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Hall magnetohydrodynamic turbulence with a magnetic Prandtl number larger than unity
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Turbulence structures with the magnetic Prandtl number larger than unity are studied by means of direct
numerical simulations of homogeneous, isotropic, and incompressible Hall magnetohydrodynamic (MHD)
turbulence driven by a random force. Spectral and spatial structures on the scales smaller than the ion skin
depth are focused upon in this numerical paper. The numerical simulations reveal the emergence of a new power
law in the velocity field whereas it is not observed in MHD turbulence simulation without the Hall term. An order
estimate of the energy budget in the spectral space shows that this new power law appears in association with the
Hall effect and that a balance between the Lorentz force and the viscous dissipation is crucial for formation of
the power law. A resemblance to an elastic turbulence is found in the power-law-formation mechanism. Frequent
eruptions of strong current ribbons accompanying strong palinstrophy density are observed, showing generation
of the palinstrophy density by the Lorentz force at the scales below the ion skin depth. These properties in
spectral and spatial structures characterize a high magnetic Prandtl number Hall MHD turbulence at the scales
smaller than the ion skin depth.
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I. INTRODUCTION

Turbulence structures are nonuniform, coherent, and even
highly concentrated. A dissipative nature of magnetohydro-
dynamic (MHD) equations not only change smoothness of
turbulent field, but also trigger change in the topology of the
magnetic and/or velocity field and, thus, of the concentrated
turbulence structures. The ratio of the viscosity ν to the
magnetic diffusivity η, or the magnetic Prandtl number PrM =
ν/η, is a crucial control parameter of MHD turbulence be-
cause of the important roles [1–3]. A clear image of high-PrM

turbulence is not established yet in comparison to turbulence
in other regimes PrM ∼ 1 or PrM � 1, despite some extensive
studies on this parameter regime [4–6].

Whereas the two dissipative coefficients compete to in-
fluence MHD turbulence, the Hall term, which represents
a two-fluid effect in Ohm’s law, can also participate in the
competition between them when the ion skin depth di is
comparable to or larger than the dissipation scales. The Hall
term is known to accelerate the magnetic reconnection [3,7]
and to excite dispersive waves [8,9]. The Hall term is also
known to form a scaling regime of k−7/3 in the magnetic
energy spectrum on the scale comparable to or smaller than di

for PrM ∼ 1 [10–16], although spectral natures for PrM � 1
remain unclarified. In this paper, direct numerical simulation
(DNS) of homogeneous, isotropic, and incompressible Hall
MHD turbulence of PrM = 10 and 100 are carried out, focus-
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ing on spectral and spatial structures on the scales smaller than
di in order to find a clearer image of high-PrM turbulence.

II. DIRECT NUMERICAL SIMULATIONS

The incompressible Hall MHD equations can be expressed
as

∂t ui = −∂ j (uiu j ) − ∂i p + εi jkJjBk + ν ∂ j∂ jui + fi, (1)

∂t Bi = −εi jk∂ j[−εklm(ul − εH Jl )Bm + ηJk], (2)

together with the two solenoidal conditions ∂iui = 0 and
∂iBi = 0, where ∂t = ∂/∂t and ∂ j = ∂/∂x j . The symbols
Bi, Ji = εi jk∂ jBk, ui, and fi represent the ith components
of the magnetic field, current density, velocity field, and
random external field vectors, respectively, whereas εi jk is
Levi-Civita’s antisymmetric tensor. The ith components of the
vorticity vector ωi = εi jk∂ juk and the divorticity vector pi =
εi jk∂ jωk = −∂ j∂ jui are also defined here for later use. The
sum from 1 to 3 is taken for repeated suffixes. The pressure
p can be obtained by Eqs. (1) and ∂iui = 0. The symbol εH is
the Hall parameter (the ratio of di to the system size). These
equations are already normalized by representative values (see
Ref. [17] for normalization), and thus, we can consider 1/ν

and 1/η as the Reynolds and Lundquist numbers, respectively.
In our DNS, the vorticity equations [rotation of Eqs. (1)]

and Eqs. (2) are solved numerically by the use of the pseu-
dospectral method and the Runge-Kutta-Gill scheme under
the (2π )3 triple-periodic boundary condition. Aliasing errors
are removed by the 2/3 rule. Parameters used in this article
are shown in Table I. The velocity field is driven by the
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TABLE I. Parameters for DNS of Hall MHD turbulence.

Run N3 εH ν η PrM Ru
λ RB

λ

A 5123 0.2 1 × 10−3 1 × 10−4 10 102.5 420.5
B 5123 (2563, 10243) 0.2 1 × 10−2 1 × 10−4 100 11.5 77.5
C 2563 0 1 × 10−2 1 × 10−4 100 11.4 87.5

random force fi, which satisfies ∂ j f j = 0. The random force
is proportional to k−5/3 at k � 3 and zero elsewhere in the
Fourier space. The forcing range k � 3 is chosen so that
the random force perturbs the velocity field in the scale
larger than the ion skin depth k = 1/εH = 5 to avoid the
internal dynamics of the Hall MHD system is masked by a
forcing effect.

III. TURBULENT ENERGY SPECTRA

In Fig. 1, the kinetic energy spectrum EK (k) and magnetic
energy spectrum EM (k) are shown for (a) runs A and B (Hall
MHD) and (b) run c (MHD), respectively. The spectra have
been time averaged over about 20 eddy-turn-over time at a
statistically steady state. The Reynolds numbers defined by
Taylor’s length scale [18] (Ru

λ for the velocity field and RB
λ

for the magnetic field) in the statistically steady state are
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FIG. 1. Shell-averaged and time-averaged energy spectra EK (k)
and EM (k) in (a) runs A and B and in (b) run C.

presented in Table I. The two panels (a) and (b) make a sharp
contrast to each other. The two spectra EK (k) and EM (k) of
run B in panel (a) show, at least, two power-laws EM (k) ∼
k−5/2 and EK (k) ∼ k−17/3 at 7 � k � 35 (hereafter, we refer
to this range as mesoscale), whereas we do not see a clear
power law in EK (k) and EM (k) in Fig. 1(b). The power-law
EM (k) � k−5/2 is observed both in run A (PrM = 10) and run
(B PrM = 100). The shell-averaged spectrum EJB(k) of the
Lorentz-force-vector Li = εi jkJjBk is fitted as k−5/9. [Only
EJB(k) of run B is shown in Fig. 1(a).]

In Fig. 1(a), the magnetic energy spectra EM (k) are influ-
enced by the Hall term at k > kH = 1/εH = 5. Because of
the forward magnetic energy transfer enhanced by the Hall
term, the tail of EM (k) increases slightly at k > 100. Thus, we
eliminate k > 100 from our discussion throughout this paper
after checking the influence of the raise of the spectral tail.
We verify that the power laws are insensitive to the change in
the resolution by comparing the spectra in run B and that the
power-law exponents are approximately −5/2 for EM (k) and
−17/3 for EK (k) by the compensated energy spectra as we
see below.

In Fig. 2(a), EM (k) and EK (k) (snapshots) of run C are
compared among the computations with N3 = 2563, 5123,
and 10243 to examine influence of the spectral tail. The
computation of N3 = 10243 is stopped before the spectral tail
of EM (k) rises appreciably. We can see that EK (k) ∝ k−17/3 on
the mesoscale for all three computations. This indicates that
EK (k) ∝ k−17/3 whether before the energy is transferred to
the highest wave number (N3 = 10243 computation) or after
the spectral tail rises (N3 = 2563 and 5123 computation) and
that the power-law exponent is insensitive to the change in the
resolution.

In Fig. 2(b), the compensated energy spectra
k8/3EM (k), k5/2EM (k), and k7/3EM (k) of run B are compared
among the computations of N3 = 2563, 5123, and 10243.
This figure indicates that k5/2EM (k) yields the widest range
of a plateau curve for all the three resolutions, meaning that
EM (k) ∼ k−5/2. We also note that the spectrum EM (k) ∼ k−5/2

differs from EM (k) ∼ k−7/3 which has been expected from
earlier studies [10–16]. This difference can be primarily due to
a low Ru

λ in run B. However, recent kinetic simulations suggest
EM (k) ∼ k−8/3 [19]. The difference among k−7/3, k−5/2, and
k−8/3 is not very large. The power-law exponent of EM (k)
associated with the Hall term may be subject to change
depending on high-PrM (low-Ru

λ) or kinetic effects.
A process of the energy conversion from the energy input

to the final energy dissipation is discussed here. The equation
of the total energy can be expressed in real space as

∂t (ukuk + BkBk )/2 = −uiu j∂ jui − ui∂i p + ui(εi jkJjBk )

+ νui∂ j∂ jui + ui fi − Biεi jk∂ j

× [εkab(ua − εH Ja)Bb] + ηBi∂ j∂ jBi.

(3)

Because of the low Reynolds number, the velocity field is
damped very quickly at k > 3 as we can see in Fig. 1(a),
and thus, the nonlinear term uiu j∂ jui is negligible. Un-
der this situation, the energy from external force (ui fi)
at k � 3 is first converted to the magnetic field by the
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FIG. 2. (a) A comparison of EM (k) and EK (k) of run B among
the computations of N3 = 2563, 5123, and 10243. (b) A compari-
son of the compensated energy spectra k8/3EM (k), k5/2EM (k), and
k7/3EM (k) of run B among the computations of N3 = 2563, 5123,
and 10243.

dynamo term (−Biεi jk∂ j[εkabuaBb]). Then, the velocity field
on the mesoscale can be excited only by the Lorentz force
[ui(εi jkJjBk )]. Finally, the velocity components are atten-
uated by the viscous dissipation (νui∂ j∂ jui), whereas the
magnetic energy is transferred to high k by the Hall term
{Biεi jk∂ j[εkab(εH Ja)Bb]} [14] and dissipated by the resistive
term (ηBi∂ j∂ jBi).

Since the spectra in Fig. 1 are shell averaged in the spectral
space, we can estimate the spectra as EM (k) = ∑

[k] |B̃k|2 ∼
k2|B̃k|2 and EK (k) = ∑

[k] |̃uk|2 ∼ k2 |̃uk|2 where the symbols
B̃k and ũk are Fourier coefficients of magnetic and velocity
fields, respectively. The symbol

∑
[k] represents the shell aver-

age in the spectral space. The index i for the three-dimensional
vector components for Fourier coefficients are suppressed,
hereafter, for simplicity.

First, we examine the power-law EM (k) ∼ k−5/2 (or
∼k−7/3 in earlier works). We assume EM (k) = ∑

[k] |B̃k|2 ∼
kα, EK (k) = ∑

[k] |̃uk|2 ∼ kβ , and
∑

[k] |̃Lk|2 ∼ kγ on the
mesoscale. Then, the Fourier coefficients B̃k, ũk , and L̃k are
estimated as B̃k ∼ k(α−2)/2, ũk ∼ k(β−2)/2, and L̃k ∼ k(γ−2)/2,
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FIG. 3. Energy transfer functions Tu j∂ j ui (k) and TJB in run B.
Negative values are not plotted.

respectively. The balance between the forward energy trans-
fer by the Hall term and the resistive dissipation demands
kB̃kL̃k ∼ k2B̃2

k , and the result is B̃k ∼ kγ /2−2. By the use
of B̃k ∼ k(α−2)/2 in the original assumption and by sub-
stituting α = −7/3 (α = −5/2), we obtain γ = −1/3 (γ =
−1/2). The combination of α = −5/2 and γ = −1/2 fits to
EJB(k) = ∑

[k] |̃Lk|2 ∼ k−5/9 in run B better than α = −7/3
and γ = −1/3.

The power-law EJB(k) ∼ k−5/9 can be estimated in our
crude ordering as follows. The Lorentz force vector, a nonlin-
ear combination of Bi and Ji, is dominated by the contributions
from Bi at a very low k and Ji on the mesoscale. Since Bi of a
low k appears approximately uniform from Ji of a higher k, we
can approximately replace Bi by a constant B0 in this analysis
and estimate the Lorentz force as L̃k ∼ J̃kB̃k ∼ kB̃kB0. This
can be a primitive image of a whistler wave propagating
along the uniform magnetic field B0 because Eq. (2) on the
mesoscale or a higher k under this ordering gives ω ∼ εH B0k2

(ω is the frequency), a dispersion relation similar to that
of the whistler wave [8]. In this ordering, L̃k ∼ kB̃k ∼ kα/2

whereas we have assumed L̃k ∼ k(γ−2)/2 initially. By the use
of α = −5/2 and γ = −5/9, the two orderings result in L̃k ∼
kα/2 ∼ k−5/4 and L̃k ∼ k(γ−2)/2 ∼ k−23/18, respectively. The
orderings agree with each other approximately.

Next, the energy balance between the energy transfer in the
velocity field is examined. For this purpose, the energy trans-
fer functions Tuj∂ j ui (k) and TJB(k) in run B are shown in Fig. 3.
These two functions are the shell-averaged representations of
ui(u j∂ j )ui and ui(εi jkJjBk ) in the Fourier space, respectively.
The former is negligible to the latter on the mesoscale and
TJB(k) ∼ k−11/3 in Fig. 3. By considering the balance between
TJB(k) ∼ k−11/3 and the viscous dissipation

∑
[k] νui∂ j∂ jui ∼

k2k2kβ−2, we obtain k−11/3 ∼ kβ+2 and, thus, β = −17/3, a
good agreement with the numerical result in Fig. 1(a).

The analysis in the above paragraph depends on
the observation of TJ×B(k) ∼ k−11/3. From the defini-
tion TJB(k) ∼ k2ũkL̃k ∼ k2k(β−2)/2k(γ−2)/2 ∼ k(β+γ )/2. How-
ever, the Lorentz force should be dominated by the combi-
nation of Ji on the mesoscale and the magnetic field of low
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k, L̃k ∼ J̃kB0, and thus, TJB(k) ∼ k2k(α−2)/2k1+(β−2)/2B0. By
substituting α = −5/2 and β = −17/3, TJB(k) ∼ k−37/12.
We consider that the difference of the exponent −11/3 to
−49/12 is acceptable within this crude estimation.

As we have shown in the above, our ordering gives a
consistent explanation from the power-law EM (k) ∼ k−5/2 to
EK (k) ∼ k−17/3 via collateral power-laws

∑
[k] |̃Lk|2 ∼ k−5/9

and TJB(k) ∼ k−11/3. In other words, the power-law EK (k) ∼
k−17/3 on the mesoscale can appear in association with the
power law of EM (k) ∼ k−5/2. Thus, we assert that the spectral
structure of EK (k) is determined by the spectral structure of
the magnetic field on the mesoscale.

At the end of the spectral analysis, we comment on a
few points in our simulations. The forcing range of k � 3
is set not to overlap the subion scale at k > kH = 1/εH = 5.
This is necessary to avoid interference between the force and
the subion scales. We need simulations with a larger N for
separating the forcing range from the ion skin depth scale
sufficiently. Such larger simulations should be performed in
the near future.

We still keep in mind an intrinsic difficulty in determining
the power-law exponent. A recent article on hydrodynamic
turbulence reports that the power-law exponent of the energy
spectrum should be corrected by their huge N3 = 12 2883

computations [20]. In the case of our paper, we need a wider
range of the mesoscale which should be enabled by a larger
magnetic Prandtl number. For such a simulation, we need an
extremely huge number of grid points.

The third comment is on a similarity between the scaling
law in the above and that reported on elastic turbulence sim-
ulations [21]. In the elastic turbulence simulations, the fluid
inertia −u j∂ jui is so weak that the Navier-Stokes equations
are approximately linear and the energy spectrum should
decay exponentially. Nevertheless, a power law in the velocity
field is observed because an interaction with polymers excite
the velocity on the dissipation scale. This scenario is very
similar to our numerical results in the sense that the power-law
EM (k) ∼ k−17/3 is formed by the interaction with the magnetic
field (Lorentz force) at the dissipation scale.

IV. TURBULENT STRUCTURES

Although Hall MHD simulations show a power law in the
spectral space which does not appear in (non-Hall) MHD
turbulence, differences of Hall MHD turbulence from that
of MHD turbulence are found in the real space too. Isosur-
faces of the enstrophy density Q = ωiωi/2 (green or gray
in the printed version), palinstrophy density P = pi pi/2 (red
or dark gray in the printed version) (recall pi = εi jk∂ jωk),
and current density I = JiJi/2 (light gray) in runs A–C are
drawn in Figs. 4(a)–4(c), respectively, thein situ visualization
softwareVISMO [22]. Isosurfaces of P are omitted from (a)
for clarity in the figure. The thresholds of the isosurfaces are
three times the standard deviation above the mean value of
the quantities. In Figs. 4(a) and 4(b), a ribbonlike structure of
I is formed. The isosurfaces are often elongated over a long

FIG. 4. Isosurfaces of the enstrophy density Q (green, or gray
in the printed version), the palinstrophy P (red, or dark gray in the
printed version), and current density I (light gray) in runs A–C in
(a)–(c), respectively. Isosurfaces of the palinstrophy density P (red)
are drawn in (b) and (c), whereas they are not drawn in (a) for clarity
in the figure.
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FIG. 5. Contours of the viscous term −νui∂k∂kui (color map) and
Lorentz-force term ui(εi jkJjBk ) (contour lines) in Eq. (3) of run B on
a plane of 128 × 128 grid points.

distance especially in Fig. 4(b), and the appearance of the
isosurfaces is different from that of Hall MHD turbulence of
PrM = 1 reported in Ref. [14]. The isosurfaces of Q and I are
fully separated from each other, whereas P and I overlap each
other. An inspection of the time series of the isosurfaces can
show that the current ribbons erupt frequently and propagate
quickly along the magnetic field, although we omit the time-
sequence figures. This dynamic phenomenon is not observed
in run C. In Fig. 4(c), isosurfaces of Q and I of run C
are sheetlike as are often observed in MHD turbulence (see
Biskamp [1], for example), and a ribbonlike structure as in
Figs. 4(a) and 4(b) is not observed in (c).

Here, we comment on vortex structures in Figs. 4(a)
and 4(b). The green isosurfaces for Q in Fig. 4(a) are of-
ten tubular, suggesting that they are formed by a rollup of
a vortex sheet and that high-k components of the velocity
field are generated by hydrodynamic motions autonomously.
On the contrary, the green isosurfaces in Fig. 4(b) do not
indicate specific structures, whereas the red isosurfaces for
P are observed together with the gray isosurfaces for I .
Since the Lorentz force is strong where I is large, Fig. 4(b)
indicates that the velocity components at high k (including
the mesoscale we mentioned in the spectral analysis) are
generated by the Lorentz force, being consistent with the or-
dering analysis in turbulent energy spectra. In other words, the
velocity components at high k are generated primarily by the
magnetic field.

In Fig. 5, contours of the viscous term −νui∂k∂kui = νuk pk

(color map) and the Lorentz-force term ui(εi jkJjBk ) (contour
lines) in Eq. (3) of run B are drawn on a plane of 128 grid
points each in the two directions. Dark-color regions where
the viscous term has a large negative value are placed close to
red or blue contours where the Lorentz has a large positive or
negative value. We have verified that contours of not only the
viscous and Lorentz-force terms, but also dynamo and Hall
terms stay in the neighborhood with each other.

This observation can be understood as follows. The viscous
term νuk pk becomes large where the Lorentz term gener-
ates high-k velocity components. In fact, isosurfaces of P
accompanied by those of I in Fig. 4(b) disappear if pi is
filtered by the low-pass filter of which cutoff wave number
is at the middle of the scaling laws in Fig. 1 or at lower
wave numbers. The Hall term (the rotation of the Lorentz
force) is also large there. The dynamo term can be also large
there because this term is coupled with the Lorentz force
strongly for energy exchange between the velocity and the
magnetic field. These observations support the ordering anal-
ysis in the spectral space from a point of view of real-space
analysis.

V. CONCLUDING REMARKS

DNSs of Hall MHD turbulence have been carried for
clarifying basic fluid-dynamic aspects of high-PrM MHD
turbulence on the scale smaller than the ion skin depth di. The
numerical results show that the power-law EK (k) ∼ k−17/3 can
be formed in association with the scaling law of EM (k) ∼
k−5/2 as a consequence of the balance between the Lorentz
force and the dissipation term. Our result shows that a power
law can appear in EK (k) on the scale smaller than di for
turbulence with PrM � 1, although special attention has been
paid to a power law in EM (k).

In the real space, current ribbons prevail in a turbulent
field, propagating rapidly and accompanying the palinstrophy
density which is generated by the Lorentz force. The real-
space observation supports the analysis on the power law in
the spectral space. The observation of a rapidly propagating
current ribbon is also consistent with a finite role of the
whistler wave, which has been mentioned in the power-law
analysis. Since the power-law range observed in this paper is
not sufficiently wide, we need simulations of a larger magnetic
Prandtl number with a larger number of grid points to enable
a separation between the scales of the external force and
subion skin depth. A larger magnetic Prandtl number widens
the mesoscale range we discussed in this article. Finally, we
note that there is a possibility that the interpretation of the
power law in this article could be affected by an insufficient
dissipation or a numerical resolution. Simulations using a hy-
perdiffusivity and/or larger number of grid points are effective
for further study and now in progress.

Our subject shares an outline of mechanism to generate a
power law in the velocity field with an elastic turbulence. We
consider that this subject can be studied not only as a subject
of plasma physics, but also in a wider context of turbulence
phenomena.
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