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Stability boundaries for the Rayleigh-Taylor instability in accelerated elastic-plastic solid slabs
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The linear theory of the incompressible Rayleigh-Taylor instability in elastic-plastic solid slabs is developed
on the basis of the simplest constitutive model consisting in a linear elastic (Hookean) initial stage followed by a
rigid-plastic phase. The slab is under the action of a constant acceleration, and it overlays a very thick ideal fluid.
The boundaries of stability and plastic flow are obtained by assuming that the instability is dominated by the
average growth of the perturbation amplitude and neglecting the effects of the higher oscillation frequencies
during the stable elastic phase. The theory yields complete analytical expressions for such boundaries for
arbitrary Atwood numbers and thickness of the solid slabs.
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I. INTRODUCTION

The interest on the Rayleigh-Taylor instability (RTI) in
accelerated solids has grown considerably since the first the-
oretical analysis by Miles in 1966 because of its relevance
in many physical scenarios [1–53]. It is central to a wide
variety of experiments on high-energy-density (HED) physics
involving the implosion of spherical and cylindrical solid
shells, which includes the different approaches to inertial
confinement fusion, as well as the acceleration of planar plates
[54–59].

There are at present a significant number of methods to
drive these experiments in different geometries and regimes
that include the use of high explosives (HEs) either deto-
nated in close contact with the solid plate or shell [52,53]
or by allowing a separation gap in order to ensure a gentler
acceleration of the solid by the detonation products [3,7]. A
similar explosion effect can also be produced by heating a
reservoir with a strong shock driven by an intense laser pulse
[19,23,24,27,33,34]. In addition, the ablation process induced
by thermal radiation has also been used for the acceleration
of planar slabs by generating a slowly rising pressure pulse
that prevents the shock formation [19,24]. Pulse shaping is
also possible with the magnetic pressure generated by intense
pulsed electrical currents, which allows for the acceleration of
solids slabs without complete melting [20–22]. More recently
a new approach has been proposed based on the use of an
intense heavy ion beam pulse which heats the absorber region
surrounding a cylindrical shell, which is thus accelerated
inwards by the absorber expansion in a process that somewhat
resembles the implosions driven by HEs [60–70].

In addition, RTI in elastic-plastic (EP) solids seems to play
a role in geophysical processes related to Earth plate tectonics
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by participating in the removal of portions of the mantle
lithosphere through a dynamical interaction taking place at the
interface between the lithosphere and the underlying mantle
[36,37]. RTI in solids could also be relevant in the crust of
neutron stars [10,11], and it may trigger the onset of star-
quakes in the strongly magnetized neutron stars known as
magnetars [47,49,50].

A distinguishing characteristic of RTI in EP solids is the
dependence of the stability conditions on the initial perturba-
tion amplitude ξ0 in addition to the perturbation wavelength
λ, so that both of them control the stability boundaries. The
first indication of this singular trait came from the pioneer
experiments by Barnes et al. [3,7]. But it was Drucker who
first realized that at least some of those experimental results
had to be interpreted in terms of the influence of the initial per-
turbation amplitude [5,6]. This issue finally became clear after
the extensive two-dimensional (2D) numerical simulations
performed by Swegle and Robinson showing stability maps
in the space (ξ0, λ) that determine the stability boundaries for
the RTI in EP solids [8,9]. However, it was difficult to discern
from those simulations the physical mechanisms underlying
such behavior, mainly because of the complexities of the phys-
ical conditions present in the numerical simulations arising
from the existence of an initial phase dominated by the shock-
driven Richtmyer-Meshkov instability and from the transient
character of the pressure driving the slab acceleration, as well
as from the previous transient phase that takes place before
the slab is accelerated as a whole.

To shed some light on the physical process determining
these stability maps, Nizovtzev and Raevskii [12–15] devel-
oped an heuristic model in which they assumed that plastic
flow was the only requirement for the onset of the instability.
This assumption was put in doubt by Terrones [30], and it
was later shown by Piriz et al. [31,32] that plastic flow was
a necessary but not sufficient condition for the instability.
In any case, leaving aside the “correction factor” introduced
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by Nizovtzev and Raevskii with the only purpose to fit the
Drucker’s stability criterion, their model would actually be
appropriate for estimating the boundary of the transition from
the RTI phase dominated by the elasticity to the phase domi-
nated by the plastic flow (EP transition).

The most recent studies of the stability boundaries were
performed by Piriz et al. [31,32,38,39] for semi-infinite media
on the basis of an approximate irrotational model for the
evolution of the instability during the elastic phase. Extensive
comparisons with 2D numerical simulations have shown an
excellent agreement with this relatively simple model. But,
unfortunately, the basic assumption of irrotational elastic flow
does not hold anymore when the more realistic case of finite
thickness media is considered [46,47].

It seems to exist an implicit but rather common belief that
in realistic situations involving EP solids the initial elastic
phase is so short that its effects should be irrelevant for the
subsequent evolution of the instability. Such a prejudice, such
as happened in the past with the belief that plastic flow was
a sufficient condition for instability, seems to have interfered
with the progress in the understanding of the RTI in EP solids.
However, as was shown in Refs. [31,32] and as will also
be shown in the present work for arbitrary slab thicknesses,
regardless of how short the elastic phase can be, it cannot
be avoided. And it is just such a phase that actually governs
the dependence of the maximum stable initial perturbation
amplitude with the perturbation wavelength, which is the main
characteristic of the stability boundaries for the RTI in EP
solids. As a consequence, these boundaries depend not only
on the solid yield strength Y controlling the instability after
plastic flow, but also have to depend on the shear modulus G
that controls it during the early elastic phase.

Certainly, the relevance of this initial elastic phase can be
seen as a quite unfortunate feature for the design of exper-
iments on HED physics because a criterion based only on
the initial perturbation amplitude would allow for conceiving
completely stable experiments provided that a sufficiently
good surface finish of the solid slab is ensured, irrespective
of the wavelength spectrum of the perturbations. As we will
see later, at least some of such an ideal situation could still be
possible in some particular cases. In fact, as has been already
shown by the theory, in the situations in which the Atwood
number is AT < 1, there exists an instability threshold for
the elastic RTI below which the slab turns out to be stable
for any perturbation wavelength [10,11,47,49,50]. That is,
below this threshold only an amplitude criterion should, in
fact, be satisfied in order to ensure total stability. However, the
requirement of AT < 1 may considerably restrict the possible
means to drive the slab or shell acceleration. As far as we are
aware, the only way at present to have such a situation is by
means of HEs in direct contact with the shell to be accelerated
[53].

However, the foreseen experiments in the Laboratory of
Planetary Sciences (LAPLAS) driven by an intense heavy
ion beam to be realized at the future Facility for Ion and
Antiproton Research (FAIR), presently under construction at
the GSI Helmholtzzentrum für Schwerionenforschung Darm-
stadt (Germany) [60–70], will share this characteristic with
the HE experiments of Ref. [53]. In fact, the role of the HEs
is played in LAPLAS by the annular absorber region, which

surrounds the cylindrical shell, where part of the beam energy
is volumetrically deposited leading to its expansion and to
the consequent implosion of the internal shell. Extensive 2D
numerical simulations have shown that the maximum Atwood
number is Amax

T ≈ 0.4 [67–70]. This feature is expected to
convert LAPLAS into a rather unique tool for the study of
the physics of HED matter.

II. INSTABILITY LINEAR ANALYSIS

We consider the 2D situation schematically represented
in Fig. 1 in which a solid slab of density ρ2 and thickness
h overlays an ideal fluid of density ρ1 < ρ2 that occupies
the semispace y � 0. The slab is assumed to be an ideal
elastic-plastic solid occupying the region −h � y � 0 that is
characterized by a shear modulus G and a yield strength Y
[31]. The region above the slab (y � −h) is assumed to be
empty or filled with a very tenuous ideal gas of density ρ3 �
ρ1. The whole system is under the action of a uniform gravity
acceleration g = gey = −∇ϕ (ey is the unitary vector in the
vertical direction and ϕ is the gravitational potential). The
media are also assumed to be incompressible and immiscible.

The analysis starts with the continuous media equations for
the conservation of mass and momentum:

dρn

dt
+ ρn

∂vni

∂xi
= 0, (1)

ρn
dvni

dt
= −∂ pn

∂xi
+ ρngi + ∂σ

(n)
ik

∂xk
, (2)

where n = 1, 2, 3 refer, respectively, to the bottom, middle,
and top regions, and we have used index notation for Cartesian
vectors and tensors so that i = 1, 2, 3 indicate the space
coordinates x, y, z, and gi = g for i ≡ y and gi = 0 otherwise.
In addition, vni, ρn, and pn are, respectively, the ith velocity
component, density, and pressure; and σ

(n)
ik is the deviatoric

part of the stress tensor �
(n)
ik = −pnδik + σ

(n)
ik of the medium

n (δik is the Kronecker δ). We will interchange vector and
index notation to the best convenience of the presentation. On
the other hand, dM/dt represents the material derivative of a
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b
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FIG. 1. Schematic of the two-interfaces system formed by the
elastic-plastic slab on the top of a semi-infinite ideal fluid.
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magnitude M:

dM

dt
= ∂M

∂t
+ vni

∂M

∂xi
= 0. (3)

Following Refs. [47,50] we linearize the previous equations
by expressing every magnitude M as M = M0 + δM, where
M0 corresponds to the equilibrium value of M and δM �
M0 is its perturbation. Then, by assuming incompressible
perturbations (δρn = 0), we get the linearized equations for
mass and momentum conservation:

∂ (δvni )

∂xi
= 0, (4)

ρn
∂ (δvni )

∂t
= −∂ (δpn + ρnδϕn)

∂xi
+ ∂S(n)

ik

∂xk
, (5)

where δϕn = −ρngηny (ηny is the vertical component of the
displacement ηn, and η̇n = δvn), and we have defined δσ

(n)
ik ≡

S(n)
ik . For the ideal media (n = 1, 3), we have S(1)

ik = S(3)
ik = 0,

and for the elastic-plastic slab, we assume as in Refs. [31,32]
the nonlinear Prandtl-Reuss model for which the solid behaves
like a perfectly elastic Hookean (linear) solid for the smaller
strains, and it behaves like a rigid-plastic solid otherwise.
Thus, in the elastic phase, we have

∂S(2)
ik

∂t
= 2Gėik, eik = 1

2

[
∂ (δη2i )

∂xk
+ ∂ (δη2k )

∂xi

]
, (6)

where the upper dot indicates time derivative and eik is the
strain tensor.

For the plastic phase we write [31,32,71]

S(2)
ik =

√
2

3

ėik

‖ėik‖βY, (7)

where β > 1 is a numerical factor that modifies the usual
von Mises criterion for taking into account the fact observed
by Drucker [5,6] that, in order to consider the instability of
the system, it is necessary that it has already overcome the
intermediate phase of contained plastic flow determined by
the usual von Mises flow criterion. Therefore, we will assume
here that the transition to the regime in which RTI is controlled
by the plastic flow occurs when the phase of unrestricted
plastic flow has been achieved. As discussed in Ref. [72],
during the intermediate phase of contained plastic flow above
mentioned, the elastic action still plays a major role and, in
practice, it can be considered as part of the initial elastic phase.
We will come back later to this point.

A. Displacement field and growth rate in the elastic phase

The velocity field in the asymptotic regime and the in-
stability growth rate for the RTI in a finite thickness elastic
medium overlying a semi-infinite ideal medium were obtained
in Ref. [47]. Here we will summarize those results, and we
will present them in a somewhat different manner more ap-
propriate for deriving the differential equations for the motion
of the interfaces at y = 0 and y = −h. Then, as in Ref. [47],
we use the Helmholtz decomposition, but here we write it for
the displacement field during the elastic phase [73,74]:

η2 = ∇φ2 + ∇ × (ψ2ez), (8)

where φ2 and ψ2 = ψ2ez are, respectively, the Lamé scalar
and vector potentials functions.

After substitution of Eq. (8) into Eqs. (4) and (5), we get

∇2φn = 0, (9)

∇
(

∂2φn

∂t2
+ δpn

ρn
+ δϕn

)
+ ∇

×
[
∂2ψn

∂t2
− G

ρn
∇2(ψnez)

]
= 0, (10)

where for the ideal medium in the region y � 0 it is ψ1 = 0.
As is well known, there is a degree of freedom that allows

us to choose the potentials φn and ψn such that they are
solutions of the equations system formed by Eq. (9) and the
two following ones [73,74]:

ρn
∂2φn

∂t2
+ δpn − ρngηny = 0, (11)

ρ2
∂2ψ2

∂t2
= G∇2ψ2. (12)

By considering 2D perturbations, we can write the following
convenient expressions for the potential functions in the re-
gion −h � y � 0 [47,49,50]:

φ2 = a cosh ky + b cosh k(h + y)

sinh kh
sin kx, (13)

ψ2 = c sinh �y + d sinh �(h + y)

sinh �h
cos kx, (14)

where k = 2π/λ is the perturbation wave number,

� =
√

k2 + γ 2
eiρ2

G
, (15)

and a, b, c, and d are time functions such that

a ∝ b ∝ c ∝ d ∝ F (t ) =
∑

i

Qie
γeit , (16)

with Qi being constants, and γei the growth rate that will be
determined by the boundary conditions on both interfaces. In
addition, the potential φ1 associated to the displacement field
in the region y � 0 reads (ψ1 = 0)

φ1 = a1e−ky sin kx, a1 ∝ F (t ). (17)

In order to find all the possible values of the growth rate
γei we impose boundary conditions on the velocities and the
stresses at y = 0 and y = −h. Namely, we have [47,50]

δv1y(0) = δv2y(0) = η̇a(x, t ), δv2y(−h) = η̇b(x, t ), (18)

−δp1(0) = −δp2(0) + S(2)
yy (0), (19)

−δp2(−h) + S(2)
yy (−h) = 0, (20)

S(2)
xy (0) = S(2)

xy (−h) = 0, (21)

where

ηa(x, t ) = η2y(0) = ξa(t ) sin kx, (22)

ηb(x, t ) = η2y(−h) = ξb(t ) sin kx, (23)
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and δpn (n = 1, 2) are given by Eq. (11). Equations (18) and
(21) yield [47,50]

ȧ1 = −(ḃ + ḋ ), (24)

c = − 2k2

�2 + k2
a, d = − 2k2

�2 + k2
b, (25)

kȧ = −�2 + k2

�2 − k2
ξ̇b, kḃ = �2 + k2

�2 − k2
ξ̇a. (26)

On the other hand, Eqs. (19) and (20) lead to the following
forms for the momentum balance at y = 0 and y = −h, re-
spectively:

ρ2

(
ξ̈a coth kh − ξ̈b

sinh kh

)
+ S′

yy(0)

= ρ2kgξa − ρ1(ξ̈a + kgξa), (27)

ρ2

(
−ξ̈b coth kh + ξ̈a

sinh kh

)
+ S′

yy(−h) = ρ2kgξb, (28)

where

S′
yy(0) = 2k2G

{
ξ̈a − ξ̈a0

γ 2
ei

coth kh − ξ̈b − ξ̈b0

γ 2
ei sinh kh

+ �2 + k2

�2 − k2

[
(ξa − ξ0) coth kh − ξb

sinh kh

]

− 2k�

�2 − k2

[
(ξa − ξ0) coth �h − ξb

sinh �h

]}
, (29)

S′
yy(−h) = 2k2G

{
− ξ̈b − ξ̈b0

γ 2
ei

coth kh + ξ̈a − ξ̈a0

γ 2
ei sinh kh

+ �2 + k2

�2 − k2

[
−ξb coth kh + (ξa − ξ0)

sinh kh

]

− 2k�

�2 − k2

[
−ξb coth �h + (ξa − ξ0)

sinh �h

]}
. (30)

By performing the time integral of Eq. (6) we have imposed
that the displacement field η(x, y, t ) be irrotational at t = 0
in order to ensure initially stress free conditions in the solid
slab (ψ2(t = 0) = 0). Since η(x, y, t ) is a rotational field for
t > 0, the expressions for S′

yy in Eqs. (27) and (28) include a
dynamical component given by the first two terms of Eqs. (29)
and (30) containing the accelerations ξ̈a and ξ̈b, which will
contribute to the total loading leading to plastic flow. It may
worth noticing that when S′

yy(0) = S′
yy(−h) = 0, Eqs. (27) and

(28) reduce to the equations found by Goncharov et al. for the
case of a finite thickness ideal medium [75].

In addition, we have taken the following initial conditions
(at t = 0):

ξa(0) = ξ0, ξb(0) = 0, ξ̇a(0) = ξ̇b(0) = 0,

ξ̈a(0) = ξ̈a0, ξ̈b(0) = ξ̈b0. (31)

The solutions of the differential equations given by Eqs. (27)
to (30) can be found in the usual manner by proposing an ex-
ponential form ξa ∝ ξb ∝ eγeit for the homogeneous equations
and adding to it a particular solution.

Introducing this exponential form into the homogeneous
parts of Eqs. (27) and (28), we can easily see that the

asymptotic equations obtained in Ref. [47] are retrieved
[Eqs. (30) and (28) in that reference, respectively].

Therefore, all the possible values γei of the growth rate
are given by the dispersion relation such as it was found in
Ref. [47]:

(2κ2 + σ 2)4 + 16κ6(κ2 + σ 2) − 8κ3
√

κ2 + σ 2(2κ2 + σ 2)2

× [coth ακ coth α
√

κ2 + σ 2

− csch ακ csch α
√

κ2 + σ 2]

= κ2σ 4− 1 − AT

1 + AT
σ 2(κ + σ 2)[κσ 2+(2κ2 + σ 2)2 coth ακ

− 4κ3
√

κ2 + σ 2 coth α
√

κ2 + σ 2], (32)

where the following dimensionless magnitude have been in-
troduced:

κ = k

k0
, σ = γei√

k0g
, k0 = ρ2g

G
,

α = ρ2gh

G
, AT = ρ2 − ρ1

ρ2 + ρ1
. (33)

As was shown in Ref. [47], Eq. (32) is a transcendental
equation for σ 2 as a function of κ with α and AT as parame-
ters, and σ 2 is always a real number. Furthermore, Eq. (32)
has a unique real and positive root for κ � κc [17,47,50],
where κc = kc/k0 is the dimensionless cutoff wave number,
for which σ 2 = 0, that is given by the following expression
[47]:

2AT

1 + AT
α2 − 1 − AT

1 + AT

w(2w + sinh 2w)

sinh2 w
α

− 4w2

[
1 −

( w

sinh w

)2
]

= 0, (34)

where w = kch = ακc.
Instead, for κ � κc when the system is stable and σ 2 < 0,

Eq. (32) has an infinite number of roots [17], and the general
solutions of the homogeneous parts of Eqs. (27) and (28) are
given by the linear combination of the solutions corresponding
to each one of these roots. Then the summation in Eq. (16)
extends to infinity, and the general solution for κ � κc consists
in a multimodal oscillation [30].

B. Growth rate in the plastic phase

Since for the plastic phase we are assuming classical plas-
ticity, the displacement field in this phase must be irrotational
[76]. Then the Lamé potentials now will be given by Eqs. (13)
and (17), and it will be ψ2 = 0. On the other hand, the
boundary conditions to be satisfied are still given by Eqs. (18)
to (21).

In addition, as was discussed by Drucker [5], as well as
in the books by Chen [72,77], we need to take into account
that between the purely elastic phase and the late phase of
unrestricted flow (plastic collapse), there is an intermediate
stage of contained flow in which the elastic effects still play
a major role. A description including such an intermediate
phase is far too complicated and of no value for practical
applications. Furthermore, the evolution of the RTI after the
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initial elastic phase can be expected to be governed by the
late phase of plastic collapse, such as happens in most of
the problems in soil mechanics [72,77]. In this regard, the
methods of limit analysis can be suitable for describing the
plastic phase evolution of the instability.

Following Drucker and the methods of the limit analy-
sis, we take the average of Eqs. (19) and (20) over half a
wavelength and consider the sinusoidal perturbations at each
interface like a set of bumps of height twice the perturbation
amplitudes. Thus, such equations reduce to the following
system for the momentum balance at y = 0 and y = −h,
respectively:

ρ2

(
ξ̈a coth kh − ξ̈b

sinh kh

)
+ 2Y k = ρ2kgξa − ρ1(ξ̈a + kgξa),

(35)

ρ2

(
−ξ̈b coth kh + ξ̈a

sinh kh

)
+ 2Y k = ρ2kgξb, (36)

where we have considered that the unrestricted plastic flow oc-
curs when the loading at the bottom level of the interface (the
valleys) averaged over half a wavelength is (1 + π/2)Y (λ/2)
[5,6,72,77], and that (2/k)

∫ π

0 sin u du = (4/π )(λ/2), with
(1 + π/2)(π/4) ≈ 2.

As in the case of the equations for the elastic phase, the
general solutions of Eqs. (35) and (36) can be written each
one as the sum of the solution of the homogeneous equation
plus a particular solution. And, once again, the solutions for
the homogeneous equations can be found by proposing an ex-
ponential form: ξa ∝ ξb ∝ eγpi , where γpi is the corresponding
growth rate for the plastic phase and is given by the solutions
of the following dispersion relation corresponding to an ideal
fluid slab [50,75,78]:(

κ

σ 2
p

)2

− 1 =
(

κ

σ 2
p

+ 1

)
1 − AT

1 + AT

(
κ

σ 2
p

+ coth ακ

)
, (37)

where we have used the dimensionless magnitudes defined in
Eq. (33). As is evident, this equation has two roots for σ 2

p :

σ 2
p1 = 2AT κ

1 + AT + (1 − AT ) coth ακ
, σ 2

p2 = −κ. (38)

Therefore, the asymptotic solution in the plastic phase will
consist in a secondary periodic oscillation superimposed to a
primary average behavior controlled by the linear combina-
tion of the exponentials e±σp1τ .

III. STABILITY BOUNDARIES

A. Average evolution of the perturbation amplitudes

As was shown in Refs. [31,41], a necessary condition for
the stability of the system is that it has to be stable during the
elastic phase; that is, it must be κ � κc (−�2 ≡ σ 2 < 0). In
such a case, the amplitude of the perturbation at the interfaces
y = 0 and y = −h will consist in a multimodal oscillation
containing an infinite number of frequencies corresponding
to the infinite roots of Eq. (32). As was first discussed by
Plohr and Sharp [17], this is essentially because the dispersion
relation goes asymptotically to infinity when α

√
κ2 − �2 =

imπ , where m is an integer number. In such a case we have

�2 = κ2 + m2π2

α2
, (39)

and, therefore, there is a root in between successive asymp-
totes for which �2 � κ2. In addition, there is another root for
which �2 < κ2 that constitutes the smallest value of �2. For
instance, in the limit α → ∞ it is found �2 = r2κ2, where r2

is the solution of the implicit equation 2(1 + AT )
√

1 − r2 =
r2(1 + √

1 − r2) (r2 = 0.9126 for AT = 1, and r2 = 0.7044
for AT = 0). Similar values are found from the numerical
solution of Eq. (32) for finite α and κ � κc.

Therefore, we can consider that for κ � κc the perturbation
amplitudes at y = 0 and y = −h can be written as the sum
of an average oscillation determined by the lowest frequency,
plus infinite superimposed oscillation modes of higher fre-
quencies. For the present purposes, we will assume that only
such an average amplitude of the perturbation determines the
stability boundaries, and we consider all the higher frequen-
cies as a kind of “noise” that cannot rule the bulk evolution
of the instability. We notice that the numerical simulations
reported in Ref. [8] displaying ξ (t ) widely support this as-
sumption. This average perturbation amplitude of the interface
at y = 0 will be the first to reach the boundary of plastic
flow at the transition time tT , and it will happen before it will
achieve its absolute maximum. Thus, for times t > tT the slab
is susceptible to be unstable.

On the other hand, for times shorter than the transition time
tT we will write the average amplitudes at y = 0 and y = −h,
respectively, as follows (t � tT ):

za − 1 = (z1 − 1)(1 − cos �τ ), (40)

zb = z2(1 − cos �τ ), (41)

where we have used the initial conditions given by Eq. (31),
and � is now the smallest oscillation frequency given by
Eq. (32). In addition, we have introduced the following def-
initions:

za = ξa

ξ0
, zb = ξb

ξ0
, τ = t

√
k0g,

� = iσ = ωe√
k0g

, z1 − 1 = ξ̈a0

ξ0ω2
e

, z2 = ξ̈b0

ξ0ω2
e

. (42)

The initial accelerations ξ̈a0 and ξ̈b0 are calculated from
Eqs. (27) and (28) by solving at t = 0:

ξ̈b0

ξ̈a0
= 1

cosh ακ
,

ξ̈a0

ξ0ω2
e

= σ 2
p1

�2 tanh ακ
. (43)

In a similar manner in the plastic phase (t � tT ) the average
amplitude evolves governed by the growth rate σp1 given by
Eq. (38). For our purposes we need to pay attention only to the
evolution of the interface at y = 0. Then, for t � tT , we have

za = 1 + AT

2AT

1

ξ ∗ + K1eσp1τ + K2e−σp1τ , (44)

where the first term is a particular solution of Eq. (35) in
dimensionless form, and

ξ ∗ = ρ2gξ0

2Y
. (45)
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The constants K1 and K2 are determined by the matching
conditions at the time t = tT with Eq. (40) for the elastic
phase.

On the other hand, from Eqs. (27) and (35) we can find
the plastic flow condition which yields the transition time tT :
S′

yy(0) = 2Y k. For this, we notice first that from Eqs. (40) and
(41) we can write the following relationships:

ξ̈aT − ξ̈a0 = γ 2
e (ξaT − ξa0), (46)

ξ̈bT − ξ̈b0 = γ 2
e (ξbT − ξb0), (47)

where ξ̈b(tT ) = ξ̈bT and ξ̈a(tT ) = ξ̈aT . Thus, the plastic flow
condition at y = 0 can be written as follows:

2kGξ0[C(zaT − 1) − AzbT ] = 2Y, (48)

where

C = − 2

�2
[(κ2−�2) coth ακ−κ

√
κ2−�2 coth α

√
κ2−�2],

(49)

A= − 2

�2
[(κ2−�2) csch ακ−κ

√
κ2−�2 csch α

√
κ2−�2].

(50)

In the previous equations we have used once again the defini-
tions given by Eq. (33) and (42).

Then we rewrite Eq. (48) in terms of dimensionless mag-
nitudes as follows:

C(zaT − 1) − AzbT = λ∗

ξ ∗ , λ∗ = ρ2gλ

4πG
= 1

2κ
, (51)

where zaT = za(t = tT ) and zbT = zb(t = tT ).
Since (z1 − 1) and z2 are particular solutions of Eqs. (27)

and (28), its relationship can be written in terms of A and C as
follows:

z2 = A

C + λ∗ (z1 − 1). (52)

Thus, Eq. (51) yields

zaT − 1 = λ∗

ξ ∗
C + λ∗

C2 − A2 + Cλ∗ , (53)

and the time τT = tT /t0 for the transition to the plastic regime
turns out as

cos �τT = 1 − λ∗

ξ ∗
C + λ∗

C2 − A2 + Cλ∗
1

z1 − 1
. (54)

Now we can calculate the constants K1 and K2 in Eq. (44) by
matching it with Eq. (40) at τ = τT . For this, the continuity of
zaT and żaT is imposed, yielding

1 + λ∗

ξ ∗
C + λ∗

C2 − A2 + Cλ∗

= 1 + AT

2AT

1

ξ ∗ + K1eσp1τT + K2e−σp1τT , (55)

(z1 − 1)� sin �τT = σp1[K1eσp1τT − K2e−σp1τT ]. (56)

By solving for K1 and K2, we get

2K2 = 1 + λ∗

ξ ∗
C + λ∗

C2 − A2 + Cλ∗ − 1 + AT

2AT

1

ξ ∗

− (z1 − 1)
�

σp1
sin �τT , (57)

2K1 = 1 + λ∗

ξ ∗
C + λ∗

C2 − A2 + Cλ∗ − 1 + AT

2AT

1

ξ ∗

+ (z1 − 1)
�

σp1
sin �τT . (58)

B. Stability boundaries

As noticed in Ref. [31] the interface at y = 0 will be stable
provided that the (average) amplitude ξa reaches an absolute
maximum at a certain time t = tm � tT ; that is, it will be stable
if ξ̇a(tm) = 0 and ξ̈a(tm) � 0. In other words, the conditions
for marginal stability determining the stability boundaries
read

ża(τm) = 0, z̈a(τm) = 0 (τm � τT ). (59)

These conditions are satisfied only when K2 = 0, and then
the following equation for the curve of marginal stability is
obtained:

1 + 1

ξ ∗

[
λ∗(C + λ∗)

C2 − A2 + Cλ∗ − 1 + AT

2AT

]
= σp1

�

sin �τT

tanh ακ
, (60)

sin �τT =
√

1 −
[

1 − 1

ξ ∗
λ∗(C + λ∗)

(C2 − A2 + Cλ∗)

�

σp1
tanh ακ

]2

,

(61)

where we have used Eq. (42) and (43) for expressing (z1 − 1),
and A = A(λ∗) and C = C(λ∗) are given by Eqs. (49) and (50)
[λ∗ = 1/(2κ )].

Equation (60) can be rewritten as a quadratic equation for
ξ ∗ = ξ ∗(λ∗) with α and AT as parameters:

ξ ∗2 + F1(λ∗)ξ ∗ + F2(λ∗) = 0, (62)

where

F1(λ∗) = 2

[
H

(
1 − 1

tanh ακ

)
− 1 + AT

2AT

]
, (63)

F2(λ∗) =
(

H − 1 + AT

2AT

)2

+
(

H�

σp1

)2

, (64)

with

H = λ∗(C + λ∗)

C2 + A2 + Cλ∗ , (65)

σp1 given by Eq. (38), and � being the smallest root of
Eq. (32) for κ � κc.

Equation (62) completely determines the stability bound-
aries in the plane (ξ ∗, λ∗) for the RTI in an accelerated EP
solid slab, provided that it has already reached a regime in
which it is accelerated as whole. Such a regime may be
preceded by an early phase of Richtmyer-Meshkov instability
and/or a transient phase in which a pressure wave is traveling
inside the slab and it is not yet accelerated as a whole. In such
cases, these previous phases will set the initial conditions for
the late RTI phase.
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C. Plastic flow boundaries

We can also calculate the boundaries for the EP transition
by noticing that it must happen as the latest when the per-
turbation amplitude at y = 0, oscillating in the stable regime,
reaches its maximum value:

zmax
a − 1 = ξ̈a0

ξ0ω2
e

= zaT − 1. (66)

Then from Eqs. (43) and (53), we get

ξ ∗
EP = tanh ακ

2

(
�

σp1

)2
λ∗(C + λ∗)

C2 + A2 + Cλ∗ , (67)

where ξ ∗
EP is the value of ξ ∗ for which the transition from the

elastic to the plastic regime takes place.

IV. RESULTS OF THE THEORY AND DISCUSSION

A. Stability and plastic flow boundaries

We have represented in Fig. 2 the stability boundaries
ξ ∗(λ∗) for the RTI in accelerated EP solids, such as given
by Eqs. (62) to (65), as well as the corresponding boundaries
ξ ∗

EP(λ∗) for the EP transition given by Eq. (67), for three
different values of the Atwood number: AT = 1, 0.8, and 0.4,
and for different values of the dimensionless thickness α of
the slab.

For AT = 1, Fig. 2(a) shows that, as could be expected,
the stability region becomes smaller for the thinner slabs as a
consequence of the reduction of the cutoff wavelength, in the
elastic regime. In fact, this behavior was already predicted by
the models of Refs. [12–15], and it was physically explained
in Refs. [46,47]. Furthermore, it can be seen that the curves
for the different values of α converge for small values of λ∗,
which correspond to the limit of thick slabs, independently of
the particular value of the slab thickness h. In addition, as was
already found in Refs. [31,32] on the basis of an irrotational
model, for λ∗ → 0, the dimensionless initial amplitude of the
perturbation ξ ∗ → 1, thus retrieving the Drucker’s criterion
[5,6].

In addition, the EP transition boundaries follow a similar
tendency, always being below the stability boundaries, and
reach a maximum value ξ ∗max

EP = 0.5 for λ∗ = 0 such as was
found in Refs. [31,32] for semi-infinite media (α � 1). It is
interesting to notice that by considering that plastic flow was a
sufficient condition for instability, the model of Refs. [11–14]
artificially introduced a “correction factor” to force it to satisfy
the Drucker’s criterion for λ∗ = 0, when they actually were
dealing with the EP transition boundaries. However, without
such a “correction factor,” their model correctly predicts
ξ ∗max

EP = 0.5 (for AT = 1).
For AT < 1 [Figs. 2(b) and 2(c)], the results are qualita-

tively similar to the previous ones provided that α is above
the critical value α∗ = 2(1 − AT )/AT , which determines the
instability threshold below which the slab is stable in the
elastic regime for all the perturbation wavelengths, such as
was reported in Ref. [47] (see also Refs. [10,11,49,50]).

Below the instability threshold the change of the bound-
aries with α still follows the same tendency as for AT = 1
for the smaller dimensionless wavelengths. But now the cutoff
wavelength λ∗

c goes to infinity, though we have ξ ∗(λ∗) → 0 as
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130c)
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λ∗
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ξ∗
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(a)

0
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0.08

0.1

1.3 1.5 1.7 1.9
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b) c)
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1.125100d)
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1+ AT

2AT

λ∗

ξ∗

ξ∗
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(b)

FIG. 2. Boundaries for stability (full lines) and for the elastic-
plastic transition (dotted lines) for three values of the Atwood
number and for different values of the parameter α indicated on the
figures: (a) AT = 1, (b) AT = 0.8, and (c) AT = 0.4.

λ∗ → ∞. This is the case of curves (a) in Figs. 2(a) and 2(b).
That is, although the slab would be stable for any perturbation
wavelength, the maximum amplitude allowed to remain below
the stability boundaries decreases monotonically with λ∗.
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Nevertheless, in practice, the maximum possible value of λ∗
is limited by the lateral dimensions of the slab; for instance,
it is the case of spherical or cylindrical shells for which
the perimeter of the shells imposes the maximum possible
perturbation wavelength.

On the other hand, the maximum value of ξ ∗ becomes
higher for AT < 1, and the maximum value of ξ ∗

EP is always
half of ξ ∗max(for λ∗ = 0):

ξ ∗max = 2ξ ∗max
EP = 1 + AT

2AT
. (68)

In summary, for AT < 1, there exists the possibility to have
total stability provided that the maximum perturbation ampli-
tude can be made sufficiently small.

B. Some particular cases

We can better appreciate the previous facts with some
particular examples. In Fig. 3 we show two particular cases
corresponding to AT = 1 and AT = 0.4 [Figs. 3(a) and 3(b),
respectively]. Figure 3(a) corresponds to the experiment re-
ported in Ref. [22] of a cylindrical Al shell imploded by
the magnetic pressure generated by a high-intensity pulsed
current. In the figure we have also shown the values of the
parameters we have taken for the calculations, some of which
may not be very accurate because we had to infer them from
the reported information, which may be somehow incomplete
for our purposes. However, we think that the resulting picture
is not far from the one corresponding to the experimental
situation. As can be seen in Fig. 3(a) for AT = 1, the stability
boundaries are limited in the horizontal axis by a cutoff value
λ∗

c ≈ 0.34 that is much less than the maximum value λ∗max =
1.2 determined by the size of the cylindrical shell, which
would not allow for placing perturbation wavelengths larger
than 2πR (where R is the radius of the cylinder). We have
estimated a pretty good symmetry ξ0/h ≈ 0.00025, but since
λ∗max > λ∗

c , there is always a range of wavelengths that is out
of the stable region in the stability map.

In Fig. 3(b) we show the case of the LAPLAS experiment
that is being designed at the GSI Darmstadt (Germany) for
performing experiments on HED physics driven by an intense
heavy ion beam delivered by the new facility FAIR presently
under construction [60–70]. According to the 2D numerical
simulations, the maximum Atwood number during the im-
plosion process is Amax

T ≈ 0.4, and the experiment will work
below the instability threshold (αLAPLAS ≈ 0.5 < α∗ ≈ 3). In
addition, because of the relatively small size of the cylindrical
shell, it is λ∗max ≈ 0.7, so that the experiment will remain
within the stability boundaries provided that the symmetry
level can be kept below 2%.

There are several differences between the liner driven by
magnetic pressure and the one driven by heavy ion beams.
But the fundamental one seems to be the possibility to keep
the maximum Atwood number at a relatively small value in
the latter case. This is a parameter that it is improbable that it
can be modified in experiments with other drivers.

An exception, however, is the case of the shell implosions
driven by the detonation products of HEs that are in contact
with the shell, as in the experiments reported in Ref. [53].
These experiments seem to work in a very similar manner as
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0 0.1 0.2 0.3 0.4 0.5
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ρ = 2.9 g/cm3

G = 27 GPa
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g = 1011 cm/s2

h = 0.4 cm
R = 2.35 cm
α = 0.4

unstablestable

0.025% symmetry

ξ∗

λ∗

λ∗

max
= 1.2

(a)

AT = 1

0

0.4

0.8
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1.6

0 0.5 1 1.5 2
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2% 

symmetry

λ∗

ξ∗

AT
max = 0.4

1+ AT

2AT

W

ρ = 19.5 g/cm3

G = 160 GPa
Y = 2.2 GPa

g = 2x 1012 cm/s2

h = 0.02 cm
R = 0.06 cm
α = 0.5

stable
unstable

λ∗
max = 0.7

(b)

FIG. 3. Stability boundaries for two particular cases of cylindri-
cal implosions: (a) driven by magnetic pressure [22], (b) driven by
heavy ion beams [60–70].

the one foreseen for LAPLAS and consist in the implosion of
a spherical shell of steel filled with a gas that is compressed
during the implosion until its pressure stops the inward shell
motion and a bounce is produced. At that moment the shell
starts to move outwards (explosion phase). The shell is found
to be perfectly stable during all the implosion process. But,
instead, it becomes unstable after the bounce when the shell
becomes accelerated outwards. In Fig. 4 we show the corre-
sponding stability maps for the implosion [Fig. 4(a)] and the
explosion [Fig. 4(b)] phases. The values of the parameters we
have used for calculations are also indicated on the figure, and
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FIG. 4. Stability boundaries for a spherical shell driven by high
explosives [53]: (a) implosion phase, (b) explosion phase.

they are necessarily somewhat speculative because no many
details are reported and we had to infer them according to our
best knowledge.

However, we think that Fig. 4 illustrates the general physi-
cal scenario and can explain the experimental results. For the
implosion phase [Fig. 4(a)] we have assumed a maximum At-
wood number AT ≈ 0.4 and estimated a dimensionless thick-
ness α ≈ 1, which results in being less than the corresponding
instability threshold α∗ = 3. On the other hand, according
to the size of the steel sphere, the maximum dimensionless
wave number is λ∗ = 5, so that stability is ensured if the
symmetry ξ0/h is better than 0.7%. This value corresponds

0
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0.6

0.8

1

0 0.1 0.2 0.3
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stable
unstable

ξ∗

λ∗

Al

ρ = 1.4 ρ
0
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h = h
0
/1.4 = 1.81 mm

G = 27.6 GPa
Y = 0.3 GPa

g = 1.5 1011 cm/s2

(b)

AT = 1

α = 0.36

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

theory
2D sim. Al
2D sim. W

AT = 1

α = 30

(a)

λ*

ξ∗

ξ∗

EP

FIG. 5. Comparison with two-dimensional numerical simula-
tions reported in the literature for AT = 1: (a) stability and EP
transition boundaries for W and Al thick slabs [31,32], (b) stability
boundaries for the Barnes experiments [3,7], numerically determined
in Ref. [6]. Full lines are the results of the present theory, and dots
are from the simulations.

to a surface finish of around 70 μm, which is well within the
technologically achievable values.

During the explosion phase [Fig. 4(b)] the dimensionless
shell thickness α considerably increases to α ≈ 10 essen-
tially because of the increasing of the internal gas pressure
(∼103 GPa), and it pushes further down the threshold value α∗
for any reasonable value of the Atwood number that could be
considered (AT > 0.6, α∗ < 1.33 < 10). Then conservatively
we have taken AT = 1, for which the dimensionless cutoff
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wave number is λ∗
c = 1, but conclusions are the same with any

other reasonable choice [see curves (c) in Fig. 2]. However, for
the minimum radius of the shell in this experiment it results
in λ∗max ≈ 7.5 � λ∗

c ; that is, there is always a wide range of
perturbation wavelengths for which the exploding phase is
unstable. In Fig. 4(b) we have also indicated, for reference,
a symmetry level of 0.25%, which is probably beyond the
present technological possibilities.

It is clearly seen that, because of the relatively high value of
the parameter α in the explosion phase, there is a finite cutoff
wave number, and it results in being less than the maximum
wavelength that can exist in the shell perimeter. Therefore, the
explosion phase will be unstable regardless of the quality of
the interface surface finish.

C. Comparison with some existing 2D numerical simulations

It may also be worthwhile to compare the results of the
present theory with some available 2D numerical simulations.
In Fig. 5(a) we show the case of a very thick solid slab
(α = 30) and AT = 1, which was modeled in Ref. [31,32]
by means of an irrotational approximation. We have extracted
the reported data for W and Al, and compared them with the
present theoretical results, finding a very good agreement.

In Fig. 5(b) we have represented the data reported in
Ref. [8] in which the experiments by Barnes et al. [3,7]
were reproduced by means of 2D numerical simulations and
a stability map was depicted. Here once again we had to
make some inferences to supply the lacking information. As
was previously mentioned, this is essentially because of the
presence of an initial transient phase including the early de-
velopment of the RM instability, a transient driving pressure,
and the transit time of the pressure wave traveling into the slab
until it becomes accelerated as a whole. We have assumed that
during this transient phase the slab is compressed by a factor
of around 1.4 but that the compression in the perturbation
amplitude is more or less compensated by the instability
growth during this transient. With AT = 1 and the resulting
value of α = 0.36, the present theoretical results are fitted
pretty well between the numerically determined unstable and
stable cases.

V. CONCLUDING REMARKS

Based on a linear elastic perfect-plastic constitutive model
for elastic-plastic solids, we have developed the 2D linear
theory of the incompressible RTI in planar slabs. Then, by
assuming that the bulk evolution of the instability is described

by the growth of the average amplitude, we have determined
the boundaries for stability and for plastic flow. Following
Drucker [5,6], and the methods of limit analysis developed for
soil plasticity [72,77], we have considered that RTI becomes
dominated by plastic flow when plastic collapse occurs after
the intermediate phase of contained plastic flow, and not just at
the instant of impending plastic flow determined by the usual
von Mises flow criterion.

As already shown in Refs. [31,32] for semi-infinite EP me-
dia, plastic flow is a necessary but not sufficient condition for
instability. The stability is actually defined by the requirement
that the perturbation amplitude reaches a maximum during the
late plastic phase.

As a result it is found, as in the semi-infinite case, that
the maximum (dimensionless) perturbation amplitude ξ ∗ is a
decreasing function of the (dimensionless) perturbation wave-
length λ∗, and both define the stability and the EP transition
boundaries for the RTI in EP solids.

Since the maximum stable perturbation wavelength is
given by the cutoff wavelength resulting in the elastic phase,
there is a qualitative difference between situations with
AT = 1 and AT < 1, since the latter case allows for the
existence of an instability threshold below which elastic RTI is
stable for any perturbation wavelength [10,11,47,49,50]. Then
when AT < 1 there exists the possibility to achieve complete
stabilization provided that the initial perturbation amplitude is
small enough.

Apart from the technological feasibility to reach a suffi-
ciently good surface finish, to generate situations with AT < 1
may lead to severe restrictions in the choice of the driver for
accelerating the solid slab. At present, it seems to be possible
only by using HEs in experiments in which the detonation
products are close to the solid [53]. The theory presented
here provides a reasonably coherent picture for explaining the
experimental results.

The proposed experiment LAPLAS driven by heavy ion
beams could share this feature in common with HE experi-
ments, and it may represent a unique opportunity for novel
experiments on HED physics. Also, in principle, it may offer
the possibility to be scaled in the future to higher driver
energies.
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