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Upper bound on angular momentum transport in Taylor-Couette flow
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We investigate the upper bound on angular momentum transport in Taylor-Couette flow theoretically and
numerically by a one-dimensional background field method. The flow is bounded between a rotating inner
cylinder of radius Ri and a fixed outer cylinder of radius Ro. A variational problem is formulated and solved by a
pseudo-time-stepping method up to a Taylor number Ta = 109. The angular momentum transport, characterized
by a Nusselt number Nu, is bounded by Nu � cTa1/2, where the prefactor c depends on the radius ratio
η = Ri/Ro. Three typical radius ratios are investigatedi.e., η = 0.5, 0.714, and 0.909, and the corresponding
prefactors c = 0.0049, 0.0075, and 0.0086 are found to improve (lower) the rigorous upper bounds by Doering
and Constantin [C. Doering and P. Constantin, Phys. Rev. Lett. 69, 1648 (1992)] and Constantin [P. Constantin,
SIAM Rev. 36, 73 (1994)] by at least one order of magnitude. Furthermore, we show, via an inductive bifurcation
analysis, that considering a three-dimensional background velocity field is unable to lower the bound.
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I. INTRODUCTION

Liquid flow between two independently rotating concentric
cylinders, known as the Taylor-Couette flow, has attracted
much attention due to its vast relevance and numerous appli-
cations in geophysical and astrophysical systems, e.g., plan-
etary atmospheres and stellar interiors. A problem of crucial
interest, both from a practical and from a fundamental point
of view, is to determine the global flux of angular momentum
(or torque) between the cylinders and its scaling dependence
on the parameters of the system (e.g., the rotation frequen-
cies). To understand the complicated interplay between the
boundary layers and the bulk in the turbulent regime, we aim
to derive a rigorous estimate of such scaling directly from the
governing equations, thus avoiding expensive calculations at
large parameters values.

The first measurement of the angular momentum in Taylor-
Couette flow dates back to the pioneering experiments of
Wendt [1] in the 1930s. A huge body of experimental studies
on the global torque scaling in the turbulent regime was
then performed in the past 30 years [2–7]. As suggested by
Eckhardt et al. [8], the angular momentum transfer can be
characterized by a Nusselt number Nu, defined as the ratio of
the turbulent angular velocity transport to the purely molec-
ular (laminar) transport. The Nusselt number is measured
against the Taylor number:

Ta = (1 + η)4

64η2
d2(Ri + Ro)2(�i − �o)2/ν2. (1)

Here Ri and Ro are the inner and outer radii, d = Ro − Ri

is the gap width, η = Ri/Ro is the radius ratio, �i and �o
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are the angular velocities of the inner and outer cylinders,
and ν is the kinematic viscosity of the fluid. Experimental
data showed that Nu ∼ Ta1/3 when the boundary layer is
laminar, while Nu ∼ Ta1/2 with a logarithmic correction (due
to the logarithmic velocity profile in the boundary layer) when
the boundary layer is turbulent [9–11]. In their experimental
study, van den Berg et al. [12] showed that, when the loga-
rithmic velocity profile in the boundary layers is destroyed by
wall roughness, the scaling of Nu ∼ Ta1/2 emerges because
the angular momentum transport is determined by the bulk.
This was also confirmed very recently by Zhu et al. [13] using
direct numerical simulations (DNS).

DNS of turbulent Taylor-Couette flow between two
smooth cylinders for three typical radius ratios η =
0.5, 0.714, and 0.909 suggest that Nu ∼ Ta0.38 for η =
0.714 and 0.909 and Nu ∼ Ta1/3 for η = 0.5, up to Ta = 1011

[14–19]. It thus appears from these studies that the scaling
depends on the geometry. Furthermore, direct numerical sim-
ulations have some shortcomings, such as the dependence
on the initial conditions. It would be prohibitively expensive
to find the optimal flow field that can maximize the angular
momentum transport using DNS.

An alternative way to extract the scaling in turbulent
flows without direct numerical simulations is to derive upper
bounds on the angular momentum transport from a varia-
tional problem. This approach was established by Malkus
[20] and Howard [21] for Rayleigh-Bénard convection and
extended to plane Couette flow by Busse [22] (referred to
as the MHB formulation). To solve the MHB variational
problem, Nickerson [23] considered a single boundary layer
and derived an upper bound of angular momentum transfer
in Taylor-Couette flow, later improved by Busse [24] by
including three nested boundary layers. However, Busse’s
result is not a strict upper bound because higher order terms,
which tend to lower the upper bound, are neglected. In the
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1990s, an alternative approach, called the “background flow”
method, was introduced by Doering & Constantin [25–27]
to produce rigorous upper bounds of energy dissipation and
heat transport. This method decomposes the physical field
into a steady background field and an arbitrary fluctuation
field and has the advantage that even a trial background
field can yield an upper bound. Kerswell [28,29] proved that
the “background” approach yields a minimization problem,
which is complementary to the maximization problem in the
MHB formulation.

Most early works [25–27,30] considered a one-
dimensional piecewise-linear trial background field, which
only produced a suboptimal upper bound on the heat and
angular momentum transfer in Rayleigh-Bénard convection
and Taylor-Couette flow, respectively. It was later shown
by Plasting and Kerswell [31] that the optimal background
field, which yields the lowest upper bound, can be obtained
by solving the full set of Euler-Lagrange equations for the
minimization problem numerically. The challenge is then to
find the optimal “background field” satisfying the so-called
“spectral constraint” [25–27,30]. This problem was first
cracked by Plasting and Kerswell [31], in their study of
plane-Couette flow, using a Newton-Raphson technique.
Newton’s method requires a bifurcation analysis of the
“spectral constraint.” Recently, Wen et al. [32,33] suggested
an alternative, easy-to-implement, approach, which utilizes
a pseudo-time-stepping method to solve the Euler-Lagrange
equations without the need of a bifurcation analysis.

This paper applies the background method to investigate
the upper bound problem of angular momentum transport
in Taylor-Couette flow. The resulting variational problem
is solved using the newly developed pseudo-time-stepping
method [32,33]. First, we consider a one-dimensional back-
ground field, which, as we shall show later, leads to a varia-
tional problem with the surface-averaged momentum equation
and the energy balance imposed as constraints. Our results
improve (lower) the rigorous upper bound by Doering and
Constantin [25] and Constantin [30] and the numerical studies
by Nickerson [23] and Busse [24] by at least one order of
magnitude. Second, we examine whether a three-dimensional
background field can lower the bound by imposing the time
averaged momentum equations as a constraint. The plan of the
paper is as follows. Section II describes the mathematical for-
mulation and Sec. III applies the one-dimensional background
approach, which yields the variational problem. In Sec. IV,
the Euler-Lagrange equations are derived from the variational
formulation. Section V illustrates our numerical technique for
solving the Euler-Lagrange equations. Results and discussions
of the one-dimensional background approach are presented
in Sec. VI. Section VII considers a three-dimensional back-
ground velocity field and an inductive bifurcation analysis is
carried out. Conclusions are drawn in Sec. VIII.

II. MATHEMATICAL FORMULATION

A Newtonian incompressible fluid of kinematic viscosity
ν fills the gap between two coaxial, independently rotating,
cylinders. We consider a cylindrical coordinate system with
the z axis as the common cylinder axis, and r and θ as the
radial and azimuthal coordinates, respectively. The dimen-

sionless governing equations (continuity and Navier-Stokes)
obtained by choosing the gap width d = Ro − Ri as length
scale, and d2/ν and ν/d as time and velocity scales, respec-
tively, read

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u + ∇p − ∇2u = 0, (3)

where the velocity u = uer + veθ + wez. Boundary condi-
tions at r = ri, ro (ri = Ri/d , ro = Ro/d) are

u = w = 0, v|r=ri = Rei ≡ �iRid

ν
,

v|r=ro = Reo ≡ �oRod

ν
. (4)

The laminar flow has an azimuthal component only, v =
Vlam(r), independent of θ and z, which is given by

Vlam = Ar + B

r
, A = ωo − η2ωi

1 − η2
, B = η2(ωi − ωo)

(1 − η2)(1 − η)2

(5)

where ωi = Rei/ri and ωo = Reo/ro are the dimensionless
angular velocities. We define a volume-temporal average 〈•〉
and a surface-temporal average •:

〈•〉 = lim
T →∞

1

T

1

π	
(
r2

o − r2
i

) ∫ r0

ri

•rdrdθdzdt , (6)

• = lim
T →∞

1

T

1

2π	

∫ T

0

∫ 	

0

∫ 2π

0
•dθdzdt, (7)

where 	 is the axial length of the domain. Following Eckhardt
et al. [8], by taking the surface-temporal average of the
azimuthal momentum equation we obtain

1

r2

dr2uv

dr
= d2v

dr2
+ 1

r

dv

dr
− v

r2
. (8)

Introducing an angular velocity ω = v/r, Eq. (8) is restated as

dJω

dr
= d

dr

[
r3

(
uω − dω

dr

)]
= 0, (9)

where the conserved quantity Jω ≡ r3(uω − dω/dr) is the
transverse current of angular velocity [8]. At the laminar
state, Jω

lam ≡ 2η(Reiro − Reori )/(1 − η2), and the ratio Nu =
Jω/Jω

lam is defined, in analogy with the Rayleigh-Bénard prob-
lem, as the Nusselt number.

From the kinetic energy balance it follows that the viscous
dissipation is connected to the angular momentum transport
via

ε = 〈|∇u|2〉 − 2
Re2

o − Re2
i

r2
o − r2

i

= 2(ωi − ωo)

r2
o − r2

i

Jω
lamNu = Pr−2TaNu, (10)

where Pr = (1+η)4

16η2 is a geometrical “quasi-Prandtl” number
(the analog of the Prandtl number in Rayleigh-Bénard convec-
tion) and the Taylor number was defined in Eq. (1). Once the
dependence of the energy dissipation ε on the Taylor number
is known, we can derive the relationship between Nu and Ta.
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Our aim is to reveal this relationship using the “background”
method [25–27].

III. ONE-DIMENSIONAL BACKGROUND METHOD

We decompose the velocity field as

u = ub + u′ (11)

where ub = V (r)eθ is a (steady) one-dimensional background
field which carries the boundary conditions on v at r = ri, ro

(i.e., V |ri = Rei and V |ro = Reo), and u′(x, t ) is an arbitrary
fluctuation field which satisfies homogeneous boundary con-
ditions. Now, we write the momentum equation (3) as

N : = ∂u′

∂t
+ ub · ∇ub + ub · ∇u′ + u′ · ∇ub

+ u′ · ∇u′ + ∇p − ∇2u′ − ∇2ub = 0. (12)

Using the decomposition in Eq. (11), the energy dissipation
rate is expressed as

ε = 〈|∇u′|2〉 +
〈(

dV

dr

)2

+ V 2

r2
+ 2

dV

dr

∂v′

∂r
+ 2V v′

r2

〉

− 2
Re2

o − Re2
i

r2
o − r2

i

. (13)

The laminar viscous dissipation rate,

εlam = 4

(1 + η)2
(Rei − ηReo)2 ∝ Ta, (14)

gives the lower bound on energy dissipation rate.
To find the maximal viscous dissipation rate, we construct

the following Lagrangian:

L := ε − 〈au′ · N 〉 = ε − 〈a(u − ub) · N 〉. (15)

The balance parameter a ensures the energy balance con-
dition is satisfied in the system, namely, 〈u · N 〉 = 0, while
the one-dimensional Lagrange multiplier aub imposes the
surface-averaged azimuthal momentum equation. Integration
by parts of Eq. (15) gives

L =
〈(

dV

dr

)2

+ V 2

r2

〉
− 2

Re2
o − Re2

i

r2
o − r2

i

−
〈
(a − 1)|∇u′|2 + au′v′

(
dV

dr
− V

r

)〉

+
〈
(a − 2)

(
d2V

dr2
+ 1

r

dV

dr
− V

r2

)
v′
〉
. (16)

The presence of the linear term (a − 2)( d2V
dr2 + 1

r
dV
dr − V

r2 )v′
in Eq. (16) means that the optimization over the fluctuation
fields v′ will give rise to a nonzero contribution to be added to
〈( dV

dr )
2 + V 2

r2 〉. Following Plasting and Kerswell [31], we avoid
this complication by defining a shifted fluctuation field:

û = u′, v̂ = v′ − 2 − a

2(a − 1)

(
V − Ar − B

r

)
, ŵ = w′.

(17)

This is possible if û is assumed to satisfy homogeneous
boundary conditions and allows the linear term to be absorbed

into perfect squares. As a result, a mean azimuthal velocity
profile can be defined as

vm = V + 2 − a

2(a − 1)

(
V − Ar − B

r

)
, (18)

and Eq. (16) is restated as

L = a2

4(a − 1)

〈[
d (V − Vlam)

dr

]2

+ (V − Vlam)2

r2

〉

+ εlam − H , (19)

where

H =
〈
(a − 1)|∇û|2 + aûv̂

(
dV

dr
− V

r

)〉
is a quadratic form which is positive semidefinite provided
a > 1 and V is well chosen. Furthermore, we introduce a
new parameter b = a/(a − 1) (b > 1) and the Lagrangian is
modified as

L = b2

4(b − 1)

〈[
d (V − Vlam)

dr

]2

+ (V − Vlam)2

r2

〉

+ εlam − 1

b − 1
H , (20)

where the quadratic term is modified as

H =
〈
|∇û|2 + bûv̂

(
dV

dr
− V

r

)〉
. (21)

Therefore, the upper bound on the energy dissipation rate is

ε � εmax := b2

2(b − 1)
(
r2

o − r2
i

)
×

∫ ro

ri

r

{[
d (V − Vlam)

dr

]2

+ (V − Vlam)2

r2

}
dr + εlam,

(22)

provided the quadratic term H is positive semidefinite, i.e.,
H � 0, for all fluctuations û. The so-called spectral con-
straint H � 0 is equivalent to the following nonpositive
eigenvalue problem:

λû = 2∇2û − b

(
dV

dr
− V

r

)⎛
⎝v̂

û
0

⎞
⎠ − ∇p, (23)

∇ · û = 0, (24)

where p is a Lagrange multiplier to impose the continuity
equation. For a given background field V , the spectral con-
straint is satisfied provided that λ � 0.

IV. EULER-LAGRANGE EQUATIONS

Our aim is to minimize εmax to produce the best upper
bound on the viscous dissipation rate under the spectral con-
straint and the conservation of mass. The following Lagrange
functional is thus identified:

L = εmax − H + 〈p∇ · û〉. (25)
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Here, the velocity field û is rescaled as û/
√

b − 1 → û for
convenience. First variations of L yield the Euler-Lagrange
equations

δL /δû : = 2∇2û − b

(
dV

dr
− V

r

)⎛
⎝v̂

û
0

⎞
⎠ − ∇p = 0, (26)

δL /δp : = ∇ · û = 0, (27)

δL /δV : = d2V

dr2
+ 1

r

dV

dr
− V

r2

− 2(b − 1)

b

(
dûv̂

dr
+ 2ûv̂

r

)
= 0, (28)

δL /δb : = b2 − 2b

4(b − 1)2
I1 − I2 = 0, (29)

where

I1 =
∫ ro

ri

{
r

[
d (V − Vlam)

dr

]2

+ (V − Vlam)2

r

}
dr,

I2 =
∫ ro

ri

ûv̂

(
dV

dr
− V

r

)
rdr.

When η → 1 (small-gap limit), the Taylor-Couette flow
approaches to the plane Couette flow. In this limit, the Euler-
Lagrange equations (26)–(29) reduce to

2∇2û − b
dV

dy

⎛
⎝v̂

û
0

⎞
⎠ − ∇p = 0, (30)

∇ · û = 0, (31)

d2V

dy2
− 2(b − 1)

b

dûv̂

dy
= 0, (32)

b2 − 2b

4(b − 1)2

∫ 1

0

(
dV

dy
− Re

)2

dy −
∫ 1

0
ûv̂

dV

dy
dy = 0, (33)

where y is the wall-normal coordinate and the letters u and v

here denote the streamwise and wall-normal velocity compo-
nents, respectively. Equations (30)–(33) are equivalent to the
Euler-Lagrange equations for plane Couette flow derived by
Plasting and Kerswell [31] [refer to their Eqs. (2.13a)–(2.13d),
although in a slightly different form from ours].

Note that Eqs. (26) and (27) are identical to the zero eigen-
value problem of the spectral constraint Eqs. (23) and (24).
Generally, the solution of the Euler-Lagrange equations (26)–
(29) is not unique. However, the solution satisfying the spec-
tral constraint (λ � 0) is unique and delivers the best bound on
ε [31,33]. The main challenge in solving the Euler-Lagrange
equations is to satisfy the spectral constraint, which usu-
ally requires the Newton iteration with continuation method
[31]. Typically, the Newton iteration requires a bifurcation
analysis of the spectral constraint, which becomes tedious
when considering a finite computational domain [32,33]. In
contrast, the pseudo-time-stepping method recently proposed
by Wen et al. [32,33] is easy to implement and requires no
bifurcation analysis. It is thus adopted in the present paper. In
the following section, we introduce the time-stepping system
for our problem and the numerical method employed to solve

it. Furthermore, we show that, if this numerical approach
converges to a steady state, it is the global optimal.

V. NUMERICAL TECHNIQUE

A. Time-stepping system

The pseudo-time-stepping method converts the “time-
invariant” Euler-Lagrange equations (26)–(28) into a time-
dependent dynamical system [32,33], namely,

∂û
∂t1

= 2∇2û − b

(
∂V

∂r
− V

r

)⎛
⎝v̂

û
0

⎞
⎠ − ∇p, (34)

∇ · û = 0, (35)

∂V

∂t2
= ∂2V

∂r2
+ 1

r

∂V

∂r
− V

r2
− 2(b − 1)

b

(
∂ ûv̂

∂r
+ 2ûv̂

r

)
. (36)

In practice, the optimal condition Eq. (29) is also converted
into a time-dependent version:

db

dt3
= b2 − 2b

4(b − 1)2
I1 − I2. (37)

The steady solution of the time-stepping system corresponds
to the solution of the “time-independent” Euler-Lagrange
equations. Note that we used three different times ti (i =
1, 2, 3) for the fluctuation field, the background field, and the
balance parameter. Typically, the time step for the background
field should be small due to the boundary layer structure near
the walls. In Wen et al. [33], the same time step is used for all
the equations, which slows down the time marching method
considerably, especially at large Taylor numbers. Here, we
allowed the time steps for the fluctuation field and for the bal-
ance parameter to be much larger than that for the background
field, i.e., t1 = t3 = 100t2. As a result, the spurious modes
damp 100 times faster than in the original time-stepping
method, which gives rise to significant computational savings.
This expedient made it possible to perform the simulations
at high Ta, which would have otherwise been prohibitively
expensive.

The optimal solution has no azimuthal variation, i.e., all the
terms with ∂θ are zero (we also show numerical evidence of
this in Fig. 9 of Appendix B):

û =
M∑

n=1

⎛
⎝ûn(r) cos(knz)

v̂n(r) cos(knz)
ŵn(r) sin(knz)

⎞
⎠, p =

N∑
n=1

p̂n cos (knz), (38)

where n is the mode number, M is the finite truncation mode
number, and kn=nα is the wave number. The fundamental
wave number is α = 2π/	, where 	 is the axial length (or
aspect ratio) of the computational domain, which is fixed
in the present paper, as in Wen et al. [32,33]. To solve the
time-stepping system, the Adams-Bashforth-Crank-Nicolson
method is used. Chebyshev collocation method is employed
for the spatial discretization [33]. As the Taylor number
increases, the number of Chebyshev collocation points is
increased from 30 to 250. The simulations are performed for
a discrete set of Tai = 104 × 10(i−1)/4 ranging from Ta = 103

to 109, such that the data are uniformly distributed on a
log-scale plot.
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B. Steady state: The global optimal

In the following we prove that the steady state of the time-
stepping system Eqs. (34)–(37) is the “global” optimal, i.e.,
the true solution of the Euler-Lagrange equations (26)–(29).
For a fixed balance parameter b, assuming that a steady state
(û,V ) is obtained, a perturbation (û′,V ′) is added onto this
steady state. After linearizing, we obtain

∂û′

∂t1
= 2∇2û′ − b

(
∂V

∂r
− V

r

)⎛
⎝v̂′

û′
0

⎞
⎠

− b

(
∂V ′

∂r
− V ′

r

)⎛
⎝v̂

û
0

⎞
⎠ − ∇p′, (39)

∇ · û′ = 0, (40)

∂V ′

∂t2
= ∂2V ′

∂r2
+ 1

r

∂V ′

∂r
− V ′

r2

− 2(b − 1)

b

(
∂ û′v̂ + ûv̂′

∂r
+ 2û′v̂ + ûv̂′

r

)
. (41)

Adding up û′· Eq. (39) and b2

2(b−1)V
′× Eq. (41) and using the

continuity condition Eq. (40), we obtain

1

2

∂

∂t1

∫
V

|û′|2dV + 1

2

∂

∂t2

∫
V

b2

2(b − 1)
V ′2dV

= − b2

2(b − 1)

∫
V

[(
∂V ′

∂r

)2

+
(

V ′

r

)2
]

dV

︸ ︷︷ ︸
�0

− 2
∫

V
|∇û′|2 + bû′v̂′

(
∂V

∂r
− V

r

)
dV︸ ︷︷ ︸

H

, (42)

where V is the volume of the computational domain.
If the background field V does not satisfy the spectral

constraint, there should be some Fourier mode û′ which grows
with time, such that no steady solution of Eq. (34) can be
obtained (this is because the eigenvalue λ > 0). Hence, the
steady state means that the background velocity field V sat-
isfies the spectral constraint. In this case, there are four types
of disturbances. The first type is V ′ = 0 and û′ is expanded
by spurious modes (λ < 0), and the second type is V ′ �= 0
and û′ is expanded by spurious modes. The third type is
V ′ �= 0 and û′ is expanded by the critical modes (λ = 0), and
the fourth type is V ′ = 0 and û′ is expanded by the critical
modes. For the first and second types of disturbances, because
H > 0 (λ < 0), the disturbance always decays with time,
which indicates that spurious modes cannot be attractors. For
the third type of disturbance, because V ′ �= 0 and H = 0, a
strictly monotonic decay of the functional on the left-hand
side of Eq. (42) is seen, and the disturbance will also decay
in time. For the fourth type of disturbance, i.e., V ′ = 0 and
H = 0, the strictly monotonic decay of the functional on the
left-hand side of Eq. (42) is lost. However, V ′ = 0 cannot

persist because, in Eq. (41), the term

∂ û′v̂ + ûv̂′

∂r
+ 2û′v̂ + ûv̂′

r
�= 0.

Therefore, the first term on the right-hand side of Eq. (42)
is negative at some instant in time (actually, if V ′ = 0 at the
initial stage, V ′ starts to grow immediately when the sys-
tem is perturbed by such disturbances) and the disturbances,
therefore, decay. Hence, we can conclude that the noncritical
modes (“spurious” or “local” optimal solutions) could never
be attractors. Furthermore, if a steady state is obtained, it
is the global optimal. However, this method does not guar-
antee the existence of a steady state, despite the successful
numerical outcomes of this paper. Importantly, to obtain a
global optimal, it is crucial that a nonzero initial condition
for “enough modes” should be seeded to the time-stepping
system to ensure that all critical modes can be found by the
time-stepping method.

VI. RESULTS AND DISCUSSION

To compare our paper with the previous numerical simu-
lations of a fixed outer cylinder case [16–19], throughout the
rest of the paper we focus on the case of a fixed outer cylinder
(Reo = 0). In this case the Taylor number is connected to
the Reynolds number Rei via Ta = (1+η)6

64η4 Re2
i . Results are

presented for three typical values of the radius ratio, i.e., η =
0.5, 0.714, and 0.909, which have been extensively investi-
gated experimentally and numerically [15–17,19]. Moreover,
in order to analyze the small-gap limit (η → 1) in which the
Taylor-Couette flow approaches the plane-Couette flow, we
also consider η = 0.99. In the following, we first analyze the
energy stability point as a function of η.

A. Energy stability

The Taylor-Couette flow is linearly unstable due to the
centrifugal force when the inner cylinder is rotating and the
outer cylinder is fixed. The first bifurcation of the spectral
constraint (λ = 0) should occur at the energy stability point
[26,27,31]. The energy stability requires

dE

dt
= −

∫
V

[(
dVlam

dr
− Vlam

r

)
u′v′ + |∇u′|2

]
dV � 0,

(43)

where E = ∫
V u′2/2dV is the kinetic energy. Clearly, the

right-hand side of Eq. (43) has the same form as the quadratic
term H in Eq. (21) with V = Vlam and b = 1. As the Taylor
number increases, the background field V starts to deviate
from the laminar profile to satisfy the spectral constraint.

Figure 1 shows the critical value ReIC of the inner-cylinder
Reynolds number and the critical wave number αc obtained
from the energy stability analysis as a function of the ra-
dius ratio η. In the limit η → 1, ReIC = 82.56 and αc ≈
3.12, which are in excellent agreement with the study by
Plasting and Kerswell [31] for plane-Couette flow. Fol-
lowing Wen et al. [33], we fix the aspect ratio at 	 =
2π/αc, where αc is the critical wave number predicted by
the energy stability analysis. Therefore, for the three typi-
cal cases considered herein, η = 0.5, 0.714, and 0.909, we
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FIG. 1. (a) The critical value ReIC of the inner-cylinder Reynolds number vs the ratio η. (b) The critical wave number αc vs the ratio η. The
outer cylinder is fixed, Reo = 0.

obtain 	 ≈ 1.98, 2.00, and 2.01, respectively. Direct numer-
ical simulations of Taylor-Couette flow with radius ratios
η = 0.5 and 0.714 suggest that the optimal aspect ratio at high
Taylor numbers is 	 = 2 [14,15,18,19]. For η = 0.909, the
torque seems to be insensitive to 	 when 	 > 2 at high Taylor
numbers Ta > 108 [19]. Therefore, our data are available for
comparison with those numerical studies [14,19] with aspect
ratio 	 ≈ 2.

B. Small gap

We consider η = 0.99 (small gap) and show that the
time-stepping method can reproduce the results obtained by
Plasting and Kerswell [31] in a much more efficient way.
Here, we consider a fixed, relatively long domain 	 = 10,
while Plasting and Kerswell considered an infinitely long
domain. However, our results suggest that the upper bound
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FIG. 2. (a) Norm of each mode of v̂, ‖vn‖ = 2
r2
o −r2

i

∫ ro
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rv2

ndr, at t1 = 4, �t1 = 10−5. There are still some undamped spurious modes.

(b) Illustration of eigenvalues of the spectral constraint on a shifted logarithmic scale. (c) The mean velocity profile vm plotted using a wall-
normal coordinate y = (r − ri )/(ro − ri ). (b), (c) All spurious modes are damped.
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FIG. 3. The bifurcation diagram of the mode number nc vs the Taylor number. (a) η = 0.5, α = 3.17. (b) η = 0.714, α = 3.13. (c) η =
0.909, α = 3.12. The shaded modes are used to construct the optimal perturbation field in Fig. 4.

is insensitive to the domain size. The Reynolds numbers are
fixed at Rei = 104 and Reo = 0. We used 300 nonzero modes
as the initial condition for the time-stepping system (34)–(37).
Most spurious modes are damped at t1 = 4, as shown in
Fig. 2(a). As in Wen et al. [33], we used a Newton iteration
to improve the accuracy of the result and checked that the
spectral constraint is satisfied, as demonstrated in Fig. 2(b). It
is interesting that our discrete critical wave numbers ncα are
clustered around the four optimal wave numbers predicted by
Plasting and Kerswell [31] (refer to their Fig. 3): k1 ≈ 4.60,
k2 ≈ 16.05, k3 ≈ 45.78, and k4 ≈ 150.09. The rescaled vis-
cous dissipation rate ε/Re3

i =0.00861 obtained from the time-
stepping method also coincides with the results of Plasting and
Kerswell [31] (refer to their Fig. 2). As shown in Fig. 2(c), the

mean velocity profile exhibits a 1/4Rei slope in the interior
region, a scaling that has been found in [31].

Plasting and Kerswell [31] used a Newton method in
conjunction with a continuation method, which requires a bi-
furcation analysis of the spectral constraint. The time-stepping
method, instead, requires no bifurcation analysis, and thus
no continuation tool is needed. Clearly, an advantage of this
is that, while in the continuation method the data at smaller
Ta need to be available to continue the solution to higher
Ta, the time-stepping method, instead, can be started at any
Taylor number. When the domain size is fixed, the bifurcation
analysis of Plasting and Kerswell [31] becomes very tedious
since the critical wave numbers are discrete, which makes the
parametric continuation very difficult.
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FIG. 4. (a)–(c) The optimal perturbation flow field in the y-z plane (y is the wall-normal coordinate defined in the caption of Fig. 2) for
η = 0.5, 0.714, and 0.909 at Ta = 316, 227, and 766, respectively. Here, to show the flow field, we introduce a stream function ψ such that
(û, ŵ) = ( 1

r
∂ψ

∂z , − 1
r

∂ψ

∂z ). The contour lines are plotted every �ψ = 50 steps from ψ = −280 to 280 (solid lines are for positive ψ and dashed
lines are for negative ψ). (d), (e) The near wall flow field of η = 0.714, showing that the small scale motion near the outer cylinder is more
vigorous.
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FIG. 5. (a), (b) The rescaled mean velocity profiles and mean angular velocity profiles at Ta = 109. (c) The comparison between the
optimal mean velocity profile at η = 0.909 and the mean velocity profile of fully developed turbulent plane Couette flow (PCF): A viscous
sublayer v+ = y+ and a logarithmic region v+ = 2.5 ln(y+) + 5.5. Here y+ = Reτ y and v+ = vm/Reτ with the friction Reynolds number
Reτ = √

ε/Rei.

C. Upper bound on energy dissipation

We now consider the radius ratios η =
0.5, 0.714, and 0.909. The bifurcation diagrams of the
critical modes nc for these three cases are illustrated in Fig. 3.
More critical modes are found to emerge as the Taylor number
increases. The largest wave number nmax in Fig. 3 scales as
Ta1/2. A close look at Fig. 3 reveals that the low wave numbers
n = 1, 2, 5, and 6 at high Ta (Ta > 108) are not sensitive to
the geometry, i.e., to the radius ratio. However, high wave
numbers are quite sensitive to the geometry, e.g., the largest
critical wave number n = 81 for η = 0.5 and n = 92 for
η = 0.714. This suggests that large structures of the optimal
fields for η = 0.5, 0.714, and 0.909 are quite similar, while
small structures can be quite different, as illustrated in Fig. 4.
It is also interesting that the optimal small-scale motion near
the outer cylinder is more vigorous than that near the inner
cylinder.

Figure 5(a) displays the optimal mean profiles of azimuthal
velocity vm at Ta = 109 for different radius ratios. The mean
azimuthal velocity significantly depends on η and the bound-
ary layer thins as η increases. For η = 0.909, the slope of vm in
the interior region is close to 1

4 Rei [31]. This suggests that the
gap is already small at η = 0.909, i.e., the Taylor-Couette flow
mimics the plane-Couette flow. The rescaled mean angular
velocity profiles ωm = vm/r for η = 0.5 and 0.714 shown in
Fig. 5(b) share many features exhibited by the mean angular
velocity profiles from DNS [17,19]. For example, Ostilla-
Mónico et al. [19] showed that the gradient of the averaged
angular velocity profile in the turbulent bulk region is around
0.25 at η = 0.714, which is close to the present result. How-
ever, for η = 0.909, Ostilla-Mónico et al. showed that the ωm

is flat in the interior part, which is very different from the
present paper. Figure 5(c) shows a comparison of the opti-
mal mean velocity profile at η = 0.909 with the empirically
observed mean velocity profile for turbulent plane Couette
flow. The mean velocity profile is significantly different from
the empirical logarithmic velocity profile, indicating that the
optimal velocity profile can only capture the dynamics in the
viscous sublayer, when the gap is small. This suggests that
the one-dimensional background approach loses important
dynamical information of the system. We will examine in
Sec. VII if a three-dimensional background approach can im-
prove the bound by incorporating all dynamical information
of the system, especially the momentum equation.

We assume the power-law ansatz Nu � cTaβ . The power-
law exponent is calculated using a backward finite difference
method:

βi = log10 Nui+1 − log10 Nui

log10 Tai+1 − log10 Tai
. (44)

Here Nui is the Nusselt number at Tai. Results in Fig. 6
demonstrate that the power-law exponent β approaches 1/2
asymptotically as Ta increases (we also show a rigorous proof
of this in Appendix A). Results in Fig. 7(a) show that the upper
bound on angular momentum transport scales as Ta1/2 in the
asymptotic ultimate regime. The prefactor c is also shown
in Fig. 7(b). Using the power-law ansatz, for the fixed outer
cylinder (Reo ≡ 0), it is found that the energy dissipation rate

ε � cPr−2Ta3/2 = c(1 + η)

2η2
Re3

i , (45)

which reduces to ε � cRe3
i as η → 1. For a fixed outer

cylinder and under the small gap assumption, Doering and
Constantin [25] derived a rigorous upper bound on torque
(or Nusselt number) ε � 0.0885Re3

i . In the present paper,
for the case η = 0.909, we have ε � 0.0085Re3

i , which is
an order of magnitude lower than Doering and Constantin’s
rigorous bound. Constantin [30] considered the curvature
effect and showed a rigorous upper bound on energy dissi-
pation rate in Taylor-Couette flow, ε � 2η2

1−η2 Re3
i , which gives

Ta

β

107 108 1090.44

0.46

0.48

0.5

η=0.5
η=0.714
η=0.909

FIG. 6. The power-law exponent β vs the Taylor number Ta.
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FIG. 7. (a) The upper bound of Nussult number Nu vs the Taylor
number Ta. Symbols are DNS, courtesy of Dr. Rodolfo Ostilla-
Mónico. (b) A plot of Nu/Ta1/2 vs the Taylor number Ta.

ε � 0.3333Re3 for η = 0.5 and ε � 2.0799Re3
i for η =

0.714. Here, we are able to lower these bounds by up to two
orders of magnitudes, i.e., ε � 0.0147Re3 for η = 0.5 and
ε � 0.0126Re3

i for η = 0.714. Our results thus significantly
improve the rigorous upper bounds derived by Doering and
Constantin [25] and Constantin [30].

Plasting and Kerswell [31] have shown that the optimal
balance parameter approaches 3/2 in the plane-Couette flow.
Figure 8 shows that b → 3/2 for all the three radius ratios
considered, thus demonstrating that the optimal balance pa-
rameter is independent of the geometry.

In the ultimate regime, previous numerical and experimen-
tal studies [4–6,14–19] suggest that the power-law exponent
is between 0.38 and 0.44 [see Fig. 7(a)]. The power-law
exponent β = 1/2 obtained in the present paper is higher

Ta

b
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1.1

1.2

1.3

1.4

1.5

1.6

η=0.5
η=0.714
η=0.909

3/2

FIG. 8. The optimal balance parameter vs the Taylor number Ta.

than these experimental and numerical data. It is clear that
the one-dimensional background approach has not exhausted
all the dynamical information of the equations, especially the
momentum equation. Therefore, the one-dimensional back-
ground approach produces a higher scaling on the angular
momentum transport than the DNS data. However, it is still
unclear whether the “steady” solutions of the Navier-Stokes
equations can produce bounds on the angular momentum
transport or not. Moreover, another question is the following:
Can we reduce the bound of Nu � cTa1/2 by considering a
three-dimensional steady background field? We are going to
examine these issues in the following section.

VII. THREE-DIMENSIONAL BACKGROUND FIELD

In this section we revisit the upper-bound variational prob-
lem to understand if a three-dimensional background field can
improve the bound on ε. The analysis is carried out on the
plane-Couette flow for simplicity, as it was shown above that
the Taylor-Couette flow mimics the plane-Couette flow when
the gap is small. To maximize the viscous dissipation rate
ε = 〈|∇u|2〉, the following Lagrangian is constructed:

L = 〈|∇u|2〉 − a〈u′ · N 〉, (46)

where u = ub + u′. Here, we consider a three-dimensional
background flow ub(x, y, z), where x, y, and z are the stream-
wise, wall-normal, and spanwise directions, respectively.
Since we are considering a steady background field, the
Lagrangian (46) imposes the steady or infinitely long time-
averaged momentum equation as a constraint. Integration by
parts of Eq. (46) gives

L = 〈|∇ub|2〉 − 〈(a − 1)|∇u′|2 + au′ · ∇ub · u′ + aub · ∇ub · u′ − (a − 2)u′ · ∇2ub〉︸ ︷︷ ︸
G

. (47)

Therefore, the upper bound on the energy dissipation is given by

ε � 〈|∇ub|2〉 − inf G , (48)
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provided a > 1. The chosen background field ub should ensure the existence of inf G . The minimum of G can be sought by
solving the following Euler-Lagrange system by fixing ub and a [28]:

∇ · u′ = 0, (49)

−2(a − 1)∇2u′ + a
(∇ub + ∇uT

b

) · u′ + ∇p = (a − 2)∇2ub − aub · ∇ub. (50)

The solution of u′ to the above equation is denoted as u0.
Following Ding and Kerswell [35], to minimize the bound

in Eq. (48) subject to the spectral constraint and mass conser-
vation, we write the following Lagrangian:

L = 〈|∇ub|2〉 − G (u0, ub, a)

−
N∑

i=1

〈(a − 1)|∇ui|2 + aui · ∇ub · ui〉︸ ︷︷ ︸
Hi

+〈pi∇ · ui〉

(51)

where Hi(ui, ub, a) is a quadratic form which must be pos-
itive semidefinite (the spectral constraint) for inf G to exist.
The Lagrangian (51) is to ensure that, when a new mode
becomes marginal in the spectral constraint as Re increases,
this new mode is pinned at the ground state λ = 0, so that
it remains marginal. When ub is one dimensional and we
decompose ui in Fourier modes ui = ûi exp(Iki · x) [here I =√−1, ki = (kix, kiz ) x = (x, z)], due to the natural orthog-
onality property of different marginal fluctuation fields, the
following relation holds:

N∑
i=1

Hi = H = 〈(a − 1)|∇u′|2 + au′ · ∇ub · u′〉, (52)

where u′ = ∑N
i=1 ui. When a new spectrally marginal mode

appears, the “pinning” is done by simply extending the set of
wave numbers contributing to the definition of the fluctuation
field by one. However, when ub is three dimensional, the
equality in (52) does not hold any more because there is more
than one marginal mode for a given wave number ki (see
chapter 3 in [34]). In these scenarios, the natural orthogonality
property of different marginal fluctuation fields disappears,
implying that the physical meaning of the fluctuation fields
is lost, i.e., the fluctuation field cannot be written as a linear
superposition of the marginal fields. Hence, the Lagrangian
(51) pins all marginal modes separately when ub is three
dimensional.

An interesting observation is that the spectral constraint
is not satisfied for N > 1 at any saddle point of the La-
grangian (47), where the dynamical constraints from the
steady momentum equation are imposed. Consequently, the
optimization procedure is forced to find an optimal solution
away from the saddle points of the Lagrangian (47) where the
spectral constraint H � 0 is satisfied to deliver a true bound
[35]. The steady momentum equation is therefore not satisfied
although it is explicitly imposed as a constraint in Eq. (46),
which indicates that there is no direct connection between the
optimal solution and the steady solution to the Navier-Stokes
equations. Hence, the Lagrangian in (51) indicates that the
scalings produced by any steady solutions of the Navier-
Stokes equation are not bounds on the angular momentum

transport because these solutions do not guarantee that the
“spectral constraint” is satisfied (this is also suggested in
Ding and Kerswell [35] for the Rayleigh-Bénard problem).
Below, we shall focus on examining if the three-dimensional
background field can lower the bound produced by the one-
dimensional background field study.

At the bifurcation point Re = Rec = 82.65, ub = Recyex,
we have a = ∞ [31]. Therefore, we introduce b = a/(a − 1)
and rewrite the Lagrangian (51) as

L = 〈|∇ub|2〉 −
〈

1

b − 1
|∇u0|2 + b

b − 1
(u0 · ∇ub · u0

+ ub · ∇ub · u0) − 2 − b

b − 1
u0 · ∇2ub

〉
+ 〈p∇ · u0〉 − 〈q∇ · ub〉

−
N∑

i=1

〈|∇ui|2 + bui · ∇ub · ui − pi∇ · ui〉︸ ︷︷ ︸
H

, (53)

where we rescale ui/
√

b − 1 → ui (i = 1, 2, . . . ). Variation
of the Lagrangian (53) leads to the Euler-Lagrange equations

δL

δpi
:= ∇ · ui = 0, (54)

δL

δui
: = −2∇2ui + b

(∇ub + ∇uT
b

) · ui + ∇pi

− [(2 − b)∇2ub − bub · ∇ub]δ0i = 0, (55)

δL

δq
:= ∇ · ub = 0, (56)

δL

δub
: = −2∇2ub − b

b − 1

(∇uT
b · u0 − ub · ∇u0 − u0 · ∇u0

)

+ 2 − b

b − 1
∇2u0 + ∇q +

N∑
i=1

bui · ∇ui = 0, (57)

δL

δb
: = 〈|∇u0|2 + u0 · ∇ub · u0 + ub · ∇ub · u0 − u0 · ∇2ub〉

+ (b − 1)2
N∑

i=1

〈ui · ∇ub · ui〉 = 0, (58)

where δ0i is the Kronecker delta. The solution at the first
bifurcation point Re = Rec is ub = Recyex and u0 = 0, b = 1.

A. First bifurcation

We slightly increase the critical Reynolds number by ε and
expand the solutions asymptotically as follows:

ub = Recyex + εδub + . . ., (59)

u0 = εδu0 + . . ., (60)
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ui = u0
i + εu1

i + . . ., i � 1, (61)

b = 1 + εb1 + . . . ., (62)

pi = p0
i + εδpi + . . ., (63)

q = q0 + εδq + . . . . (64)

The leading order solution for fluctuation field u0
i (i �= 0) is

solved from the spectral constraint L(u0
i ) = 0 (L identifies the

left-hand side of the two equations below):

∇ · u0
i = 0, (65)

−2∇2u0
i + (∇ub0 + ∇uT

b0

) · u0
i + ∇p0

i = 0. (66)

Here ub0 = Recyex is the leading order solution for the back-
ground field. The spectral constraint has the following two
solutions:

u0
1 = AU (y) cos(kz)ex + AV (y) cos(kz)ey+AW (y) sin(kz)ez,

(67)

u0
2 = −BU (y) sin(kz)ex − BV (y) sin(kz)ey

+ BW (y) cos(kz)ez (68)

where (U,V,W )T is the eigenvector and A and B are the
amplitudes of the perturbation. When we consider a one-
dimensional background flow field, the two modes are pinned
simultaneously as we require either mode to satisfy the spec-
tral constraint due to the symmetry in the spanwise direction,
i.e., any phase shift of either mode does not change the
spectral constraint. However, if the background flow is three
dimensional, both modes should be pinned separately because
the spanwise symmetry is lost [35].

The first order solution for the fluctuation field δu0 satisfies
the following linear equations:

∇ · δu0 = 0, (69)

1

b1
∇2δu0 + Rec

b1
(δu0ey + δv0ex ) + ∇δq

+
∑
i=1,2

u0
i · ∇u0

i = 0, (70)

δu0 = 0, y = ±1, (71)

where Eq. (70) is obtained from the Euler-Lagrange equation
(57). Evaluating the driving term

∑2
i=1 u0

i · ∇u0
i gives

2∑
i=1

u0
i · ∇u0

i = 1

2
(A2 + B2)

⎛
⎝U ′V − kUW

VV ′ − kVW
0

⎞
⎠

+ 1

2
(A2 − B2)

⎛
⎝(U ′V + kUW ) cos(2kz)

(VV ′ + kWV ) cos(2kz)
(VW ′ + kWW ) sin(2kz)

⎞
⎠.

(72)

The prime decoration denotes the wall-normal deriva-
tive. Note that the term 1

2 (A2 + B2)(VV ′ − kVW )ey can be
absorbed into the pressure. Therefore, the solution for δu0 can

be written as

δu0 = (A2 + B2)F (y)ex + (A2 − B2)G (73)

where G = (G1(y) cos(2kz), G2(y) cos(2kz), G3(y) sin
(2kz))T . G satisfies the mass conservative condition and
the Gi (i = 1, 2, 3) depend on the eigenvector (U,V,W )T .
Both F and G satisfy homogeneous boundary conditions.

The spectral constraint at O(ε) reads

∇ · u1
i = 0, (74)

− 2∇2u1
i + (∇ub0 + ∇uT

b0

) · u1
i + ∇δpi

= −b1
(∇ub0 + ∇uT

b0

) · u0
i − (∇δub + ∇δuT

b

) · u0
i . (75)

Since the operator L is self-adjoint and annihilates u0
j [see

Eqs. (65) and (66)], the following solvability condition of the
first order spectral constraint arises:〈

u0
j · L(

u1
i

)〉 = 〈
u1

i · L(
u0

j

)〉 = 0, (76)

which yields〈
u0

i · [b1
(∇ub0 + ∇uT

b0

) · u0
i + (∇δub + ∇δuT

b

) · u0
i

]〉 = 0,

(77)〈
u0

j · [b1
(∇ub0 + ∇uT

b0

) · u0
i + (∇δub + ∇δuT

b

) · u0
i

]〉 = 0,

i �= j. (78)

When i �= j, the solvability condition is automatically satis-
fied because u0

i and u0
j are orthogonal.

Furthermore, the first order solution for the background
field, δub, is obtained by solving

∇ · δub = 0, (79)

∇2δub − δub · ∇ub0

= −2∇2δu0 + (∇ub0 + ∇uT
b0

) · δu0 + ∇δp0. (80)

Clearly, δub should have the same phase as δu0 and can also
be written as

δub = yex + (A2 + B2)P(y)ex + (A2 − B2)Q (81)

where Q = (Q1(y) cos(2kz), Q2(y) cos(2kz), Q3(y) sin(2kz)).
Q satisfies the divergence free condition. Both P and Q satisfy
the homogeneous boundary conditions at y = ±1. For i =
1 and 2, Eq. (77) gives

(1 + b1Rec)
∫ 1

−1
UV dy + (A2 + B2)

∫ 1

0
P′UV dy

= ±(A2 − B2)J , (82)

where the plus and minus signs before (A2 − B2)
are chosen for i = 1 and 2, respectively, and J =∫ 1
−1[−kUW Q1 + 1

2UV Q1
′ + 1

2VW (Q3
′−2kQ2) + 1

2V 2Q2
′ +

kW 2Q3]dy. There is no free parameter in J , which is
generically nonzero such that one can determine the
parameters b1 and A2 (or B2) using Eqs. (58) and (82) (if
J = 0, the solvability conditions are linearly dependent, and
we are left with two equations to determine three unknowns,
which is impossible. However, we are unable to prove J �= 0
always holds although numerics suggests so, like in Ding
and Kerswell [35]). Therefore, the solvability condition (77)
forces the two modes to choose the same amplitude, i.e.,
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A2 = B2, and δub collapses to a one-dimensional profile. This
asymptotic analysis can be applied as Re is increased provided
that no new modes arise; then A2 = B2 always holds such that
the optimal background field remains one-dimensional.

B. Subsequent bifurcations

We assume that the background velocity field ub remains
one-dimensional after mth bifurcation and there are m differ-
ent wave numbers. We are going to show that at (m + 1)th
bifurcation it still remains one-dimensional. The leading order
solutions of the spectral constraint at the (m + 1)th bifurcation
point can be written as

u0
2i−1 = Ai(Ui cos(kiz),Vi cos(kiz),Wi sin(kiz))T , (83)

u0
2i = Bi(−Ui sin(kiy),−Vi sin(kiy),Wi cos(kiy))T (84)

where A2
i = B2

i for i = 1, 2, . . . , m. We are aiming at proving
that A2

m+1 = B2
m+1 at the (m + 1)th bifurcation point.

We assume that the Reynolds number is increased by Re =
Rem+1 + ε at the (m + 1)th bifurcation point and we expand
the variables asymptotically:

ub = U (y)ex + εδub + . . ., (85)

u0 = u0(y)ex + εδu0 + . . ., (86)

ui =
{

u0
i + εu1

i + . . . , i = 1, 2, . . . , 2m,

ε1/2u0
i + ε3/2u1

i + . . . , i = 2m + 1, 2m + 2,

(87)

b = b0 + εb1 + . . . ., (88)

pi = p0
i + εδpi + . . ., (89)

q = q0 + εδq + . . . . (90)

Here, because the nonlinear interaction of the two new modes
is of order O(ε), i.e., u0

i · ∇u0
i = O(ε) (i = 2m + 1, 2m + 2),

the amplitude of the u0
i is of order O(ε1/2). Therefore ui (i =

2m + 1, 2m + 2) is expanded in a fractional power series of
ε. The first order equations for δu0 and δub are

− 2∇2δu0 + b0(U ′δu0ey + δv0ex ) + b1U ′u0ey + ∇δp0

−
[

(2−b0)∇2δub−b1U ′′ex −b0U
∂δub

∂x
+b0U ′δv0ex

]
=0,

(91)

− 2∇2δub − b0

b0 − 1

[
U ′δu0ey + u0∇δub − (U + u0)

∂δu0

∂x

− u0
′(δvb + δv0)ex

]
− b1

b0 − 1
U ′u0ey

+ 2 − b0

b0 − 1
∇2δu0 + b1(2b0 − 3)

(b0 − 1)2
u0

′′ + ∇δq

− b0

2m∑
i=1

(
u0

i · ∇u1
i + u1

i · ∇u0
i

)

−b1

2m∑
i=1

u0
i · ∇u0

i − b0

2m+2∑
i=2m+1

u0
i · ∇u0

i︸ ︷︷ ︸
driving term

= 0. (92)

Note that the part b1
∑2m

i=1 u0
i · u0

i is one dimensional be-
cause A2

i = B2
i for i = 1, 2, . . . , m. Like Eq. (72), the three-

dimensional field is due to the driving term
∑2m+2

i=2m+1 u0
i · ∇u0

i ,
which can be split into a one-dimensional part (proportional
to A2

m+1 + B2
m+1) and a two-dimensional part (proportional to

A2
m+1 − B2

m+1). Therefore, δub has the following general form:

δub = yex +
m+1∑
i=1

(
A2

i + B2
i

)
Pi(y)

+ (
A2

m+1 − B2
m+1

)
Q + �(y, z) (93)

where Pi = (Pi(y), 0, 0)T and Q =
(Q1 cos(2km+1z), Q2 cos(2km+1z), Q3 sin(2km+1z))T , and
� collects all the other wave-number terms (ki �= 2km+1).

The spectral constraint for modes i = 1, 2, . . . , 2m at order
O(ε) and modes i = 2m + 1 and 2m + 2 at order O(ε3/2) is
expressed as

∇ · u1
i = 0, (94)

− 2∇2u1
i + b0

(∇ub0 + ∇uT
b0

) · u1
i + ∇pi

= −b1
(∇ub0 + ∇uT

b0

) · u0
i − b0

(∇δub + ∇δuT
b

) · u0
i .

(95)

Here ub0 = U (y)ex. The key issue is to examine the solvability
conditions for modes i = 2m + 1 and 2m + 2, which requires〈

u0
i · [b1U ′(u0

i ez + v0
i ex

) + b0
(∇δub + ∇δuT

b

) · u0
i

]〉 = 0.

(96)
Hence, the solvability conditions for the first order spectral

constraint for the two modes yield∫ 1

−1
Um+1Vm+1(b1U ′ + 1)dz +

m+1∑
i=1

(
A2

i + B2
i

)

×
∫ 1

−1
Um+1Vm+1Pi

′dz

± (
A2

m+1−B2
m+1

)∫ 1

−1
−km+1Um+1Wm+1Q1+1

2
Um+1Vm+1Q1

′

+ 1

2
Vm+1Wm+1(Q3

′ − 2km+1Q2)

+ 1

2
V 2

m+1Q2
′ + km+1W

2
m+1Q3dz = 0, (97)

where the positive or negative sign before (A2
m+1 − B2

m+1) is
chosen when switching i = 2m + 1 to i = 2m + 2. The coef-
ficient on (A2

m+1 − B2
m+1) in Eq. (97) is generically nonzero as

argued previously, since one has to determine three unknowns
b1, A2

m+1, and B2
m+1 using Eqs. (97) and (58). If the integral

is zero, we will lack one condition to solve b1, A2
m+1, and

B2
m+1. Hence, we have to force A2

m+1 = B2
m+1 such that a

solution can be obtained and the background field ub remains
one dimensional at the m + 1th bifurcation. Surprisingly, this
indicates that it is impossible to lower the upper bound given
by the one-dimensional background field by extending it to a
three-dimensional field.

In the real observations, the flow field not only satisfies
the continuity equation but also the momentum equation.
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However, the present paper suggests that the upper bound
theory can only impose the continuity equation and a surface
averaged momentum equation as constraints. Actually, the
constraints form a strict subset of those implied by the origi-
nal governing equations. Therefore, the Doering-Constantin-
Hopf formalism produces a higher “bound” on the momentum
transfer than that realized in real observations and we are
not able to observe this bound in experiments or numerical
simulations because the optimal solution does not satisfy the
momentum equation. However, this paper does not indicate
that the ultimate scaling Nu ∼ Ta1/2 is not observable. In-
deed, the ultimate scaling Nu ∼ Ta1/2 has been observed in
experimental study and numerical simulations when the wall
is rough [12,13]. These studies [12,13] suggested an effective
approach to achieve the ultimate scaling by destroying the
laminar boundary layers. Nevertheless, the scaling should still
be lower than the upper bound on momentum transfer between
two rough walls (this implies that the prefactor of the upper
bound is larger than that found by experiments and numerical
simulations).

VIII. CONCLUSION

We have investigated the upper bound on angular momen-
tum transport in Taylor-Couette flow using a background ap-
proach. The flow is bounded between a rotating inner cylinder
of radius Ri and a fixed outer cylinder of radius Ro. Both
a one-dimensional background field and a three-dimensional
background field were considered. For the one-dimensional
background field study, a variational problem is formulated
with the continuity equation and the surface-averaged mo-
mentum equation imposed as constraints. A pseudo-time-
stepping method was employed to solve the resulting Euler-

Lagrange equations up to Taylor number Ta = 109 and three
typical radius ratios η = Ri/Ro = 0.5, 0.714, and 0.909 were
examined. The results showed that the dimensionless angular
momentum transport, characterized by a Nusselt number Nu,
is bounded by Nu � cTa1/2. The prefactors c obtained in
the present paper were found to be at least one order of
magnitude lower than the rigorous upper bounds by Doering
and Constantin [25] and Constantin [30].

To lower the bound, we attempted to use a three-
dimensional background flow field such that the full steady
momentum equation is imposed as constraint explicitly. Using
an inductive bifurcation analysis, we found that, due to the
solvability condition of the so-called “spectral constraint,” the
three-dimensional background field always regresses back to
the one-dimensional situation. Therefore, imposing the full
steady momentum equation as constraint is unable to lower
the bound given by the one-dimensional background field.
This is in agreement with the recent study of the upper bound
on heat transport in Rayleigh-Bénard convection by Ding and
Kerswell [35]. The present paper also indicates that there are
no steady three-dimensional solutions of the Navier-Stokes
equation that can produce an upper bound on the angular
momentum transfer because they will not satisfy the spectral
constraint.
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APPENDIX A: RIGOROUS UPPER BOUND

To derive the rigorous upper bound, we follow the technique by Seis [36] instead of assuming a piecewise linear profile as
Doering and Constantin [25] and Constantin [30]. Using Eq. (9), we have

ε = ReiJω

ri
(
r2

o − r2
i

) = Rei

2r2
i + ri

[
r2

(
dv

dr
− v

r

)
− r2uv

]
� Rei

2r2
i + ri

[
r2

(∣∣∣∣dv

dr

∣∣∣∣ +
∣∣∣∣vr

∣∣∣∣
)

+ r2|uv|
]
. (A1)

Here, the outer cylinder is fixed.
Integration of Eq. (A1) from r = ro − l to the outer cylinder r = ro (0 � l � 1) gives∫ ro

ro−l
rεdr �

∫ ro

ro−l

Rei

2r2
i + ri

[
r3

(∣∣∣∣dv

dr

∣∣∣∣ +
∣∣∣∣vr

∣∣∣∣
)

+ r3|uv|
]

dr. (A2)

The term ∫ ro

ro−l
r3|uv|dr �

∫ ro

ro−l
r2

or|uv|dr � 1

2πL
r2

o

(∫ ro

ro−l
ru2drdθdz

)1/2(∫ ro

r0−l
rv2drdθdz

)1/2

, (A3)

which yields ∫ ro

ro−l
r3|uv|dr � 1

4πL
r2

o

∫ ro

ro−l
r(u2 + v2)drdθdz. (A4)

Furthermore, we use the Poincaré inequality:∫
r f 2drdθdz � ro

∫
f 2drdθdz � l2ro

∫
|∇ f |2drdθdz � l2ro

ri

∫
r|∇ f |2drdθdz. (A5)
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Therefore, we have ∫ ro

ro−l
r3|uv|dr � 1

4πL

l2r3
o

ri

∫ ro

ro−l
r|∇u|2drdθdz. (A6)

The term ∫ ro

ro−l

[
r3

∣∣∣∣dv

dr

∣∣∣∣
]

dr � 1

2πL
l1/2r5/2

o

(∫
r

∣∣∣∣dv

dr

∣∣∣∣2

drdθdz

)1/2

� 1

2πL
l1/2r5/2

o

(∫
r|∇u|2drdθdz

)1/2

. (A7)

The term ∫ ro

ro−l
r2|v|dr � 1

2πL
l1/2r3/2

o

(∫
rv2drdθdz

)1/2

� 1

2πL
l3/2 r2

o

r1/2
i

(∫
r|∇u|2drdθdz

)1/2

. (A8)

Therefore, we have

2rilε � Rei

4πL

l2r3
o

r3
i

P + Rei

2πL

(
l1/2r5/2

o

r2
i

+ l3/2r2
o

r5/2
i

)
P 1/2 (A9)

where P 1/2 = ∫ ro

ro−l r|∇u|2drdθdz.
Noting that

ε = 〈|∇u|2〉 + 2
Re2

i

r2
o − r2

i

, (A10)

we have

ε � Rei

4

lr3
o

r4
i

ε + Rei

l1/2

r5/2
o

r3
i

ε1/2. (A11)

We choose the value of l such that the right-hand side is minimal, then l ∼ ε−1/3. Hence, we have ε � const × Re3
i , which yields

Nu � const × Ta1/2.

APPENDIX B: THE EIGENVALUES

Here, we show the numerical evidence that the most unstable mode of the spectral constraint is always x independent (see
Fig. 9). To check the spectral constraint Eqs. (23) and (24), we introduce the disturbance in the form of

û = ûmn exp(imθ + iknz). (B1)

When a background flow field is obtained numerically, we can check if the spectral constraint is satisfied for all m and kn.

n

-l
n(

1-
λ)

0 50 100 150 200 250-6

-5

-4

-3

-2

-1

0

m

FIG. 9. The shifted eigenvalue vs the wave number n of the Taylor-Couette flow at η = 0.99 and Re = 104. The aspect ratio 	 = 10 and
the azimuthal wave number is increased from m = 0 to 300.
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