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Solute transport in porous media studied by lattice Boltzmann simulations
at pore scale and x-ray tomography experiments

Chunwei Zhang ,* Tetsuya Suekane, Kosuke Minokawa, Yingxue Hu, and Anindityo Patmonoaji
Department of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1-I6-33 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

(Received 19 September 2019; published 26 December 2019)

With the aid of nondestructive microfocus x-ray computed tomography (CT), we performed three-dimensional
(3D) tracer dispersion experiments on randomly unconsolidated packed beds. Plumes of nonreactive sodium
iodide solution were point injected into a sodium chloride solvent as a tracer for the evaluation of the
dispersion process. The asymptotic dispersion coefficient was obtainable within the experimental scale and
was summarized over Péclet numbers from 11.7 to ∼860. Then, the lattice Boltzmann method and moment
propagation method were used to elucidate the mechanisms embedded in the dispersion phenomenon. The
methods were rigorously verified against the classical Taylor dispersion problem and extended to simulate
fluid flow and tracer dispersion in high-resolution 3D digital porous structures from CT. The method of
moments, Lagrangian velocity correction function, and dilution index were thoroughly analyzed to evaluate the
dispersion behaviors. Numerical simulations revealed ballistic and superdiffusive regimes at the transient times,
whereas asymptotic dispersion behaviors appear at longer characteristic times. Besides, the observed transient
times unanimously persist over convective length scales of around 12 particles transversely and 16 particles
longitudinally. The estimated dispersion coefficients from simulation are in consistence with the experimental
result. Furthermore, the simulation also enabled the identification of regimes, including diffusive, power law,
and mechanical dispersion. Thus, the proposed experimental and computational schemes are of practical means
to study dispersion behaviors by direct pore scale imaging and modeling.
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I. INTRODUCTION

Solute transport in porous media is a crucial mechanism in
many engineering and industrial applications, such as elec-
trolyte transport in cells and flow batteries [1], subsurface
contaminant remediation [2], active phoretic swimmer trans-
port through complex microstructures [3], and exploitation
of carbonates [4]. However, dispersion behavior in hierar-
chical porous structures is immensely complex as the pore
sizes and hydraulic conductivity are continuously evolving,
generating velocity fluctuations and thus rendering produc-
tion of well-defined temporal or spatial scale for asymptotic
(Fickian) dispersion difficult [5]. Anomalous or preasymptotic
behaviors characterized by a time-dependent dispersion coef-
ficient may emerge in multiple experiments and simulations
[6–8].

A tracer test is an efficient way of measuring the disper-
sion coefficient in the laboratory. The temporal extent of a
tracer plume is often driven by convective forces stretching
the plume, whereas the distribution of concentrations within
the tracer plume is biasedly attenuated by diffusive or local
dispersive processes [9]. Previous studies demonstrate that
the transport of dissolved passive tracers in complex pore
structures is characterized by transient intensive spreading at
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short timescales due to high bursts of fast flow and long-
time predictable weak spreading or non-Fickian dispersion
[10–12]. The three dispersion regimes identified include the
following: (1) the ballistic dispersion that is characteristic of
very short times, (2) the superdiffusive dispersion character-
istic of intermediate times, and (3) the still superdiffusive
dispersion or standard Fickian dispersion characteristic of
long times. Nevertheless, predicting the scope of each regime
remains a challenge.

Transient time was first defined by Taylor [13] as the time
required for the radial variation of concentration to decay to
1/e of its initial value, and it is calculated through the expres-
sion tD = d2/(3.82Dm), where d is the pipe diameter and Dm

is the molecular diffusion coefficient. Alternatively, transient
time is the time needed for molecular diffusion to smooth
out the infinitely growing convective longitudinal dispersion,
also termed the velocity averaging process [14]. However,
the transient time for solute transport in pore structures is
often difficult to predict and might exhibit large variances. For
example, long transient times and strong asymptotic disper-
sion coefficients are produced by increasing the heterogeneity
of porous media, as discussed by Bruderer and Bernabé
[14]. Fluid flow simulation in monodisperse sphere packing
cylinders with different levels of heterogeneity yields similar
results [15]. Altering the anisotropic permeability of porous
media also changes the transient behavior. Maggiolo et al. [16]
for example, reoriented fibers along streamlines of fibrous
electrodes in redox flow batteries to minimize the drag force
and improve the electrodes’ dispersion coefficient.
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Transient anomalous behavior, involving the superdiffu-
sive and subdiffusive phenomena, might be explained by the
pore-scale intermittent velocity structure [17] and temporal
velocity fluctuations of the mean flow [18]. It can also be
interpreted through including higher orders of moments, such
as skewness and kurtosis [19]. In addition, the existence
of vortices [20] in the flow field and intraparticle retention
in stagnation zones [12] also contributes to the anomalous
dispersion behavior. These cause pronounced contrast in local
Péclet numbers, and hence non-Fickian phenomena, such as
power-law residence time distributions and long tailing, are
observed. The solid-liquid interface often involves a diffu-
sive boundary layer [21], where tracer particles enter and
exit mainly via diffusion because of extremely low velocity.
Consequently, a long transient time is expected to reach the
asymptotic dispersion region. Although dispersion behavior
is well characterized and empirically correlated for inert
particle packed beads [22,23] and partially for geologic rock
samples, such as the Berea sandstones [24], the mechanisms
underlying the specific transient anomalous behavior remain
unclear. Therefore, experimental studies and pore-scale sim-
ulations are required to characterize and elucidate dispersion
behaviors.

Recently, a direct observation of the three-dimensional
(3D) dispersion in complex pore structures is made possible
through nondestructive imaging technology, such as x-ray
computed tomography (CT [6,25–29]). CT allows quantifying
the dispersion phenomenon with enough spatial resolution,
enabling the measurement of the strength of the dispersion
process from reconstructed CT images. However, the avail-
able CT experimental results until now ahve been very limited
since Boon et al. [25,29]. Boon et al. [25] developed a
state-of-the-art NaI aqueous solution dispersion experimental
system to study the transverse dispersion behavior in the
cylindrical rock core, of centimeter scale, using a medical
CT at resolutions of 1 mm. Boon et al. [29] also elaborately
investigated the influence of the natural rock heterogeneity on
the dispersion behaviors [29]. They rigorously justified that
meandering, focusing, or splitting of the plume accounted for
the non-Fickian spreading and mixing process. However, as
macroscopic dispersion behaviors mainly emanate from mi-
croscale porous structures and complex velocity distributions,
further experimental research is needed to clarify dispersion
behaviors on much smaller scales. Hence, in this study, we
focused on the point released NaI tracer plume dispersion
behavior in packed particle beds of reduced size of tens of
millimeters through an innovative micro-x-ray CT experi-
ment system. The CT scanning image achieves a resolution
of ∼100 μm.

On the other hand, pore-scale modeling is an important
tool relating the macroscopic dispersion phenomenon with
microscale flow and transport processes [30]. The most pop-
ular computational method is the lattice Boltzmann method
(LBM [31,32]), which provides solutions to basic flow equa-
tions in complex porous structures at a manageable computa-
tional cost. Another method, the moment propagation method
(MPM), was initially introduced to calculate the velocity
autocorrelation function in the lattice gas model [33]. Its
deliberate target was saving memory through propagation of a
scalar field based on the distribution function f(v, r, t). Later

FIG. 1. Schematic view of the dispersion experiment apparatus
with x-ray CT. The illustrated 3D configuration of the NaI tracer
plume is visualized using the VGSTUDIO/MAX2.1 software.

on, it was rigorously tested [34,35] and utilized to solve mul-
tiple convection, diffusion, and adsorption problems [36–38],
particularly the transport of charged tracers in flow battery
cells involving coupled effects of dispersion and electrostatic
interactions. Thus, in this study, we extend the LBM and
MPM method to simulate the dispersion process in the porous
media.

In this work, we developed an innovative tracer dispersion
experiment involving the point release of a sodium iodide
(NaI) plume into a packed bed of melamine resin particles
filled with sodium chloride (NaCl) solution with different
stable flow rates. The experiments were conducted for Péclet
numbers (Pe) from 11.7 to ∼860, with simultaneous visual-
ization through microfocus x-ray CT. Then, pore-scale LBM
and MPM simulations were utilized to solve the dispersion
problem on the same porous media reconstructed from the CT
images. The numerical schemes were verified against the clas-
sical Taylor dispersion in a fully developed Poiseuille flow.
The dispersion coefficients estimated from the experiments
and simulations were vastly compared with semianalytical
data from previous studies. The transient dispersion behaviors
were characterized from the simulation results and further
assessed through the mean-square displacement, Lagrangian
velocity correction function (LVCF), and dilution index.

II. EXPERIMENTAL METHODOLOGY

A. Experimental apparatus

A microfocus x-ray CT system (ScanXmate-RB090SS)
was utilized to nondestructively measure the dispersion phe-
nomenon, as shown in Fig. 1. Melamine resin particles (pro-
vided by Ube Sand Engineering Co., Ltd; XH series) were
packed in an acrylic tube with an inner diameter of 32 mm
and a height of 95 mm. The three mixed particle sizes uti-
lized in this experiment are dp = 338 μm (250−425 μm),
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dp = 513 μm (425−600 μm), and dp = 780 μm (530−
1030 μm). The x-ray scanner was operated at a stable voltage
of 90 kV and current of 90 μA. Each scan comprised 625
continuous shots at a constant speed of 8.0 frames per second
during the rotation of the image sensor through 360°, produc-
ing 992 fluoroscopic cross-sectional images. Therefore, the
resulting CT image consisted of 992×992×992 pixels with a
resolution of 103 μm/pixel. A single scanning time is around
80 s. Sintered glass filters were attached to the inlet and outlet
of the packed tube to create a uniform and steady-state ve-
locity field and prevent the leakage of experimental particles.
A ring artifact reduction filter and noise removal filter sur-
rounded the tube to eliminate the beam hardening effect [39].
A hole of 5 mm diameter was prepared for the NaI tracer injec-
tion at the lower 30-mm portion of the acrylic tube sealed with
a silicone rubber septum (Shimadzu GLC Ltd.), pierced with
an injection needle, and connected to a microsyringe pump
(KD Scientific, KDS100) at the start of injection. The NaI
tracer concentration is related with the brightness of the CT
image through a calibration curve developed in advance, sim-
ilar to that described in Wang et al. [40]. The initial concen-
tration for the aqueous NaI solution was chosen as 10 wt %,
because with this initial value a remarkable contrast between
the NaI tracer and the surroundings was achievable throughout
the experiment. An aqueous solution of 10 wt % NaCl was
used as the default fluid, and the fluid pair was adjusted to
the same density to eliminate buoyancy effects. The resulting
density for the NaI and NaCl solution fluid pairs is 1.06
and 1.05 g/cm3, respectively. The experiment was conducted
at a room temperature of 25 °C. Moreover, as there is no
chemical reaction and the total injection volume of NaI plume
is relatively small, the perturbation of temperature during the
experimental work can be neglected.

B. Experimental protocol

The acrylic tube was first filled with melamine resin par-
ticles and then completely saturated with the NaCl solution.
This process was performed in a vacuum chamber to remove
the undesirable gases. The porosities of the porous media
created are directly determined through the mass change
before and after saturation and showed nearly no reliance
on the average particle diameters as presented in Table I. A
0.13-ml plume of NaI solution was then injected as a tracer
at a constant flow rate of 2.5 ml/h via a syringe pump. This
injection speed was chosen because higher injection speed
will induce an undesirable transverse velocity so that a shift of
the plume position may be encountered. This injection scheme
ensured that the injection plume was as spherical as possible
and prevented the plume from deviating from the cylinder
central line. After injection, the fluid will accumulate and pass
through the sintered glass filters both at the inlet and outlet
of the acrylic tube to create a near-uniform flow field. This
attempt can reduce the boundary effect. On the other hand,
we placed the tracer injection point 30 mm away from the
inlet to further avoid the inlet effect. Therefore, the effect
of an additional pressure gradient can be deemed negligible.
Afterwards, a total of 0.5 pore volume (PV) or 18 ml NaCl
solution was injected upward from the bottom of the tube via
a syringe pump and drained from outside through the top of

TABLE I. Properties of porous media and range of Pe numbers
in experiments.

dp (µm) φ Q (ml/h) uav (m/s) Pe

100 6.91×10−5 11.7
338 200 1.38×10−4 23.4

0.50 500 3.46×10−4 58.4
(250–425) 1500 1.04×10−3 175

3000 2.07×10−3 350
100 7.05×10−5 18.1

513 200 1.41×10−4 36.2
0.49 500 3.53×10−4 90.4

(425–600) 1500 1.06×10−3 271
3000 2.12×10−3 543

100 7.35×10−5 28.7
780 200 1.47×10−4 57.4

0.47 500 3.68×10−4 143
(530–1030) 1500 1.10×10−3 430

3000 2.21×10−3 860

the packed bed. The CT scan was performed for every 0.1 PV
injection of the NaCl solution. The resulting CT scanning time
intervals are 129.2, 64.6, 28.5, 8.6, and 4.3 s for NaCl solution
flow rates of 100, 200, 500, 1500, and 3000 ml/h, respectively.
Detailed experimental data are presented in Table I. The Péclet
number (Pe) is defined as the ratio of the rate of advection
and rate of diffusion. It is selected as a characteristic number,
which is calculated as

Pe = uavL

Dm
=

Q
A dp

φDm
, (1)

where Q (ml/h) is the main flow rate of the default NaCl
solution, A (m2) is the cross-sectional area (packing tube),
dp (μm) is the average particle diameter (melamine particles)
selected as the characteristic length L, φ is the porosity, uav

(m/s) is the average fluid interstitial velocity, and Dm (m2/s)
is the molecular diffusion coefficient of iodide ions in water.
In our study, Dm was chosen as a constant of 2×10−9 m2/s,
which corresponds to the self-diffusion coefficient for the
infinite dilation of NaI in water [41].

III. NUMERICAL METHODOLOGY

Recently, the LBM has been increasingly used to solve
fluid dynamics problems and is second order in accuracy to
recover Navier-Stokes equations [32,42,43]. The use of the
LBM is advantageous in simulating porous media flows with
complex geometrical structures and tortuous curvatures [32]
because of the computational efficiency and physical accuracy
involved. Hence, in this study, we employ the LBM with
He’s forcing scheme [44] to simulate fluid flow under the
experimental condition. The implementation of the equivalent
body force and periodical boundary conditions allowed the
reproduction of the pressure gradient (or momentum input)
and the resulting flow field. After stabilizing the flow field
through LBM iterations, the MPM was adopted to simulate
advection and diffusion in the porous medium. The details of
the numerical scheme are provided below.
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A. LBM

In this study, the D3Q19 LBM with He’s forcing scheme
[44] is implemented to simulate the equivalent pressure-driven
flow. A statistical description of the lattice Boltzmann distri-
bution function f(v, r, t) is expressed as follows:

df/dt = v∂f/∂r + a ∂f/∂v + ∂f/∂t = −(f − feq )/τf , (2)

where f(v, r, t) denotes the probability of having particles
at time t positioned between r and r + dr with velocities
between v and v+dv and v is the lattice velocity and can
be discretized into a set of lattice velocities ei along the
allowable ith direction in the 3D Cartesian coordinate system
as

v = {e0, . . . , ei, e18} =

⎧⎪⎨
⎪⎩

(0, 0, 0)c, i = 0

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, i = 1 − 6

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, i = 7 − 18

. (3)

The right side of Eq. (2) represents the collision operator
with Bhatnagar-Gross-Krook-Welander (BGKW) approxima-
tion, where τf is the relaxation factor associated with the
fluid viscosity, and v = c2

s (τf − 0.5); cs is the lattice sound
speed, and c2

s = c2

3 = RT ; feq is the equilibrium Maxwell-
Boltzmann distribution function. In the 3D Cartesian coordi-
nate system, feq can be discretized as

f eq
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ

3 − 1
2ρ · u2, i = 0,

wi

⎡
⎢⎣

ρ + ρ(ei · u)

+ 9
2ρ(ei · u)2

− 3
2ρ · u2

⎤
⎥⎦, i = 1−18

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (4)

where ρ is the fluid density, u is the macroscopic fluid
velocity, and wi is the weighing factor chosen to ensure an
isotopic tensorial structure up to the fourth order [45].

w0 = 1
3 , w1∼6 = 1

18 , w7∼18 = 1
36 (i = 0, 1, . . . , 18).

(5)
The left part of Eq. (2) represents the advection (streaming)

term with a source term (external force), and a = F/ρ is the
acceleration due to the equivalent-volume force F, which is
further expressed as

a
∂ f

∂ei
≈ F

ρ

∂ f eq
i

∂ei
= − (ei − u) · F

ρc2
s

f eq
i (6)

The source term is designed to induce a momentum input
on the fluid system while the fluid density remains unchanged
[32] as expressed below:

∂ρ

∂t
≡

∑
i

(ei − u) · F
ρc2

s

f eq
i = 0. (7)

∂ρu
∂t

≡
∑

i

ei
(ei − u) · F

ρc2
s

f eq
i = F. (8)

In conventional computational fluid dynamics, the pressure
difference is dependent on the attendant density changes
with δP = δρc2

s , such that small changes in pressure induce
violations of the incompressibility conditions. Numerically, it
is reasonable to maintain a constant pressure gradient (mo-
mentum input) in the flow system by introducing a constant
body force.

Therefore, the discrete transport equation with the external
forces [46,47] can be written as

∂ fi

∂t
+ ei

∂ fi

∂r
= 1

τ f

[
f (eq)
i (r, t ) − fi(r, t )

] + (ei − u) · F
ρc2

s

f eq
i .

(9)
The assumption that τ f is constant over a step yields an

artificial viscosity that is adsorbed into the real viscosity of
fluids. However, as addressed by He et al. [44], the trapezoidal
rule is required to achieve a second-order accuracy in time. To
eliminate the implicitness of Eq. (9), the rearranged density
distribution function hi(r, t ) is introduced as

hi(r, t ) = fi(r, t ) − �t
(ei − u) · F

2ρc2
s

f eq
i (r, t ). (10)

Therefore, the LBM equation with He’s forcing scheme
can be written as

hi(r + ei�t, t + �t ) − hi(r, t )

= �t

τf

[
f eq
i − hi(r, t )

] +
(

1 − 1

2τf

)
�t

(ei − u) · F
ρc2

s

f eq
i ,

(11)

and the macroscopic fluid density ρ and fluid velocity u are
calculated as

ρ =
∑

hi, ρu =
∑

hiei + 1

2
F�t =

∑
f eq
i ei. (12)

The above LBM equations are transformed to second order
for accuracy to the standard Navier-Stokes equations through
the Chapman-Enskog expansion, which is given as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇P

ρ
+ F

ρ
. (13)

B. MPM

Instead of solving the classical advection and diffusion
equation, the MPM evolves the scalar quantity with an ensem-
ble of kinetic equations [35]. The resulting statistical errors
in the autocorrelation function are therefore largely reduced.
The moment propagation equation expands the quantity of
scalar Ci(r, t ) through a discrete equation, and summarizing
Ci(r, t ) along all directions yields the concentration profile of
the tracer in the flow field. By employing the LBM scheme
with He’s forcing scheme, the equilibrium function f eq

i (r, t )
is only a function of the fluid velocity; therefore we can use
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TABLE II. Simulation schemes.

dp (l.u.) g (l.u.) Uav (l.u.) Pe Re Km (l.u.)

6.08×10−5 1.95×10−4 11.7 0.03 0.534
1.22×10−4 3.90×10−4 23.4 0.05 0.533

20 (0.26) 3.05×10−4 9.75×10−4 58.4 0.12 0.533
(14.8–25.2) 9.12×10−4 2.93×10−3 175 0.34 0.535

1.83×10−3 5.83×10−3 350 0.75 0.532
1.65×10−4 3.01×10−4 18.1 0.04 0.304

20 (0.22) 3.29×10−4 6.02×10−4 36.2 0.07 0.305
(16.6–24.4) 8.30×10−4 1.51×10−3 90.4 0.19 0.302

2.48×10−3 4.52×10−3 271 0.54 0.304
4.95×10−3 9.05×10−3 543 1.09 0.305
3.86×10−4 4.78×10−4 28.7 0.06 0.206
7.80×10−4 9.56×10−4 57.4 0.12 0.204

20 (0.32) 1.94×10−3 2.39×10−3 143 0.29 0.205
(13.6–26.4 5.76×10−3 7.15×10−3 430 0.86 0.207

1.16×10−2 1.44×10−2 860 1.72 0.206

the following equation to evolve the scalar quantity Ci(r, t )
[33,35].

Ci(r, t + �t ) =
[

f eq
i (r, t + �t )

ρ(r, t )
− wi�

]
Ci(r − ei�t, t )

+ �Ci(r, t ). (14)

The first term on the right of the equation accounts for
tracer particles leaving location r in the ei direction. The
second term denotes the fraction of particles remaining at the
node r through one iteration time step �t .

The recovered convection and diffusion equation is given
as

∂tC = −u∂rC + c2
s

2
(1 − �)�t∂2

r C

+ o(�t∂tC) + o
(
�r2∂2

r C
)
. (15)

Assuming that the flow velocity is extremely low and
diffusion is isotropic in all possible directions, the diffusion
coefficient is approximated using a nondimensional parameter

� as D = c2
s

2 (1 − �)�t through the Chapman-Enskog expan-
sion. The diffusion coefficient can also be written in terms
of the grid Péclet number (Pe�x = u�x/D), Courant number
(Cr) as follows [48]:

D = Cr�x2/(�tPe�x ). (16)

A limitation of the Pe�x is required for the non-negativity
of the concentration field and numerical stability [34,35,48].
As suggested by Yu et al. [35], the MPM is more suitable for
simulation in regions with low velocity and high concentration
gradient, and the maximum Pe�x for a stable and a reasonable
result can reach as high as 100. In our simulation work,
this condition is satisfied as the largest simulated Pe�x is
around 43 (see Table II, Pe�xmax = 860/20). In addition,
an appropriate choice of Cr number, following the Courant-
Friedrichs-Lewy law [49,50], given as below:

Cr = u�t/�x � 1, (17)

is necessary for the numerical diffusion reduction and con-
vergence while solving the partial differential equations, even
though this condition is robust in the present study with fluid
velocity u on the order of 10−5−∼10−3 m/s. However, it
does not mean that the smaller Cr number the better, as the
smaller Cr value will elongate the total simulation time. In
our simulation, the Cr number is fixed at ∼0.01 by elaborately
determining the iteration time step �t for the given diffusion
coefficient D.

C. Model verification

To validate the numerical scheme, the LBM with He’s forc-
ing scheme and MPM are employed to simulate the Taylor-
Aris dispersion [13] in a fully developed Hagen-Poiseuille
laminar tube flow. The tube, which is 40 lattices in diameter
and 240 lattices in length, is initially filled with water of
density equal to 1 l.u. and viscosity of υ = 1

6 l.u. “l.u.”
represents the lattice Boltzmann unit of the corresponding
physical properties. The flow was driven by a constant body
force g = 1 ×10−6 l.u. along the y direction to generate the
equivalent pressure gradient. The periodical boundary con-
dition is applied at the inlet and outlet, whereas the half-
way bounce-back scheme is applied to the walls. Through
simulation, the resulting velocity field exhibits a parabolic
distribution (data not shown here) along the transverse di-
rection with U = g

4υ
(R2 − r2) and shows an average of Ū =

2.95×10−4 l.u. that is very close to the analytical solution
Ū = g

8υ
R2 = 3×10−4 l.u., where R and r represent the tube

radius and distance to the tube center, respectively. After
stabilization of the flow field, a tracer plume with a diameter
of ten lattices was point injected into the upstream center
line of the tube. The constant diffusion coefficient was set as
Dm = 3.33 × 10−4 l.u. The analytical solution of Eq. (15) for
instantaneous point release [51,52] is given as

Cx( t ) = M/A√
4πDT t

exp

(
− x2

4DT t

)
, (18)

Cy( t ) = M/A√
4πDLt

exp

[
− (y − Ū t )2

4DLt

]
, (19)

where DT and DL are the directional dispersion coefficients,
M is the injected tracer mass, and A is the cross-sectional
area of the tube. The evolution of the average concentra-
tion profile over the x and z planes along the y direction
is depicted in Fig. 2. The deformation of the plume after
injection is illustrated in the insets from (a) to (f), with a
parabolic shape resembling the velocity distribution profile.
A diffusion boundary layer emerged near the solid wall of the
tube at a later time of dispersion. The transverse variation in
concentrations is created by the shear flow tilting and stretch-
ing of the plume, while the same quantity is also destroyed
by transverse molecular diffusion [53]. At a later time, the
transverse concentration differences are negligible compared
with the axial counterparts.

The evolution of the relative dispersion coefficient
DL/T /Dm is displayed in Fig. 3. The dispersion coefficient was
calculated in accordance with Brenner’s method of the second
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FIG. 2. Concentration profile along the flow direction averaged
at the y plane of the tube. The isovolume plots (a)–(f) illustrate the
concentration profile at times t = 60 000, t = 120 000, t = 180 000,
t = 240 000, t = 300, 000, and t = 360 000 l.u., respectively. The
tracer dispersion after point (e) has passed the transient period and
becomes stabilized.

central moment [54], which is given as

x̄ =
∑

i Cixi

C0
, ȳ =

∑
j Cjy j

C0
, (20)

σ 2
T =

∑
i{Ci(xi − x̄)2}

C
, σ 2

L =
∑

j{Cj (yi − ȳ)2}
C

, (21)

DT,L = 1

2

dσ 2
T,L

dt
, (22)

where Ci and Cj are the sums of the tracer concentration in the
i and j planes where the tracer particles reside; C0 is the sum
of the concentrations over the entire domain; x̄ and ȳ are the
average positions of the plume in the x and y directions; and

FIG. 3. Evolution of the nondimensional dispersion coefficients
after injection of an immiscible passive tracer plume with a diam-
eter of ten lattices into a fully developed pressure-driven Hagen-
Poiseuille tube flow with a pipe diameter of 40 lattices. The inset
depicts the temporal evolution of the MSD.

σ 2
T and σ 2

L are the mean-square displacements (MSDs) in the
transverse and longitudinal directions and are related to the
dispersion coefficients in Eq. (22).

The dispersion coefficients in both the longitudinal and
transverse directions start from the molecular diffusion co-
efficient. However, while the dispersion in the longitudinal
direction increases because of the shear force, the dispersion
in the transverse direction is abated by the confining walls and
boundary-layer effects. Beyond the 30 000th time step, the
Taylor dispersion is fully developed with a constant relative
dispersion coefficient of 7.54 l.u. in the longitudinal direction
but of nearly zero in the transverse direction. The dashed line
denotes the relative longitudinal diffusion coefficient DL/Dm

computed from the classical analytical equation as Deff
Dm

=
(1 + 1

192 Pe2) = 7.61 [13], where Pe = Ūd
Dm

= 35.44 in our
simulation. The transient time for the stable Taylor dispersion
happens to be close to Taylor’s expression with tD = d2

3.82Dm
=

332 000 l.u., which also approximates the time required for
the tracer in the tube central line to pass the shear field and
diffuse to the boundary. Assuming that the tube diameter
represents the pore diameter, the tracer particle travels at least
six pore diameters to stabilize.

IV. SIMULATION SCHEME

Based on the reconstruction from the experimental porous
media CT images, a cube with dimensions of 120 × 400 ×
120 voxels was chosen as the simulation domain as illustrated
in Fig. 4(a). The resolution of the scanned porous media is
set to adjust the average particle size dp to 20 lattice units,
resulting in a resolution of L = 16.9, 25.6, and 39 μm/voxels
for averaged particle size of 338, 513, and 780 µm. Hence,
approximately 700 melamine resin particles were included
in each case. The pore size CDF plots are displayed in
Figs. 4(c) and 4(d), with similar patterns despite differences
in the particle diameter ranges. Spatially periodical boundary
conditions with half-way bounce-back schemes are applied
at all boundaries, whereas an equivalent pressure gradient
(∂P/∂y = ρg) is exerted in the longitudinal (y) direction.
Details of all experimental settings are presented in Table II.
The permeability of the porous medium is calculated from
the classical Darcy law given as Km = μUav/∇P = νUav/g,
where Uav is the mean flow interstitial velocity averaged over
all fluid points. The statistical probability density functions
of the interstitial velocity in the transverse and longitudinal
directions are displayed in Fig. 4(b). Gaussian distribution
with zero mean is discovered for the PDF of the transverse
velocity. The nonshift of transverse velocity field implies
that no additional pressure gradient is imposed transversely,
and Gaussian distribution indicates the simulation domain is
sufficiently homogeneous to be representative of the intrinsic
porous structures, as the transverse velocity is mainly origi-
nated from the fluid flow bypassing the particles. Furthermore,
the calculated permeability values for the three porous media
are 1.52×10−10, 2.00×10−10, and 3.13×10–10 m2. The per-
meability values are consistent with the results from the water
flooding experiments of similar porous media by Nakanishi
et al. [55], which yielded values of 1.30×10−10, 1.90×10−10,
and 2.63×10–10 m2. This finding indicates that the simulation
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FIG. 4. Porous media showing pore size distributions and steady-state flow fields. (a) The left half represents the melamine resin particles
(red represents particles and blue denotes pore spaces), and the right half represents the streamlines at Pe = 350.4 and dp = 338 μm.
(b) Probability density function of the interstitial velocity (PDF). (c) Cumulative density function (CDF) for the pore size distribution,
representing the probability of the occurrence of a pore size larger than dpore. (d) CDF plotted as a function of the rescaled particle diameter.

domain is representative of the intrinsic pore structures.
Therefore, simulations in the subdomain of the porous struc-
ture can be linked with the experimental results.

To match the LBM parameters with the real physical values
(marked with a superscript *), we choose the following com-
mon dimensional equations: l∗ = l0l , ν∗ = ν0ν, υ∗ = υ0l0ν.
Parameters with a superscript 0 are the characteristic scaling
parameters. The characteristic scaling length l0 is chosen as
one pixel resolution L for the CT scan. The viscosity of
the brine was set to a constant value of ν = (2τ − 1)/6 =
1/6 l.u., corresponding to the physical quantity of ν∗ =
10−6 m2/s. Similarly, the molecular diffusion coefficient was
set to Dm = 3.33×10−4 l.u. to match the physical value of
D∗

m = 2 × 10−9 m2/s.

V. RESULTS AND DISCUSSION

A. Experimental results

The temporal visualization of the injected tracer plume
concentration distribution is displayed in Fig. 5. It was ob-
tained by transforming the local CT brightness values to
local concentrations through the calibration curves. For the
detailed image processing and noise reduction procedures
refer to the work of Sin et al. [39], involving the removal
of undesirable local spot brightness through additional filters
and image subtraction. The accuracy of the experiment is

validated by keeping the variation of the tracer amount within
5% for each scan. The concentration of the NaI solution at
the initial condition was nearly 10 wt %, and it decayed to
approximately 2–3 wt % after the injection of 0.5 PV (18.0 ml)

FIG. 5. Visualization of the local NaI concentration distributions
over time projected in the xz plane. The NaCl solution flow is in the
z direction. The concentration of the NaI solution at the initial condi-
tion was nearly 10 wt %, and it decayed to approximately 2–3 wt %
after injection of 0.5 PV NaCl solution (Pe = 350.4, dp = 338 μm).
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FIG. 6. Temporal evolution of the transverse (a) and longitudinal (b) tracer plume configurations projected in the x and y planes
(Pe = 350.4, dp = 338 μm).

NaCl solution. The centroid of the plume gravity in the
longitudinal and transverse directions was estimated based on
each image and used as the reference for the determination
of the MSD specified in Eqs. (20)–(22). The position of the
centroid in the longitudinal direction linearly proceeded with
time as a result of the strong convective effects at the exper-
imental condition. However, the transverse centroid position
remained almost unchanged, highlighting the homogeneous
nature of the porous media.

To better interpret the decay in the tracer concentration,
we projected the temporal evolution of the plume distribu-
tion in the transverse and longitudinal directions (Fig. 6).
The maximum tracer concentration resides in the centroid
of the tracer plume, and it exponentially decays with in-
creasing time. Assuming Fickian dispersion, the decay of
the maximum concentration in either direction will ana-
lytically follow Cmax/C0 ∼ t−0.5 [see Eqs. (18) and (19)].
In our experiment, the power law is estimated as −0.52
and −0.61 for the transverse and longitudinal directions,
respectively. Although the local fluctuations of the concen-
tration fields blur the anisotropic Gaussian distribution of
the tracer cloud, Fick’s law of diffusion is a reasonable ap-
proximation for the description of the embedded dispersion
behaviors.

To facilitate the above analysis, Brenner’s method of
the second central moment [54] was utilized to calculate
the dispersion coefficients. The temporal evolution of the
longitudinal and transverse spatial variances is shown
in Fig. 7. Linear growth of the MSD with time in the
longitudinal and transverse directions is observed for all
experiments, unambiguously suggesting the attainment of the
asymptotic dispersion region. Nevertheless, the superimposed
ballistic diffusion growth of the spatial variance was lacking
for all experiments, indicating failure to capture the transition
from the preasymptotic dispersion behaviors during the
experimental time and spatial scales. Pore scale simulations
are required to clarify the scales for the initial transient
dispersion behaviors. The dispersion coefficient estimated for
each experiment is presented in Sec. V E to make comparisons
with the LBM simulation results against a wide range of Pe.

B. Pore-scale dispersion simulation results

Figure 8 shows the temporal evolution of the tracer plumes
from the simulation. The concentration of the NaI solution
quickly decays from the plume centroid to the outer surface
at the preasymptotic times, and consequently the initial distri-
bution effect is barely evident after just 0.714 s. Thereafter,
the symmetric structure of the pluglike tracer cloud is dis-
sociated as the particles preferentially migrate through pore
throats with presumably low drag forces and high burst of
velocities. Due to the existence of large shear forces around
the obstacle surfaces where large velocity gradients occur, the
tracer particles accumulate in the vicinity of the obstacles to
form fingerlike structures. These structures further obstruct
dispersion in the antistreamwise direction and hence amplify
dispersion along the streamlines. This shear-induced disper-
sion phenomenon likely explains the enhanced dispersion
behaviors in the porous media [56]. However, after the plume
cloud samples enough pore throats over time (t > 2.865 s),
the concentration profile of the plume is largely smoothed,
suggesting the attainment of the preasymptotic mixing state.
To compare with the experimental results, the synchronized
configuration of the tracer concentration is plotted in Fig. 9.

At early time steps, the concentration distribution is char-
acterized by multiple peaks for the transverse and longitudinal
directions. However, the distributions turned more and more
Gaussian shaped at later times, implying the emergence of
the transition to Fickian dispersion within the simulation
temporal scale. At a later time of the simulation, although
the tracer particles exit and reenter the porous media (gray
line in Fig. 9) due to the implementation of the periodical
boundary conditions, nearly no overlap is visible between the
tracer particles, suggesting the adequacy of the computational
geometrical length scale. The fact that the maximum tracer
concentration decays faster in the longitudinal direction indi-
cates a stronger dispersivity in the longitudinal direction than
the transverse direction. In particular, some isolated tracer
plumes are visible near the initial centroid [see Fig. 8(g) and
the red line in Fig. 9]. Similar phenomena are observed in
our experiment (shown in Fig. 5), where the segregated tracer
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FIG. 7. Temporal evolution of the longitudinal and transverse spatial variances. The time intervals are 129.2, 64.6, 28.5, 8.6, and 4.3 s
for volume flow rates of Q = 100, 200, 500, 1500, and 3000 ml/h, respectively; six continuous x-ray scans were taken for each experiment.
The dashed lines denote the linearly fitted lines of the data acquired at each time step, with half of the slope value representing the dispersion
coefficients.

plumes sporadically exist in the porous media. The convective
transport of the plumes is likely hindered by the local weak
velocity fields, so that local diffusive spreading dominates.
The occurrence of the breakthrough curve tailing is favorable
evidence for the non-Fickian behavior proposed by Dentz
et al. [57], characterized by the diffusion of tracer paticles
into immobile zones. To facilitate this analysis, we plotted
the cross-sectional velocity distribution for the NaCl solution
and tracer plumes (Fig. 10), with the velocity of the flow
field weighted by the total fluid (solid lines) and the tracer

particles (dashed lines with symbol) over the x (transverse)
and y (longitudinal) planes.

Nissan and Berkowitz [58] indicated that for homogeneous
porous media, the resemblance of the two curves demonstrates
the ability of the tracer plume to sample the velocity field
and hence the tendency of evolving toward an asymptotic
state. The average velocity of the NaCl solution slightly
fluctuates around the mean value in the longitudinal (within
23%) and transverse directions (∼1 mm/s), reflecting the
relatively homogeneous nature of the pore structure and the
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FIG. 8. Temporal evolution of the NaI tracer plume concentration profiles from LBM simulations. The time shown at the bottom of each
profile is the transformed physical time. The initial shape of the tracer plume is spherical and occupies the space of around four particles.
The colors denote isosurfaces of the solute concentration. The outer surface threshold is 6.25% of the initial concentration (Pe = 350.4,

dp = 338 μm).

resulting flow field. In the transverse direction, the tracer
velocity pattern resembles that of the NaCl solution. However,
high velocities (nearly twice the mean value) are presented
downstream of the flow in the longitudinal direction, whereas
tails of the low-velocity zones exist near the initial centroid.
This indicates the dominant effect of convective flow on the
longitudinal dispersion at intermediate times, confirming the
existing of preferential flow paths when diffusion fails to
attenuate the tracer plume through stretching and tilting. In
agreement with previous studies, some trapped tracer particles
are present in the upstream flow path where the average tracer
velocity is extremely slow, demonstrating the existence of
immobile zones with heavy tails of low-concentration fields
[59–61]. Furthermore, this trend persisted even after further
transport of the plume. This finding implies trapping of the
tracer particles in the stagnant zones, where local dispersivity
and diffusion are important, and hence asymptotic dipsersion
is attained after a long time. This analysis is consistent with
the asssumption that the asymptotic dispersion behavior can
possibly emerge after the localized concentration gradients
of the interparticle pore throats are smoothened by diffusion
[12,29].

C. MSD and LVCF

The MSD in the longitudinal direction exhibits ballistic
scaling at early computational times with σ 2

L ∼ t2, character-
istic of perfectly correlated stratified flows [62,63]. By con-
trast, the dispersion in the transverse direction significantly
varies before the ballistic region, especially for Pes > 58.4
when unexpected negative values of the dispersion coefficient
are encountered. A possible explanation is that convective
flow and the underlying biased velocity field (preferential flow
path) dominate the transverse dispersion for relatively high
Pe. Therefore, the incomplete lateral mixing is associated with
the localized flow field [60]. However, as mixing and diffusion
of the tracer continue across streamlines, the localized effect is
shortly eliminated, followed by the appearance of the ballistic
region. For the sake of consistency, we plotted the MSD as
a function of the rescaled time t/τ [Figs. 11(c) and 11(d)],
representing the number of particles transported by convec-
tion at a given time t . The results show that the MSD in the
longitudinal direction almost overlaps through the range of
Pe, whereas some variations occur in the transverse direction
where the MSD is higher for lower Pe. This finding indicates
the strong effects of the convective flow on the longitudinal

FIG. 9. Temporal evolution of the transverse (a) and longitudinal (b) tracer concentration. (Pe = 350.4, dp = 338 μm).

063110-10



SOLUTE TRANSPORT IN POROUS MEDIA STUDIED BY … PHYSICAL REVIEW E 100, 063110 (2019)

FIG. 10. Average velocity of the tracer particles and NaCl solution over the x and y planes. (Pe = 350.4, dp = 338 μm, t = 2.856 s). The
dotted lines with open circles represent the average velocity of the tracer particles: (a) refers to the transverse direction and (b) refers to the
longitudinal direction. The solid lines denote the average flow velocity with its statistical average expressed as the black dashed lines.

dispersion and the dependence of the transverse dispersion on
physical diffusion, where lower Pe demands longer physical
times for transport over the same length. Furthermore, no
strict difference is apparent between the longitudinal and
transverse directions for the MSD in the ballistic region,

consolidating our understanding that this region mainly arises
from the molecular diffusion across streamlines [10].

Following the ballistic dispersion region, a superdiffusive
region is observed with σ 2

L,T ∼ t n, with n varying between 1
and 2. Despite the rapidity (approximately 8τ ) in leaving the

FIG. 11. MSD for LBM simulations. The total simulation times for Pe = 11.7, 23.4, 58.4, 175.2, and 350.4 are 214.2, 107.1, 42.84, 14.28,
and 7.14 s, respectively. The closed-symbol dotted lines show the MSD in the transverse direction (a), whereas the open-symbol dotted lines
represent that in the longitudinal direction (b). (c),(d) plot MSD with the rescaled time t/τ , where τ = dp/uav is the characteristic convective
time required for the tracer particle to transport a characteristic length L (in our study L = dp).
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FIG. 12. LVCF (Pe = 350.4, dp = 338 μm). τ is characteristic
time as previously specified. The filled squares represent the LVCF in
the transverse direction, and the open squares denote the longitudinal
direction.

ballistic region, the termination of this region is relatively hard
to predict because of the persistent weak temporal dependence
of the dispersion coefficients. To predict the dispersivity and
assess the extent of the transient behavior, the LVCF [21] was
calculated using Eq. (23):

Cv (t ) = 〈[v(0) − v̄] · [v(r) − v̄]〉, (23)

where Cv (t ) is the covariance of the velocity field at time t ,
v(r) is the tracer velocity along the flow direction at position
r = v̄t , and v̄ is the average flow velocity. The angular brack-
ets represent the average over the whole domain.

Cv (t ) represents disorder-induced velocity perturbations
over large distances, which decayed exponentially and con-
verged to zero at the characteristic time for asymptotic disper-
sion [21].

From the Green-Kubo relations and Einstein’s definition of
diffusion coefficient D [15], we can relate the LVCF with the
MSD by using Eq. (24).

D = lim
t→∞

dδ2(t )

2dt
=

∫ ∞

0
Cv (t ′)dt ′. (24)

From Fig. 12, the effect of the initial tracer configuration
is hardly visible after the convective time of 1τ , beyond
which a plateau is observed in the transverse and longitudinal
directions until 8τ . The existence of the plateau is possibly
a straightforward reflection of the ballistic dispersion regime.
Cv (t ) exponentially decayed with time toward an infinitesimal
value, reaching the preasymptotic dispersion. The fact that
Cv (t ) decays much faster in the transverse direction than in the
longitudinal direction implies that the transverse dispersion
reaches the asymptotic region much faster. This result is
consistent with the result from the MSD [refer to Figs. 11(c)
and 11(d)] and is in agreement with Howington et al. [15],
who studied the transient dispersion behaviors in uncon-
fined monosized sphere packings. These authors suggested
that the longer transverse transient time is likely originated
from convection-induced transverse displacement surround-
ing the spheres. Furthermore, in our simulation, the rescaled
preasymptotic time for the transverse and longitudinal direc-

FIG. 13. Evolution of the dilution index E (t ) and temporal
derivative of lnE (t ).

tions is 12 and 16 convective times, respectively, whereas for
the dispersion in the homogeneous random sphere packing,
the time is approximated to between 5 and 10 convective
times [15]. This finding suggests that asymptotic dispersion
is attainable on several convective timescales, although many
heterogeneous porous structures like those in this study re-
quire longer transient times then the spherical ones.

D. Dilution index

The dilution index E (t ) is a parameter proposed by Kitani-
dis [64] to quantify the dilution and mixing state of a passive
tracer. It was experimentally [5] and theoretically [65] adopted
to represent tracer concentration distributions within a plume
in heterogeneous porous media. This index is defined as

E (t ) = exp

(
−

∫
p(r, t ) ln[p(r, t )]dV

)
, (25)

where p(r, t ) is the local normalized tracer concentration,
such that p(r, t ) = C(r, t )/

∑
r C(r, t ). It has the unit of

volume in the 3D domain. Plausibly, advection creates no
volume change, but deformation has no direct impact on
it. Thus, this quantity can stochastically indicate the mixing
state of the dispersion system and is representative of the
gross dispersivity [64]. The analytical solution for the dilution
index equation for an instantaneous release of a plume with
Gaussian distribution is provided by Barros et al. [66]. The
dilution index at early times exhibits a power law relationship
with time presented as E (t ) ∼ t n/2, with n as the dimension
of the domain. In our study, the power law is estimated as 1.39
for early times and E (t ) is almost stabilized at relatively later
times. Furthermore, the logarithm of the index is a familiar
expression for “entropy.” With the constant deformation of
the irregular plume shape in the heterogeneous porous media,
lnE (t ) monotonously increases, but its temporal derivative
unbiasedly decreases to nearly zero, indicative of the conver-
gence of the dispersion coefficients (Fig. 13).
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FIG. 14. Dependence of the normalized dispersion coefficients (DT/L/Dm) on Pe. The filled symbols represent the current experimental
results (red circles, blue triangles, and brown squares are for the mean particle diameters dp of 338, 513, and 780 μm, respectively). The dashed
lines correspond to the fitted curves from the present LBM and MPM simulations. The open symbols denote the dispersion data from previous
studies. In (a), the open circles represent the results for the Berea sandstones [25], whereas the open triangles represent the same porous media
but with larger sizes [40]. In (b), the open squares are associated with the CFD simulation results for confined sand packing [67], whereas the
open circles and triangles are for the experimental results of the Ketton limestone and packed beads [24].

E. Dispersion coefficient

As suggested by Sahimi [23], dispersion in disordered
porous media undergoes the diffusive regime at Pe � 1 and
then the power-law regime (also called the boundary-layer
dispersion regime) at 5 < Pe < 300, with the dominance of
convective flow over dispersion, without neglecting the effect
of diffusion. The mechanical dispersion regime is discovered
at 300 < Pe < 105, which is generated by the stochastic ve-
locity variations. The numerical descriptions of these regimes
are as follows:

Pe � 1,
DL,t

Dm
= 1

Fφ
, (26)

5 < Pe < 300,
DL,t

Dm
= βL,T PeδL,T , (27)

300 < Pe < 105,
DL,t

Dm
= αL,T Pe. (28)

In the above equation; F is the formation factor, φ is
porosity; α, β, and δ are the fitted coefficients; and the power
law with the subscript L/T corresponds to the focused direc-
tion. Besides the experiments, our simulation work samples a
wide range of 10−2 < Pe < 104 to confidently fit the curves.
The transverse and longitudinal dispersion coefficients are ac-
quired from the method of moments and plotted as a function
of Pe in Fig. 14. The results from our study (filled symbols for

experiments and dashed lines for simulation) are qualitatively
compared with the existing results for sandstones and packed
particle beads (open symbols) from different previous studies.
However, most of the curves fall in the same range, and the
estimated dispersion coefficients are much lower than those of
the more heterogeneous sandstones (open circle) and slightly
higher than those of the packed particles (open triangle and
square).

The simulation results (dashed lines) accurately capture the
experimental dispersion behaviors in the power-law regime.
As suggested, a power-law dependence of the dispersion
coefficient on the Pe [23] mainly originates from the exis-
tence of stagnation zones ([12]; diffusive boundary layers)
characterized by intraparticle fluid retention regions [68] and
relatively low diffusivity. The fitted parameters are presented
in Table III, with subdiffusive behaviors in the transverse di-
rection showing δT ∼ 0.95, whereas superdiffusive behaviors
are in the longitudinal direction with δL ∼ 1.1. These results
are coherent with the correlations quantified by Sahimi [23],
in which δT and δL are estimated as δT ∼ 0.9 and δL ∼ 1.2,
respectively. For the diffusive regime, the formation factor
is estimated by placing the tracer plume in motionless NaCl
solutions. The tortuosity of the porous media estimated with
γ = Fφ falls in a range of 1.12–1.76, which is a reasonable
approximation for our porous structures. The threshold Pe for
this regime is almost 1 in the transverse direction and 0.1 in

TABLE III. Fitted dispersion parameters from experiments and simulations.

Experiment Simulation

dp (µm) βT δT βL δL βT δT βL δL F αT αL

338 0.35 0.96 0.92 1.04 0.36 0.91 0.84 1.10 2.25 0.19 1.38
513 0.55 0.94 0.97 0.99 0.24 0.92 0.60 1.09 3.28 0.13 1.01
780 0.46 0.93 0.57 1.12 0.16 0.92 0.34 1.09 3.78 0.09 0.62
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the longitudinal direction. The mechanical dispersion regime
is achieved at a relatively higher Pe with linear dependence
of the dispersion coefficients; however, the longitudinal dis-
persion coefficient is 6 or 7 times higher than its transverse
counterpart as indicated by the value of αL,T in Table III.

VI. CONCLUSIONS

We investigated the dispersion behaviors of a nonreactive
NaI plume in a randomly packed bed of unconsolidated
melamine resin particles using micro-CT. The dispersion
process was visualized and vastly quantified in a Pe range
from 11.7 to ∼860. The result suggested that the asymptotic
dispersion region is obtained for all experiments. We then per-
formed pore-scale simulations to compare the experimental
results and elucidate the associated dispersion mechanisms.
The LBM with He’s forcing scheme was utilized to simu-
late the flow field, whereas the MPM was adopted for the
simulation of the evolution of the tracer plume (dispersion
process). The computational scheme was validated against the
theory of shear-induced Taylor dispersion in a tube.

The results demonstrate that the dispersion behaviors in the
simulation and experiments exhibit similar patterns. The spo-
radically isolated tracer clouds are discovered at the upstream
of dispersion and can be further explained by the associated
velocity structures characterized with the stagnation zones
and preferential flow paths. The asymptotic dispersion is
obtainable after the tracer particles have sampled the velocity
fields. The pore-scale dispersion simulation revealed ballistic
and superdiffusive regimes at the transient times, whereas
standard asymptotic dispersion behaviors emerged at longer
characteristic times. The initial distribution of the tracer plume
showed a negligible effect on dispersion. Then, the transient
period is directly recognized by the LVCF function and is

persistent over length scales of approximately 12 and 16
particles for the transverse and longitudinal directions, re-
spectively. The obtainment of the asymptotic dispersion is
consolidated by analyzing through the method of moment and
dilution index, which shows linear growth of the mean-square
displacement and the decrease of the temporal derivative of
lnE(t) to infinitesimal.

Most of the dispersion experiments fell in the power-
law regime (50 < Pe < 300), where the dispersion process
is dominated by convection, whereas the effect of diffusion
cannot be ignored. In this regime, the estimated dispersion
coefficients from our simulation show robust consistency with
the experimental work and previous publications. The sub-
diffusive and superdiffusive behaviors are recognized with a
power-law dependence of the dispersion coefficient on the Pe
following δT ∼ 0.95 and δL ∼ 1.1. These results are coherent
with the correlations quantified by Sahimi [23] with δT ∼ 0.9
and δL ∼ 1.2. Apart from this regime, the diffusive regime at
Pe � 1 and the mechanical dispersion regime at 300 < Pe <

105 are recognized through simulations. The threshold Pe for
the diffusive regime is 1 in the transverse direction and 0.1 in
the longitudinal direction. The tortuosity of the porous media
estimated from γ = Fφ falls between 1.12 and 1.76. The
mechanical dispersion regime is achieved at a relatively higher
Pe, with a linear dependence of the dispersion coefficients on
Pe. In this regime, the coefficients in the longitudinal direction
are 6–7 times higher than those in the transverse direction.
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