treecode calculations into real and imaginary
parts.

(iii) Reformatting configuration files to include electric
field intensity and wavelength.

(iv) Adding the new function read_electric_field,
to read the electric field intensity and its wavelength from
configuration files.

(v) Adding the new function dipole_moment to compute
numerically the dipole moment by Eq. (25).

(vi) Adding a new function to compute the extinction cross
section (extinction_cross_section).

(vii) Organizing LSPR computations on a different main
script (called lspr.py).

For information about how to use the code, run examples
and tests, see the PYGBE documentation at [36].

G. Protein mesh preparation

In Fig. 3, �3 is a region that represents the analyte
molecule, which contains a point charge distribution of the
partial charges, and is interfaced with the solvent by �2,
the solvent excluded surface (SES). The SES is generated
by rolling a spherical probe of the size of a water molecule
(1.4 Å radius) around the analyte, and tracking the points
where the probe and molecule make contact. The open-source
software NANOSHAPER [37] uses the molecular structure to
produce a triangulation of the SES, which can be read by
our software. In particular, NANOSHAPER takes as inputs the
atomic coordinates, obtained from the Protein Data Bank, and
radii, which were extracted from a pqr file generated with
pdb2pqr [38]. We obtained the charge and van der Waals
parameters of the analyte from pdb2pqr using the built-in

16
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m

E

FIG. 4. Spherical nanoparticle in a constant electric field.

amber force field. In support of the reproducibility of our
results, we deposited the final meshes in the Zenodo data
repository. See Sec. III C for details.

III. RESULTS

We present results for two kinds of problems. The first is a
model problem for which an analytical solution is available,
allowing for a grid-refinement study and code verification
using that solution. It consists of a spherical nanoparticle in
a constant electric field, where the extinction cross section
can be derived in closed form. The second set of results
uses a model for a biosensor detecting a target molecule
via frequency shifts in the plasmon resonance of a metallic
nanoparticle. In this case, since an analytical solution is not
available, we can use Richardson extrapolation to estimate the
errors in a grid-refinement study. We also computed the varia-
tion of the extinction cross section with respect to wavelength
for the isolated nanoparticle, and in the presence of bovine
serum albumin (BSA) proteins, varying the location of the
analytes. The final result is a sensitivity study of the biosensor
model, looking at how the peak in frequency response varies
with distance of the protein to the nanoparticle.

All results were obtained on a laboratory workstation, built
from parts. Hardware specifications are as follows:

(i) CPU: Intel Core i7-5930K Haswell-E 6-Core 3.5 GHz
LGA 2011-v3.

(ii) RAM: G.SKILL Ripjaws 4 series 32 GB (4 × 8 GB).
(iii) GPU: Nvidia Tesla K40c (with 12 GB memory).

A. Grid convergence and verification with an isolated silver
nanoparticle

In the long-wavelength limit, the electrostatic approxima-
tion applies and the electromagnetic scattering of a small
spherical particle can be modeled by a sphere in a constant
electric field. Figure 4 illustrates this scenario.

This model problem has an analytical solution, which
allows us to compare with the numerical calculations of

TABLE I. Grid-convergence study: Gauss quadrature points; K
and Kfine are per element; Nk is per element edge (semianalytical
integration).

distant elements: K = 4
near-singular integrals: Kfine = 37
singular elements: Nk = 9
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TABLE II. Grid-convergence study: treecode and solver
parameters.

treecode order of expansion: P = 15
MAC θ = 0.5
GMRES tolerance 10−5

the extinction cross section obtained with PYGBE for code
verification and grid-convergence analysis. Mishchenko [29]
derived the following analytical result, valid for lossy medi-
ums:

Cext = 4πa3

k′ Im

(
k2 εp/εm − 1

εp/εm + 2

)
. (28)

Here, a is the radius of the sphere, k is the complex wave
number (k = k′ + ik′′), εp is the dielectric constant of the
particle, and εm is the dielectric constant of the host medium.
If the medium is not lossy, then k′′ = 0 and k = k′.

We completed a grid-convergence study of PYGBE for
the extinction cross section of a spherical silver nanoparti-
cle of radius 8 nm immersed in water, under a z-polarized
electric field with a wavelength of 380 nm and intensity
of −0.0037e/(Å2 ε0). In these conditions, water has a di-
electric constant of 1.7972 + 8.5048−09i [39] and silver of
−3.3877 + 0.1922i [40]. Table I lists the Gauss quadrature
points used for each type of boundary element. The threshold
parameter defining the near-singular region was 0.5 (refer to
the PYGBE documentation, under “Parameter file format”).
Table II shows the treecode and solver parameters for this
grid-convergence study.

The results are shown in Fig. 5, where the mesh sizes are
512, 2048, 8192, and 32 768 elements. The analytical solution
with Eq. (28) is Cext = 1854.48 nm2, and the computed errors
are as shown in Table III. The dashed line in Fig. 5 shows
a 1/N slope, and the observed order of convergence is 0.98,
evidence that the meshes are correctly resolving the numerical
solutions with PYGBE.

As another verification test of PYGBE in the LSPR setting,
we computed the extinction cross section of an isolated sphere
for a range of wavelengths. The results are shown in Fig. 6,
comparing with the analytical solution. The values of the

FIG. 5. Grid-convergence study for the extinction cross section
of a spherical silver nanoparticle, computed with PYGBE. The figure,
plotting script, and auxiliary files are available under CC-BY [41].

TABLE III. Percentage error in the grid-convergence cases with
an isolated silver nanosphere.

N % error

512 29.86
2048 7.33
8192 1.9
32 768 0.52

dielectric constant for each wavelength were obtained by
interpolation of experimental data [39,40]. For reproducibility
of these results, we provide a Jupyter notebook with the code
used for this interpolation step. See Sec. III C for details.
We used a mesh with N = 32 768, and we relaxed some
parameters compared with the grid-convergence results shown
previously, still yielding errors below 1% at all frequencies.
This results in a 12× decrease in the runtime for each case.
The parameters used are shown in Tables IV and V. Figure 6
shows good agreement between the computed and analytical
results, evidence that PYGBE can accurately represent the
mathematical model.

B. Localized surface plasmon resonance response to bovine
serum albumin

Localized surface plasmon resonance (LSPR) biosensors
detect a target molecule by monitoring frequency shifts
in the plasmon resonance of metallic nanoparticles in the
presence of an analyte [15]. In this section, we model the
response of LSPR biosensors using the expanded capac-
ity of PYGBE. We consider a spherical silver nanoparti-
cle, and we compute the extinction cross section placing
bovine serum albumin (BSA) proteins (PDB code: 4FS5,
a BSA dimer) in different locations. We placed two BSA
dimers opposite to each other in three configurations (±z,
±y, and ±x), as shown by Figs. 8 and 12. As a point of
comparison, experiments by Teichroeb and co-workers [43]
find a coverage of 2 × 1012 or 3.3 × 1012 molecules/cm2,
with a gold sphere 15 nm in diameter. In that work,

FIG. 6. Extinction cross section as a function of wavelength for
an 8-nm silver sphere immersed in water. The peak in the values of
extinction cross section corresponds to the plasmon resonance of the
metallic nanoparticle under the incoming electric field. The figure,
plotting script, and auxiliary files are available under CC-BY [42].
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TABLE IV. Verification: Gauss quadrature points; K and Kfine are
per element; Nk is per element edge (semianalytical integration).

distant elements: K = 4
near-singular integrals: Kfine = 19
singular elements: Nk = 9

the molecular size reported is 5.5 nm × 5.5 nm × 9 nm,
resulting in a number of attached molecules between 4 and
6. The BSA molecule used in our work corresponds to a
dimer, i.e., approximately double the size of that in Teichroeb
et al.’s experiment. With two BSA dimers in the proximity
of the sensor, the volume fractions in the near-by region are
comparable.

1. Grid-convergence study

We performed a grid-convergence analysis of the system
sketched in Fig. 3. Since we compute the extinction cross
section of the spherical nanoparticle only, we set a fixed
mesh density for the protein and refined the mesh of the
sphere (meshes of 512, 2048, 8192, and 32 768 elements).
We found that the protein meshed with two triangles per Å2

was fine enough for the convergence analysis, resulting in
Nprot = 98 116 elements.

We used the same physical conditions as in the grid
convergence with an isolated silver nanoparticle, and the
same numerical parameters, presented in Tables I and II. For
the protein dielectric constant, we used 2.7514 + 0.2860i,
obtained from the functional relationship provided by Phan
et al. [16]. The distance between the sensor and the analyte
was d = 1 nm, and the BSA protein was oriented such that
its dipole moment was aligned with the y axis. To obtain the
error estimates shown in Fig. 7 and Table VI, we used the
Richardson extrapolated value of extinction cross section as a
reference, Cext = 1778.73 nm2.

The observed order of convergence is 0.99, and Fig. 7
shows that the error decays with the number of boundary
elements (1/N), which is consistent with our verification
results in Sec. III A. This provides evidence that the numerical
solutions computed with PYGBE are correctly resolved by the
meshes. The percentage errors for the different meshes are
presented in Table VI.

2. Resonance frequency shift

We computed the LSPR response as a function of the
wavelength in the presence of the BSA protein. To optimize
run times without compromising accuracy, we used a relaxed
set of parameters, where the protein mesh density was one
element per Å2 (Nprot = 45 140) and the sphere mesh had
Nsensor = 32 768 elements. These calculations used the same
parameters as shown in Tables IV and V. This parameter

TABLE V. Verification: treecode and solver parameters.

treecode order of expansion: P = 6
MAC θ = 0.5
GMRES tolerance 10−3

FIG. 7. Grid-convergence study of extinction cross section of
a spherical silver nanoparticle with a BSA dimer at d = 1 nm.
The figure, plotting script, and auxiliary files are available under
CC-BY [41].

choice resulted in a percentage error below 1%, with respect to
the Richardson-extrapolated value. The run time for each one
of these cases was approximately 7.5 min using one NVIDIA
Tesla K40c GPU. When two proteins are present, the run time
per case is approximately 15 min.

Figure 8 shows a visualization of the meshes for these
calculations, with two BSA proteins placed at a distance
d = 1 nm away from a spherical silver nanoparticle, along
the z axis. The surface-mesh data, plotting scripts, and figure
are available openly on Figshare, in support of the paper’s
reproducibility [44]. The position of the BSA molecule in
the +z axis was the same as in the convergence analysis in
Sec. III B 1, whereas the BSA in the −z position is a 180◦
solid rotation about the y axis of the BSA in +z. We performed
calculations for wavelengths between 382 and 387 nm every
0.25 nm, which are around the peak seen in Fig. 6.

Figure 9 shows the variation of the extinction cross section
with respect to wavelength for the isolated nanoparticle (d =
∞) and with BSA proteins placed d = 1 nm away. The result
shows a redshift (0.5 nm) in the resonance frequency due to
the presence of the BSA analytes.

To study the effect of location of the analytes, we recom-
puted the result placing the BSA proteins along the x and y
axis at ±1 nm, as shown in Fig. 12. These configurations
were obtained via a 90◦ solid rotation of the z configuration
(Fig. 8) along the x and y axis, respectively. Figure 10 shows
the results in each case.

3. Sensitivity calculations

The sensitivity of an LSPR biosensor corresponds to the
relationship between the size of the resonance frequency

TABLE VI. Estimated percentage error of the BSA-sensor sys-
tem (Fig. 3) with respect to the extrapolated value (using Richardson
extrapolation).

N % error

512 29.39
2048 7.13
8192 1.82
32 768 0.46
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FIG. 8. Sensor protein display: BSA dimers located at ±1 nm
of the nanoparticle in the z direction. The figure, plotting script, and
auxiliary files are available under CC-BY [44].

shift and the number of analytes bound to the sensor
(through a ligand). Experiments show that the distance be-
tween the nanoparticle and the analyte affects the sensitivity
of the sensor, to the point that targets placed 15 nm away from
the surface are very hard to detect [4]. This is a critical issue,
considering that common ligands (for example, antibodies)
can be larger than 15 nm. Figure 11 shows how the peak
varies with the distance at which the analytes (+z and −z) are
placed. In particular, we see a shift of 0.25 nm when d = 2
to 0.75 nm when the analytes are placed at d = 0.5 nm. The
parameters used in this case remain the same as the ones used
in Figs. 9 and 10.

FIG. 9. Extinction cross section as a function of wavelength for
an 8 nm silver sphere immersed in water with two BSA dimers placed
±1 nm away from the surface in the z direction, and at infinity (no
protein).

FIG. 10. Extinction cross section as a function of wavelength
for an 8-nm silver sphere immersed in water with two BSA dimers
placed at ±1 nm away from the surface in the x-direction (a) and
y-direction (b), and at infinity (no protein).

C. Reproducibility and data management

To facilitate the reproducibility and replication of our re-
sults, we consistently release our research code and data with
every publication. PYGBE is openly developed and shared
under the BSD3-clause license via its repository at [26].

FIG. 11. Extinction cross section as a function of wavelength
for an 8-nm silver sphere immersed in water with two BSA dimers
placed at 2, 1, and 0.5 nm away from the surface in the z direction,
and at infinity (no protein). The test case with d = 0.5 nm is close
to the limit where quantum tunneling might happen. Such effects are
not captured by our classical model.
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We also release all of the data and scripts needed to
run the calculations reported in this work, as well as the
postprocessing scripts to reproduce the figures in this paper.
All the input files necessary to reproduce the computations
are available in one Zenodo data set [45]. Each problem
corresponds to a folder, wherein the user can find geom-
etry files (surface meshes), configuration files, parameter
files, and when it applies, the protein charges (.pqr). The
scripts and auxiliary files needed to run PYGBE to regenerate
every result in the paper are collected in another Zenodo
deposit [46]. After execution, the resulting data needed to
recreate the figures in the paper will be saved in the running
folder, and the input files (the first Zenodo set) can at that
point be deleted. (For more details, the reader can consult a
README file in the Zenodo archive.) Reproducibility packages
to reproduce the figures in the paper are deposited on Figshare,
including the figures, plotting scripts, and Jupyter notebooks
that organize and recreate the results [41,42,44,47].

IV. DISCUSSION

Extending PYGBE to the LSPR biosensing application
required considerable code modifications and added func-
tionality. The results presented in the previous section offer
evidence to build confidence on the suitability of the math-
ematical model and the correctness of the code. The grid-
convergence study with a nanosphere under a constant electric
field shows a 1/N rate of convergence, consistent with conver-
gence results in previous work using PYGBE [27]. Further ver-
ification of PYGBE’s new ability to compute extinction cross
section of a scatterer in the long-wavelength limit is provided
in Fig. 6. The computed extinction cross section of a silver
nanoparticle in a range of frequencies is within 1% of the
analytical value, with the numerical parameters chosen. This
level of accuracy is likely sufficient, given that experimental
uncertainty in the values of the dielectric constant for silver is
in the order of 1% also [39].

Figure 9 shows a redshift of the plasmon resonance fre-
quency peak in presence of the BSA proteins. Experimental
observations of Tang et al. [48] with silver nanoparticles of ap-
proximately 17 nm in diameter and BSA proteins in solution
revealed a redshift upon adding the proteins. Similar to the ef-
fect we see with our model, they observed as well a decrement
of the peak amplitude. Moreover, recent experiments [49]
report a resonance frequency for a silver nanoparticle in the
presence of BSA proteins of between 380 and 400 nm, which
is consistent with our results. Other experiments [50] also
report a redshift in the resonance frequency in the presence of
(different) proteins. Our boundary element method approach
using electrostatic approximation is thus able to capture the
characteristic resonance-frequency shift of LSPR biosensors.

With the electric field aligned in the z direction, placing
the proteins at a distance in the x or y direction from the
nanoparticle (see Fig. 12) shows a negligible shift in the
resonance peak: the shifts in Fig. 10 are smaller than the
resolution between wavelengths (<0.25 nm). This finding is
consistent with the free electrons oscillating in the z direction
under a z-polarized electric field, and not in the x and y
directions (see Fig. 1). The analytes have a marked effect

FIG. 12. Sensor protein display: BSA dimers located at ±1 nm
of the nanoparticle in the x direction (a) and y direction (b). The
figure, plotting script, and auxiliary files are available under CC-BY

[44].

when placed in the z direction, where they can interfere with
the free oscillating electrons.

Figure 11 shows how the shift in resonance frequency
varies with the distance between the sensor and the analyte.
As expected, the shift decays as the BSA moves away from
the sensor, to the point that if the BSA proteins are placed
d = 2 nm away, the shift is only 0.25 nm. This result shows
the potential of PYGBE and the electrostatic approach to
study biosensor sensitivity with distance. Note that possible
quantum effects (e.g., tunneling) at d = 0.5 nm are ignored
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with our classical model. Even if this distance could be close
to or in the quantum regime, evidence that classical theory
is valid at this distance in similar systems has been reported
[51,52].

Even though there is evidence that techniques such as
plasmon-enhanced Raman scattering are capable of detecting
all the way to single molecules [53], as far as we know there
is no evidence of purely LSPR approaches that can sense such
low concentration of analytes. These computational studies
can shine light on potential improvements that would enhance
sensitivity of LSPR biosensors, for example by using smaller
ligands.

We are not aware of other LSPR simulations where the
molecular details of the analyte are considered, however
similar calculations could be performed with other software.
For example, BEM++ [25] also models the system as a set
of boundary integral equations, discretized in flat triangular
panels. This software uses the Galerkin approach and algo-
rithmic acceleration via hierarchical matrices, which is slower
and less memory-efficient than the treecode and limits the
accessible problem sizes. The MATLAB toolbox MNPBEM [7]
is another alternative software designed to simulate scattering
of metallic nanoparticles. Its BEM implementation is similar
to PYGBE as it uses a centroid collocation scheme on flat trian-
gular panels, but it differs in the algorithmic acceleration tech-
nique, which is also based on hierarchical matrices rather than
a treecode. This results in higher memory usage compared to
our code, making it harder to simulate large analytes in detail.
Commercial finite-element or finite-difference solvers could

also be used in this application, for example COMSOL. These
volumetric approaches, however, struggle to correctly impose
the zero boundary condition at infinity, which is exactly met
for a BEM formulation.

V. CONCLUSION

In this work, we combined the implicit-solvent model of
electrostatics interactions in PYGBE with a long-wavelength
representation of LSPR response in nanoparticles. We ex-
tended PYGBE to work with complex-valued quantities, and
we added functionality to include an imposed electric field and
compute relevant quantities (dipole moment, extinction cross
section). Previous work with PYGBE showed its suitability for
computing biomolecular electrostatics considering solvent-
filled cavities and Stern layers [27], and for protein-surface
electrostatic interactions [54]. This latest extension can offer
a valuable computational approach to study nanoplasmonics
and aid in the design of LSPR biosensors. Thanks to algorith-
mic acceleration with a treecode, and hardware acceleration
with GPUs, PYGBE is able to compute problems with half a
million elements, or more, which is required to represent the
molecular surface accurately.
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