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Vibroequilibria in microgravity: Comparison of experiments and theory
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Experiments on vibrated fluids confined in cylindrical and cuboidal containers were performed under the
reduced gravity conditions of a parabolic flight. The results constitute a systematic quantitative investigation of
the vibroequilibria effect, which refers to the reorientation of vibrated fluids in response to the inhomogeneous
oscillatory velocity field and the accompanying dynamic pressure. This effect is amplified in microgravity where
the restoring force of gravity is small or absent. Here the vibrations are transmitted via a pair of piezoelectric
ceramics and a cantilever beam, excited in a resonant mode. The first and second resonances exhibit different
types of motion and lead to different types of vibroequilibria surfaces, one with a dip or crater in the interior and
the other flattened compared to the unforced reference experiment. The general tendency for interfaces to orient
more perpendicular, on average, to the vibrational axis is confirmed. In the case of water in a cuboidal container,
a quantitative comparison is made with vibroequilibria theory and with direct simulations of the Navier-Stokes
equations. The good agreement confirms the predictions of vibroequilibria theory and suggests the capacity of
this phenomenon to manipulate and position fluids in space environments through the choice of frequency and
resonant mode.
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I. INTRODUCTION

By nature, fluids move easily in response to external forces
and the ability to manage and control this motion is a crucial
aspect of wide-ranging applications in physics, chemistry,
biology, medicine, and engineering. While small volumes of
fluid may often be effectively manipulated using capillary ef-
fects, electromagnetic fields, or acoustic forces, this becomes
increasingly difficult for larger volumes of liquid, whose
distribution is dominated by gravity. Density stratification
to minimize gravitational energy is a near-universal feature
of fluid configurations larger than the capillary length scale
and, among other things, explains the familiar sight of flat
liquid-air interfaces on Earth.

In microgravity environments, on the other hand, fluid
behavior is different. Surface tension and contact forces come
to the fore and largely determine the shape and location of
any free interfaces. A floating mass of liquid will minimize
its surface energy by taking a spherical shape, while adhesive
forces may cause it to wet a solid boundary on contact.
The increased ease with which fluids can move (vertically)
in microgravity, and the preference for curved hydrostatic
interfaces rather than flat ones, means that fluid management
is substantially more complicated than it is on Earth. At the
same time, large-scale manipulation of fluids may become
more feasible when gravity is no longer the limiting factor.

Vibrations are an inherent feature of most real environ-
ments, with their importance for a given physical process
depending on amplitude, frequency, and orientation. Even in
the simple case of purely periodic motion, they can affect a
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range of important fluid phenomena such as mixing [1] and
mass transfer.

If there is an interface separating fluids of different den-
sity, vibrations will generally excite waves. The vibrating
motion of a solid support or boundary generates harmonic
(synchronous) waves that decay, due to viscous effects, as
they travel inward. At a critical amplitude, subharmonic waves
(having twice the period of the vibrational forcing) may be
excited via a parametric forcing mechanism arising from
the oscillating pressure gradient [2,3]. If the source of this
parametric forcing is localized, as it is near a side wall in
a horizontally vibrating open container of liquid, then the
subharmonic waves are similarly localized and are commonly
known as cross-waves [4–7]. On the other hand, if the motion
is vertical, perpendicular to the unperturbed flat interface,
then the forcing is homogeneous and produces subharmonic
Faraday waves [8–10] across the entire domain.

In addition to standing or traveling waves, vibrations par-
allel to an interface separating fluids of different density can
drive a Kelvin-Helmholtz–type instability producing quasis-
teady, or “frozen,” waves [11–13]. These frozen waves are
initially sinusoidal in form and grow as the amplitude of vibra-
tions increases. As with oscillatory disturbances like Faraday
waves and cross-waves, they may be considered, in the usual
supercritical case near onset, as perturbations of the initial flat
interface. This is no longer so without the restoring force of
gravity. In weightlessness, the frozen waves rapidly develop
into large-scale columnar structures with alternating (nearly)
vertical interfaces [14,15]. Recent microgravity experiments
[16,17] have shown that Faraday waves can subsequently
be excited on these columnar interfaces to create a complex
structure with two characteristic wavelengths. The pattern
selection process is mainly controlled by vibrational velocity
but is affected by viscosity [13] and finite-size effects [18].
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The example of frozen waves illustrates the dramatic effect
that even small-amplitude vibrations can have in microgravity.
In contrast to the situation on ground, they can lead to a large-
scale redistribution of the liquids involved and, in so doing,
facilitate a secondary Faraday wave instability that would
not otherwise occur. It is not necessary to have the frozen
wave (Kelvin-Helmholtz) instability for such a redistribution
to happen either. The inhomogeneous oscillatory velocity
field is naturally accompanied by an inhomogeneous dynamic
pressure that drives a reorientation of the fluid. This phe-
nomenon, known as the vibroequilibria effect, was observed
by Faraday [8] in the flattening of drops beneath a vibrating
plate. Ordinary gravity masks the vibroequilibria effect for
most common fluid configurations (unless very large forcing
is applied), while in microgravity environments, vibrations
compete only with surface tension and contact forces so their
effect is greatly enhanced.

The usual theoretical approach to vibroequilibria [19–21]
assumes a separation of timescales between the high-
frequency forcing and the slower viscous diffusion of mo-
mentum. If the flow is further assumed to be potential, then
a variational method can be used to determine the quasisteady
equilibrium of the surface as the critical point of a Lagrangian
averaged over the fast timescale.

A recent investigation [22] compared vibroequilibria the-
ory with direct numerical simulations and found good agree-
ment over a range of parameters. It was further demonstrated
that, depending on fluid depth, the symmetric vibroequilibria
solution in a horizontally vibrated rectangular container can
disappear in a saddle-node bifurcation, after which the surface
dips violently toward the lower boundary and undergoes a dis-
ordered transition to one of many possible asymmetric states.
In low-viscosity fluids, surface waves can interact with the
underlying vibroequilibria state and may even destabilize it
through excitation of the first odd sloshing mode; this is likely
related to the presence of temporal modulations resulting from
the interaction between subharmonic wave fields emanating
from opposite sides of the container [3,23,24].

The first experimental observation of the vibroequilibria
effect in confined fluids was by Wolf [11], who applied large-
amplitude vibrations (936 mm/s) to a 60-mm-long cylindrical
container of diameter 28 mm holding an aqueous solution of
potassium iodide and a lighter oil (SAE 140). In microgravity,
the only prior vibroequilibria experiment that we are aware
of was conducted by Ganiev et al. [25], who investigated
combinations of water, oil, and air in the reduced gravity of
a parabolic flight. Partially filled cylinders of length 100 mm
and diameter 30 mm were vibrated at low frequencies (8 Hz,
12 Hz), producing disordered dynamics, and at high fre-
quencies (600–800 Hz), where deep funnels or craters were
seen for the air-water interface near a resonance frequency.
This behavior, which is now recognized as indicative of the
vibroequilibria effect in horizontally vibrated containers [22],
was only later shown [21] to be qualitatively consistent with
vibroequilibria theory and was not quantitatively compared
with either theory or simulations.

A more systematic experimental investigation of vibroe-
quilibria solutions and their importance in microgravity is
called for, not only for the potential observation of novel
states like those mentioned above, but for their ability to

(a) (b)

FIG. 1. Pictures of the experimental cells and the bender beam:
(a) cuboid and (b) cylinder. The cells are held closed by four bolts,
which compress the PMMA body and cover against an O-ring. The
aluminum bender beam has two piezoelectric ceramics attached to
opposite horizontal faces. Cables associated with electrical excitation
of the ceramics and the clamping bolt can also be seen.

manipulate fluids in weightless environments. Indeed, vi-
brations are known to mimic the effect of gravity in cer-
tain aspects of convection and phase transitions [26] and
vibroequilibria can be regarded in this light too. The general
tendency, with increasing forcing, is for the vibroequilibria
states to develop so that large portions of the surface are nearly
perpendicular to the axis of vibration, reminiscent of how fluid
surfaces align perpendicular to gravity.

With this motivation, the behavior of fluids in microgravity
and the potential for controlling them through the vibroe-
quilibria effect were investigated in the Control of Fluids
in microgravity with Vibrations (CFVib) experiment [27],
which looked at representative liquid-gas and two-liquid com-
binations in rectangular cuboidal and cylindrical containers
excited by periodic vibrations and was performed during the
65th ESA Parabolic Flight campaign. The vibroequilibria
effect was measured as a function of forcing amplitude at
different resonance frequencies having different characteristic
modes of vibration.

In this paper, we present the main scientific results ob-
tained during the CFVib experiment and compare them to
theoretical predictions. The experimental setup is described in
Sec. II. The mathematical formulation used in the numerical
simulations is given in Sec. III, together with a basic review
of vibroequilibria theory. The most relevant results of the
experiment are presented in Secs. IV and V, while the case of
water in a cuboidal container is quantitatively compared both
to direct numerical simulations and to vibroequilibria theory
in Sec. V C. Conclusions are provided in Sec. VI.

II. THE EXPERIMENT

The experiment is designed to compare pairs of cuboidal
and cylindrical cells (see Fig. 1) containing a liquid-air or
immiscible two-liquid combination (the latter is not described
here since the experimental results were inconclusive). One of
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TABLE I. Characteristic physical properties of the experimental
liquids at room temperature: density ρ, surface tension �, and
kinematic viscosity ν. These values are used in the mathematical
simulations using the formulation of Sec. III.

ρ (kg/m3) � (N/m) ν (m2/s)

Water 1000 7.20 × 10−2 1 × 10−6

50-cSt silicone oil 960 2.08 × 10−2 50 × 10−6

the cells is subjected to vibrations at various amplitudes and
frequencies, while the reference cell is unforced and responds
only to the residual acceleration present on the parabolic
flight. These two simple geometries, which represent common
fluid containers, can be expected to lead to different interfacial
dynamics. In addition, the use of cuboidal cells has the advan-
tage that (quasi) two-dimensional behavior can be assumed in
some cases, while the cylindrical cells can be compared with
the previous observations of Ganiev et al. [25].

The containers are made of transparent polymethyl
methacrylate (PMMA) to allow for visualization of the liquid
interface. The cuboids are 30 mm × 40 mm × 30 mm (length
× width × height), while the cylinders have an interior radius
of 15 mm and a height of 60 mm. Each cell is composed of two
PMMA pieces that are held against each other using bolted
aluminum plates and sealed with an O-ring; part of this can
be seen in Fig. 1. The results described here are obtained with
water and 50-cSt silicone oil, whose relevant properties are
given in Table I.

Each experimental cell is fixed to an aluminum beam
(cantilever) that, in the case of the excited cells, has two piezo-
electric ceramics (PZTs), attached on opposite horizontal
faces. An alternating counterphase voltage is applied to each
PZT after being boosted by an amplifier. The counterphase
mechanical stress induced in the ceramics creates a torque
that drives periodic flexural motion of the beam and shakes
the cell.

Both the amplitude V (with a maximum determined by
the amplifier) and frequency f of the applied voltage can be
varied to control the magnitude and characteristics of the vi-
brations. The experiments use voltages up to 100 V, while the
frequencies are selected to match the most relevant resonant
modes of the assembly. The first and second resonances (at
approximately 80 and 215 Hz, respectively, for the cuboids)
were found to be associated with the largest displacements
and, therefore, the most pronounced vibroequilibria effects.
Accelerometers directly measure the (vertical) acceleration on
each vibrated container.

Although the motion of the container induced by the
PZTs in a bender-beam configuration is not purely linear (see
Sec. III for more details), combining translational motion with
some degree of rotation, it has the advantage of small size
and low power (compared to an electromagnetic shaker, for
example). The selected transducer yields significantly higher
amplitudes for a given voltage than alternative configurations
(such as a biclamped beam), at least for the resonant modes
excited here.

The optical system that monitors the position of the
fluid includes a complementary metal-oxide-semiconductor

(a)

PZTs
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camera
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Mirror

Clamped
end

(b)

CMOS
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beam

Mirror

Cylinder
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FIG. 2. Sketch of experimental setup with (a) cuboid and
(b) cylinder. Shown are the (partially filled) experimental cell, bender
beam, piezoelectric ceramics, mirror, and CMOS camera. Selected
optical paths indicate the direct and reflected images referred to in
later sections. The inset in (b) shows a lateral view of the setup for
a cylindrical cell. Shaded curves illustrate the excited motion of the
beam for the first (b, inset) and second (a) resonant modes.

(CMOS) camera, a mirror, and a source of illumination. For
the vibrated cells, the CMOS sensor samples at (approxi-
mately) 20 frames per second, providing excellent resolution
of the slow timescale dynamics of the surface; the reference
cells were recorded at (approximately) 10 frames per seconds.
The behavior of the liquid surface was observed along the axis
of the beam and after reflection by a mirror. Depending on the
cell geometry, this mirror provides either a top view (for the
cuboidal cell) or a lateral view (for the cylindrical cell). Both
experimental setups are sketched in Fig. 2, which shows the
container, bender beam, PZTs, CMOS camera, and mirror.
Selected optical paths are drawn to illustrate the direct and
reflected (top or lateral) views. Included illustrations indicate
the dominant type of motion for the first resonant mode [see
the inset in Fig. 2(b)] and the second one [Fig. 2(a)].

Experiments were performed under the reduced gravity
provided by a parabolic flight [28], which lasts approximately
20 s. The microgravity level (residual acceleration) during
the parabolic maneuvers was measured by the onboard ac-
celerometers and provided each day by the airplane operators
[29]. This microgravity level satisfied

|gz̃| � 0.05 g0, |gx̃,ỹ| � 0.01 g0, (1)
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FIG. 3. (a) Midplane cut of the experimental setup for a cuboidal
container showing the bender beam, PZTs, fluid volume �, free
surface S, and solid boundaries W . The container and laboratory
reference frames are illustrated; since the displacement is very small
compared to the container size, we assume hereafter that (x, y, z) �
(xlab, ylab, zlab ). This geometry is used for the numerical results shown
in Sec. V C. The motion associated with the first two resonant modes
is illustrated in (b) and (c), respectively.

where g0 = 9.81 m/s2. The components are expressed in the
airplane reference frame [28], defined by axes x̃, oriented aft
to front; ỹ, oriented along the wings; and z̃, perpendicular to
the floor and identical to the vertical z axis of the container
(see Fig. 3). The cuboidal containers are aligned, approxi-
mately, with the airplane axes so that (x, y) ≈ (−ỹ, x̃), while
the cylindrical containers are rotated by approximately 45◦
(clockwise) with respect to the longitudinal axis of the plane.

In this paper, we highlight the results observed in micro-
gravity with the cylindrical cells when vibrated in the first
resonant mode and the cuboidal cells when vibrated in the
first and second resonant modes. For further details about
the experiment, see Ref. [27], where a review of the design,
implementation, and execution is given.

III. MATHEMATICAL FORMULATION

We consider a finite volume of fluid � (see Fig. 3) with a
free surface held in a container in the presence of a gravita-

tional field and subjected to vibrations of frequency ω. The
fluid satisfies the incompressible Navier-Stokes momentum
and mass continuity equations [30]

ut + (u · ∇)u = −∇p + ν �u + G(x, u, t ), (2a)

∇ · u = 0, (2b)

where u is the velocity, ρ is the density, ν is the kinematic
viscosity, and p is the pressure.

The inhomogeneous acceleration G(x, u, t ), which is ex-
pressed in the accelerating frame of the container, can be
written, to leading order, as

G(x, u, t ) = g(t ) + ω vη cos(ωt ) + 2�×u

+ �×[�×(x − xη )] + �̇×(x − xη ), (3)

where g(t ) is the time-dependent residual gravity field in
the parabolic flight environment, vη is the (approximately)
linear velocity of a reference point xη, taken here to be the
center of the unperturbed fluid (see Fig. 3), and �(t ) is
the rotational velocity of the container about that reference
point. Both the linear and rotational motion are assumed to
lie in the (x, z) plane defined in Fig. 3. The magnitude of the
rotational velocity |�(t )| = 	0 sin(ωt ) depends on the mode
of vibration and the forcing amplitude, but 	0 is typically on
the order of 1 rad/s.

Navier-slip boundary conditions [18] are imposed on the
solid boundaries W to preserve the contact angle β and allow
for motion of the contact line. The balance among surface
tension, pressure, and viscous stresses holds at the free surface
S defined by f (x, t ) = 0,

u · nw = 0 on W, (4a)

p n −
(

�

ρ

)
κ n − ν(∇u) · n = 0 on S, (4b)

ft + u · ∇ f = 0 on S. (4c)

Here κ is the mean curvature of the interface f (x, t ) = 0
defined as

2 κ ( f ) = ∇ ·
( ∇ f

|∇ f |
)

, (5)

and n = ∇ f /|∇ f | is a unit normal vector.
In Sec. V C, we compare experiments with the solution of

Eqs. (2)–(5) in a two-dimensional domain. We also compare
with established vibroequilibria theory, which is summarized
below.

A. Vibroequilibria theory

The theory of vibroequilibria [19–21] provides a method
for calculating the quasisteady (average) equilibrium states
of a fluid configuration with a free interface. It assumes a
separation of timescales between the forcing at frequency ω

and the slower (averaged) response of the fluid, characterized
by the viscous timescale L2/ν, and the period of the primary
sloshing modes [20,21]; if incompressibility is assumed, then
this further requires the forcing frequency to be below the first
acoustic resonance.

A variational approach using a time-averaged Lagrangian
casts the problem as one of determining critical points for
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a functional that depends on the shape of the interface. For
this step, it is further assumed that the leading-order velocity
field is potential, with u = ∇φ, and varies harmonically at the
frequency of the applied forcing:

φ(x, t ) = vη φ̃(x) cos(ωt ) + · · · . (6)

The free surface is split into oscillatory and average parts,

f (x, t ) = F̃ (x) + f̃ (x) cos(ωt ) + · · · . (7)

Note that rotational motion of the container is not generally
compatible with potential flow. Of the three rotational contri-
butions in Eq. (3), it is typically the final term (the Euler accel-
eration) that is the largest for the resonant modes of interest.
For these excitations, none of the rotational terms are as large
as the linear acceleration ω vη, which justifies neglecting them
at leading order so that the standard (variational) approach to
vibroequilibria theory can be used; the error this introduces is
discussed in Sec. V C.

If there is a constant gravitational acceleration g taken to
be aligned with the vertical z axis (see Fig. 3), then the vi-
broequilibria defined by the surface F̃ (x) = 0 is dynamically
stable if it is a local minimum of the time-averaged functional
[20,21],

L =
∫

〈�〉

(
gz + v2

η

4
|∇φ̃|2 + P0

)
d�

+ �

ρ

∫
〈S〉

dS − �

ρ
sin β

∫
〈W 〉

dW, (8)

where P0 is a Lagrange multiplier for enforcing conservation
of volume. The functional (8) should be minimized over
permissible configurations of F̃ (x). Assuming the surface
can be expressed as a single-valued function z = F (x, y) and
using the rescalings

x → Lx, P0 → �

ρL
P0, φ̃ → Lφ̃, L → �L2

ρ
L, (9)

the functional can be rewritten (see Ref. [22] for details) as

L = P0V +
∫

S
dS + η

∫
S
(e·x)q(x)dS

− sin β

∫
W

dW + Bo

2

∫
S

[F (x, y)2 − d2]dxdy, (10)

where d is the liquid depth with a flat horizontal surface and
q(x) = ∂φ̃/∂n. The nondimensional parameter,

η = ρL

4�
v2

η, (11)

characterizes the ratio of vibrational energy to surface energy,
while the Bond number,

Bo = ρL2

�
g, (12)

characterizes the relative importance of gravitational and
surface energy. We minimize Eq. (10) using the boundary
element method, as in Ref. [22], to obtain the predicted
vibroequilibria surface.

IV. VIBROEQUILIBRIA IN A CYLINDRICAL CONTAINER

Figure 4 shows the evolution of the fluid surface in three
vibrated cylindrical containers approximately half-filled with
silicone oil, to be compared with the unforced reference cell
(top row). In each experiment, the free surface is captured
from the front and from a lateral view and is illustrated at three
different times (labeled in the figure) measured with respect
to the beginning of the excitation in microgravity at t = 0 s.
These snapshots are selected to show the liquid surface at the
beginning of the excitation, at the time when the contact line
reaches the upper lid of the container (or its maximum height),
and at an intermediate point between these.

The vibrations are delivered at a fixed frequency f =
59.3 Hz, which corresponds to the first resonant mode, and for
three applied voltages of 80, 90, and 100 V; these give vertical
vibrational velocities vz (measured at the accelerometer) of
73.9 [Figs. 4(a)–4(c)], 84.6 [Figs. 4(d)–4(f)], and 94.8 mm/s
[Figs. 4(g)–4(i)], respectively. For the experiment shown in
Figs. 4(a)–4(c), each snapshot of the vibrated cell is shown
below a corresponding snapshot of the reference cell. The
front and rear halves of the contact line are highlighted in solid
and dashed lines, respectively, as a visual reference. Recall
that the lateral views are obtained after reflection, as illustrated
in Fig. 2.

The experiments shown in Fig. 4 are quantified in Fig. 5,
where the uppermost (solid dots) and lowermost (diamonds)
visible points of the surface, which are located along the
contact line and in the interior, respectively, are shown as a
function of time. The vibrated surface (marked in black) and
the reference experiment (marked in gray) can be compared.
Each plot is shown above the corresponding residual gravity
measurement, given in the airplane reference frame. The ver-
tical vibrational velocities vz measured by the accelerometer
of 73.9 (a), 84.6 (b), and 94.8 mm/s (c) are indicated, as are
the times (shown with vertical lines) of the snapshots included
in Fig. 4.

Prior to the beginning of the excitation in microgravity,
the equilibrium reflects a balance between residual gravity
and contact forces. Since silicone oil easily wets most sur-
faces and has a low contact angle, the surface resembles a
spherical cap; see Figs. 4(a), 4(d) and 4(g). In the absence of
applied vibrations, this spherical caplike shape is maintained
throughout the experiment, although it responds with some
degree of motion to the changing residual gravity, as seen
in the snapshots of the reference cell in Figs. 4(a)–4(c).
Applied vibrations, in contrast, modify this interface shape
significantly.

Immediately after the forcing is initiated, the fluid moves
toward a new (quasisteady) equilibrium, evolving on a slow
timescale compared to the forcing period. This vibroequilibria
effect is quantified by recording the motion of the contact line
with respect to the minimum height of the visible surface,
which occurs in the interior. What is generally observed with
increasing amplitude is the gradual upward motion of the
“front” and “rear” halves of the contact line, as seen in Figs. 4
and 5. This movement of the surface, which is driven by the
spatially inhomogeneous vibrational velocity field, is affected
by the residual gravity level. In particular, there is an evident
correlation with the vertical gravity component (black curve
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(a) t = 0 s (b) t = 3.475 s (c) t = 7.640 s

(d) t = 0 s (e) t = 3.488 s (f) t = 6.381 s

(g) t = 0 s (h) t = 1.517 s (i) t = 2.444 s
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FIG. 4. Snapshots (front and lateral views) showing the evolution of the surface of silicone oil in a cylindrical cell. The upper row of
panels (a)–(c) shows the fluid behavior in the reference cell (experiencing residual acceleration of the airplane) at the given times, paired with
corresponding snapshots of a vibrated experiment. The vibrated experiments are excited at f = 59.3 Hz with vibrational velocities [(a)–(c)]
vz = 73.9, [(d)–(f)] 84.6, and [(g)–(i)] 94.8 mm/s, which correspond to applied (peak) voltages of 80, 90, and 100 V, respectively. To help
visualize the free surface deformation, contact lines at “front” and “rear” halves of the lateral wall are highlighted with solid and dashed lines.

in the lower panels of Fig. 5), reflecting the suppression of
vibroequilibria effects for a given vibrational forcing with
increasing gravity level (Bond number).

The interior of the free surface, on the other hand, tends
to move downward per conservation of mass (see Figs. 4 and
5). Depending on the forcing amplitude, the contact line may
reach the upper lid of the container, as with the experiments
at 84.6 and 94.8 mm/s [Figs. 5(b) and 5(c) and Figs. 4(f) and
4(i)] or stop prior to that, as with the experiment at 73.9 mm/s

[Fig. 5(a) and Fig. 4(c)]. For the experiments where the
contact line reaches the top of the container, the effect of in-
creasing vibrational amplitude is reflected in the time required
for the fluid to arrive at that boundary. This contact time,
which decreases from 6.38 s for vz = 84.6 mm/s to 2.44 s
for vz = 94.8 mm/s, is also affected by the residual gravity
level. Generally, the effect of (vertical) gravity is to flatten the
surface; a higher vertical gravity level thus requires greater
applied forcing to achieve a similar vibroequilibria effect.
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FIG. 5. Evolution in time of the highest visible point of the contact line (solid dots) and the minimum visible point of the fluid surface
(diamonds) in vibrated (black) and reference (gray) cells. Vibrations are delivered at f = 59.3 Hz and different applied vibrational velocities:
(a) vz = 73.9, (b) 84.6, and (c) 94.8 mm/s, which correspond to applied (peak) voltages of 80, 90, and 100 V, respectively. Measurements of
the residual gravity level are shown below each panel, with the labeled components measured in the airplane reference frame. Vertical lines
mark the times when the snapshots in Fig. 4 are taken [labeled as 4(b), 4(c), 4(e), 4(f), 4(h), 4(i)].

Although the vibrations induced by the first resonant mode
of the beam are oblique [see Fig. 3(b)], the observed vi-
broequilibria is relatively symmetric. In this aspect, the vi-
broequilibria surface recalls the case of horizontally vibrated
containers [22], suggesting that the horizontal component is
dominant. These results are also qualitatively consistent with
the experiments of Ganiev et al. [25], which found a similar
cratering of the interior surface in vibrated cylindrical cavities.

A similar, but much smaller, vibroequilibria effect was
found in the cylindrical cell that was half-filled with water.
This is likely explained by the fact that water has a higher
surface tension and contact angle than oil, so the barrier for
vibrational energy to overcome surface and contact energy is
greater [see Eq. (10)]. In addition, the reduced viscosity of
water allows the earlier excitation of surface waves. At the
highest voltages, these waves are of high amplitude and drive
the ejection of drops [31,32]. This drop ejection process has
recently been analyzed experimentally with vibrated immisci-
ble liquids in microgravity [17], where the interfacial energy
was measured with increasing amplitude and found to be con-
sistent with the scaling suggested by vibroequilibria theory
via Eq. (10); the interfacial energy of the drops increases
as the square of the dimensionless vibrational velocity, or η,
measured relative to the drop ejection threshold.

V. VIBROEQUILIBRIA IN A CUBOIDAL CONTAINER

Here we consider the experiments in the cuboidal container
holding either silicone oil or water. For the latter case, the
experimental results are quantitatively compared with simula-
tions of the Navier-Stokes equations and with vibroequilibria
theory.

A. Experiments with silicone oil

Figure 6 provides front and top views showing the evolu-
tion in time of silicone oil in a cuboidal container. The fluid
behavior in the reference cell (upper two rows of snapshots),
which is affected by the residual gravity in the airplane,
and the vibrated cell (lower two rows of snapshots) can be
compared at the same times. The vibrated cell is driven in the
first resonant mode of the beam at f = 83.07 Hz and vη =
161.6 mm/s, which corresponds to an applied peak voltage of
100 V. When they are clearly visible, the “front” and “rear”
contact lines are highlighted using solid and dashed lines,
respectively.

In contrast to the results of Sec. IV, when enough silicone
oil is present, a bubble develops in the cuboidal container
(see the upper row of Fig. 6). This bubble persists throughout
the microgravity period, although its location and shape vary
somewhat due to residual gravity. We attribute the appearance
of this bubble in the cuboidal container (and its absence in
the cylindrical one) both to geometry—the cuboidal cells have
lateral corners, which facilitate wetting and capillary action,
and they are half as high as the cylindrical cells, so the fluid
can more easily reach the upper lid—and to the different
roughness of the PMMA walls resulting from the distinct
manufacturing procedures used. This roughness, which is
assumed to be greater in the case of the cuboidal cells, can
significantly modify the contact line dynamics.

In general, the contact line dynamics depend on surface
properties and on forcing. Without forcing, meniscus effects
extend, for a representative residual gravity of g = 0.05 g0,
over the length scale lc ∼ √

�/(ρg) ≈ 12 mm (water) and
7 mm (silicone oil). The fact that the capillary length is com-
parable to the container size explains the curvature observed
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(a) t = 0 s (b) t = 2.114 s (c) t = 4.345 s
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FIG. 6. Snapshots (top and front views) showing the evolution in time of experiments with silicone oil in a cuboidal container. The upper
two rows show the reference cell, which is subjected to the airplane’s residual gravity, while the lower two rows show the cell excited at
f = 83.07 Hz and vη = 161.6 mm/s, corresponding to a peak voltage V = 100 V. When feasible, the contact lines along the front and rear
walls (front view) are highlighted using solid and dashed lines, respectively, as is the contact line in the upper views.

in the reference cells during the microgravity portion of the
flight (see Sec. V B). With forcing, the vibrational capillary
length can be estimated [33] as lc ∼

√
�/(ρAω2) ≈ 1 mm,

where A and ω are the vibrational amplitude and frequency,
respectively. Meniscus effects are thus expected to have only
a weak effect on the vibroequilibria solutions when the con-
tact angle is relatively large, as with water. For silicone oil
in cuboidal containers, however, strong capillary effects are
observed even under applied vibrations, as is clear from the
formation of the large air bubble in the interior.

The formation of a large bubble means that the effect of
the applied vibrations is more subtle than in Sec. IV, but a
vibroequilibria effect is clearly present, as demonstrated by
the different location of the contact lines seen in the figure.
The applied vibration changes the bubble from an approxi-
mately spherical to a more elliptical shape; compare the top
view of the reference and vibrated cells in Fig. 6(c). To leading
order, these vibrations flatten the surface and make it more

perpendicular to the dominant vibrational axis, as vibroequi-
libria theory predicts [22]. Similar behavior was observed
in recent parabolic flight experiments with immiscible fluids
[17], where the flattening of an initial droplike configuration
was seen for vibrations initiated in microgravity.

The initial condition of the fluid surface can clearly play
an important role in selecting the observed vibroequilibria
solution, with an approximately flat surface developing in
quite a different manner than a large bubble. Notwithstanding
this dependence on initial topology, we find that the smaller
variations of the initial surface characteristic of the parabolic
flight platform do not noticeably affect the development of
vibroequilibria—residual gravity, as mentioned earlier, is a far
more important factor.

We note that other phenomena, like the frozen wave in-
stability that arises in two-fluid systems vibrated parallel
to the unperturbed interface, can be much more sensitive
to initial conditions. It was recently demonstrated that in
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(a) vη = 70.7 mm/s (b) vη = 122.6 mm/s (c) vη = 161.6 mm/s (d) Reference sketch - contact line heights
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FIG. 7. [(a)–(c)] Snapshots of vibroequilibria in a cuboidal container vibrated at 79.8 Hz in the first resonant mode. Vibrational velocities
are as follows: (a) 70.7, (b) 122.6, and (c) 161.6 mm/s, corresponding to peak voltages of 50, 80, and 100 V, respectively. The location of
the “front” and “rear” contact lines is outlined with solid and dashed curves, respectively. Images of the reference cell at identical times are
included for comparison. (d) Illustration of the measurement points used for quantitative comparison with the theory of Sec. V C.

similar microgravity experiments [34] the development of
the frozen wave instability can be significantly affected, or
suppressed, by a misalignment between the initial interface
and the vibrational axis. In fact, to a large extent, this can be
explained by the vibroequilibria effect and its ability to orient
interfaces (density contours) perpendicular to the vibrational
axis. Frozen waves do not affect the CFVib experimental
results described here since the density of the upper fluid (air)
is very low, making the frozen wave threshold [12,15] much
higher that the forcing amplitudes used.

Experiments were also performed using 5-cSt silicone oil
confined in both cuboidal and cylindrical cells, with a volume
ratio of liquid to air of approximately 1/3 rather than 1/2.
As discussed, the lower viscosity allows the same vibrational
amplitude to excite higher-amplitude surface waves, which
can trigger drop ejection, and this was observed with 5-cSt oil.
Since there was less fluid volume than in the experiments with
water, so less total mass, the vibrational amplitude (for a given
applied voltage) was higher. This fact, along with the lower
surface tension, led to a profusion of drops that, unfortunately,
obscured the vibroequilibria effect. The final excited states
were fully three dimensional and chaotic [17,31] and could
not be effectively analyzed.

Compared to the results that follow in Secs. V B and
V C, the experiments with silicone oil in a cuboidal container
are more difficult to quantify and to compare directly with
simulations or with theory. For one thing, the lateral motion
of the bubble within the cuboidal cell makes the problem fully
three dimensional, just as in the cylindrical cell. Accurate
simulations would also require the treatment of topological
changes in the fluid boundaries. Such a comparison between
experiment and simulations is not attempted here.

B. Experiments with water

Experiments performed in rectangular cuboidal containers
with water provided good results both for the first and the
second resonant modes. Results are discussed separately for
each of these modes since the character of the vibrational
motion is different, leading to distinct vibroequilibria.

1. First resonant mode

Figures 7(a)–7(c) show the vibroequilibria observed in
three experiments at different vibrational velocities vη of 70.7
(a), 122.6 (b), and 161.6 mm/s (c), corresponding to applied
voltages of 50, 80, and 100 V, respectively. Snapshots of the
reference cells at identical times are included for comparison.

The reference cells show (nearly) identical solutions, with
the surface curved due to its contact angle and displaying a
degree of leftward tilt due to the effect of residual gravity,
particularly its component along the y axis (see Fig. 3), which
approximately coincides with the x̃ axis of the airplane; this
scenario is similar to that of other recent parabolic flight
experiments [17].

The vibroequilibria effect is revealed in the comparison
between the excited and reference cells and can be quantified
in terms of the contact line motion. Increasing the vibrational
velocity (i.e., the applied voltage) causes the “front” contact
line to move slowly downward, while the “rear” contact line
climbs more rapidly upward. Consistent with conservation of
volume, the interior portion of the surface dips downward at
the same time, which makes this vibroequilibria qualitatively
similar to previous solutions observed in the cylindrical con-
tainer. In this case, however, the cratering is less pronounced,
which suggests an effective vibrational axis that is, on aver-
age, more oblique.

As discussed above, the low viscosity of water facilitates
drop ejection [17,31], which occurs when the forcing is large
enough to excite high amplitude waves that rupture the sur-
face [see Figs. 7(b) and 7(c)]. Generally, we observe drops
of increased size in microgravity compared to hypergravity,
consistent with the work of James et al. [31]. For a given
vibration amplitude above threshold, this drop ejection is
observed regardless of the initial conditions, as in Li and
Umemura [35].

2. Second resonant mode

Figure 8 shows two snapshots of the water surface in a
cuboidal container and allows the excited cell (lower row) to
be compared with the unexcited reference cell (upper row) at
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(a) t = 12.470 s (b) t = 14.234

FIG. 8. Snapshots (front views) showing the time evolution of
experiments with water a cuboidal container when vibrated in the
second resonant mode. The upper rows show the reference cell, while
the lower rows show the results of vibrating at f = 215.4 Hz and
vη = 49.19 mm/s, corresponding to an applied voltage of 100 V.

the same moment. The vibrated cell is excited in the second
resonant mode of the beam at f = 215.4 Hz using a 100-V
signal that provides a vibrational velocity vη = 49.14 mm/s.

The second resonant mode [see Fig. 3(c)] has, on average,
a more vertical orientation of the vibrational axis. This is
consistent with the observed vibroequilibria, which possess
a flatter surface compared to the reference experiment. We
note that the velocities obtained are approximately half those
achieved for the first resonance at the same applied voltage
[27], so the vibroequilibria effect is smaller.

C. Comparison with theory

Using the solutions shown in Fig. 7(a)–7(c), the vibroe-
quilibria effect is characterized by the “front” and “rear”
contact points in the midplane (see Fig. 3) parallel to the
beam direction (x axis). These points, hrear and hfront, are
located by manually processing the video frames, with an
estimated accuracy of ±1 pixel. With a spatial resolution
of 7.4 pixels/mm in the vertical direction [27], this gives
an uncertainty in h of approximately ±0.14 mm. The image
contrast is enhanced via local histogram equalization over the
regions of interest.

The dimensionless difference between these contact points
is calculated as

�H = hrear − hfront

L
, (13)

where L = 30 mm is the container size, and shown in Fig. 9
versus η, which is proportional to the square of applied veloc-
ity [see Eq. (11)]. Error bars show the estimated uncertainty in
the dimensionless difference �H of 0.01. This figure confirms
that the vibroequilibria effect is proportional to η at leading
order, as predicted theoretically in Sec. III A; the curvature
can be attributed primarily to the slight variation of the axis
of linear velocity vη with forcing amplitude, which occurs for
this mode.

0 0.5 1 1.5 2 2.5 η

0

0.05

0.1

0.15

0.2

0.25

ΔH

FIG. 9. Comparison of experimental results (solid black dots)
with direct numerical simulation of Eqs. (2)–(5) (open gray circles
with solid fitting curve), with analogous simulations that ignore the
rotational motion (open gray squares with dashed fitting curve),
and with the predictions of vibroequilibria theory based on the
minimization of Eq. (10) (solid black curve). The contact angle used
in these calculations is 50◦, while the residual gravity is set to a
representative value of gz = 0.05 g0.

The experimental results are also compared in Fig. 9 with
the theoretical models of Sec. III, including the direct numer-
ical simulation of the vibrated problem (open gray circles)
and the prediction from the energy-functional formulation of
vibroequilibria theory (solid black curve). In both cases, the
forcing frequency f = 79.8 Hz is that of the first resonant
mode, the contact angle β between water and PMMA is taken
to be 50◦ [36], the residual gravity is set to the representative
value of gz = 0.05 g0 (giving Bo = 6.1), and the remaining
parameters are as in Table I except for the viscosity, which
is increased to 200 cSt to discourage large-amplitude surface
waves and drop ejection. The influence of these last two
parameters can be inferred from Fig. 10, which shows the
result of several numerical simulations (including rotational
motion) with different values of [Fig. 10(a)] viscosity and
[Fig. 10(b)] gravity level.

The vibroequilibria effect does not depend on viscosity
at leading order and this is confirmed in Fig. 10(a). As seen
from these simulations with ν = 10 cSt, 50 cSt, and 200 cSt
(see also Ref. [22]), viscosity does not appreciably affect the
final (average) positions of the contact points but does have
a clear effect on the relaxation time and on the amplitude of
secondary surface waves. The value of 200 cSt was chosen
to safely avoid the numerically problematic drop ejection
that was frequently observed in the experiments (see Figs. 7
and 8).

The residual gravity level, on the other hand, is clearly an
important parameter that broadly acts to suppress the vibroe-
quilibria effect. It varies both during and across experimental
runs (see Fig. 5). We selected gz = 0.05 g0 for the simulations
partly because this is the level achieved in typical parabolic
flights. More importantly, better agreement was found for
gz = 0.05 g0 than for lower values because the vibroequilibria
were more nearly symmetric (in y) when |gz| > |gy|, making
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FIG. 10. Influence of viscosity and gravity level for a fixed
voltage V = 50 V, η = 0.57 on the predicted contact point sepa-
ration used to quantify the vibroequilibria effect. (a) Simulations
of the Navier-Stokes equations with gz = 0.01 g0 and ν = 10 cSt
(light gray curves), 50 cSt (medium gray curves), and 200 cSt (black
curves). (b) Simulations using ν = 10 cSt with gz = 0 (light gray
curves) and gz = 0.05 g0 (black curves). The remaining parameters
are as in Fig. 9.

the two-dimensional assumption more tenable; the average
microgravity level for the data used in Fig. 9 is close to gz =
0.05 g0. We note that, as shown in Fig. 10(b), the front contact
point is nearly independent of the gravity level, recalling
its weak dependence on forcing, and residual gravity, in the
experiment (see Fig. 7).

The Navier-Stokes simulations include the full (x, z) mo-
tion (acceleration) of the container as measured on ground by
an accelerometer and gyroscope attached to the side of the
container. These measurements are shown in Fig. 11. The
commercial software COMSOL MULTIPHYSICS is used to solve
the governing equations in two dimensions, corresponding to
the midplane y = 0. The initial conditions u = 0 at t = 0 are
evolved, using a maximum time step of 1/(10 f ), until a steady
state is reached.

The procedure prescribed by vibroequilibria theory is im-
plemented in a two-dimensional rectangular domain, as in
Ref. [22]. We use MATLAB to minimize Eq. (10) over permit-
ted surface configurations using the boundary element method
and expand the surface z = F (x) in terms of basis functions

0
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|vx|

|vz|
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vz

vx x

xη

(a)

0 25 50 75 V (V)
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2

0
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(b)

FIG. 11. Measurements (performed on ground) of the maximum
linear and angular velocities at the center of the side wall for the first
resonant mode. (a) Horizontal velocity |vx| (solid dots) and vertical
velocity |vz| (solid squares). (b) Angular velocity 	0.

Pn(x) that are taken to be Legendre polynomials:

F (x) =
N∑

n=0

anPn(x). (14)

This yields a functional L{an} that can be minimized over a
finite set of coefficients.

Since the vibroequilibria theory neglects rotational terms,
we use the linear acceleration of the point xη in the middle of
the unperturbed liquid (assuming it occupies the bottom half
of the container; see the inset of Fig. 11) for this calculation.
For consistency, the estimated acceleration of this point is also
used to calculate η for the experimental data points and the
Navier-Stokes simulations. The absence of rotational acceler-
ation in the vibroequilibria calculation leads to an error since
the real motion [see Fig. 3(b)] is not purely linear, particularly
in the case of the first resonant mode. From Fig. 11, this
error is expected to be on the order of 20–30%; that estimate
follows from multiplying 	0 by 20 mm, which is half the
length, and comparing with |v|. To confirm that this is the
principal source of error, the Navier-Stokes simulations were
repeated without rotational terms (open gray squares in Fig. 9)
and found to be in excellent accord with the vibroequilibria
calculations.

Overall, the experimental results provide a clear confir-
mation of the vibroequilibria effect in microgravity. There is
convincing agreement between the predicted and the observed
position of the fluid over the considered forcing range η � 3
despite the simplifying assumptions made in the calculations,
which include neglect of the lateral (y) dimension to justify a
two-dimensional model, the use of constant residual gravity
and, in the case of vibroequilibria theory, the approximation
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of linear container motion. This latter error is noticeable for
the excitation used here but could be accounted for with an
alternative separation of timescale approach that does not
assume potential flow.

Although further comparison with vibroequilibria theory
may be possible, the above issues, as well as the variation
of the effective Bond number during the parabolic flight,
make this difficult. The available vibrational amplitude was
an additional limitation. For example, according to the re-
sults of Fernández et al. [22], the liquid was deep enough
(d/L � 0.5 > 0.36) to undergo a sudden transition from a
symmetric to an asymmetric solution. However, not only were
the vibroequilibria solutions in the experiment not symmetric
in x, since even the principal component of the acceleration
was oblique, but the predicted amplitude (η ∼ 15) for this
(saddle-node) transition was not reached.

VI. CONCLUSIONS

Results from microgravity experiments investigating the
vibroequilibria effect in cylindrical and cuboidal containers
partially filled with water or silicone oil have been presented
and discussed. The experiments utilized different resonance
modes of a cantilever beam excited by a pair of piezoelectric
ceramics controlled by an applied ac voltage. The resulting
motion was generally oblique to the initial fluid surface and
“more vertical” for the second resonant mode compared to the
first. Each excited cell was compared to an unforced reference
cell with the same liquid configuration that experienced only
residual gravity. The experimental results confirm the pre-
dicted “gravity-like” tendency of vibroequilibria solutions to
move large portions of the surface into a more perpendicular
orientation with respect to the (average) vibrational axis. For
the first resonance mode, this led to the formation of a dip
or crater in the interior, with the rear (and sometimes front)
contact line climbing upward. For the second resonance mode,
this led to a flattening of the surface compared to the unforced
reference cell.

These experimental results provide clear evidence of the
vibroequilibria effect in both containers and with both liquids.
Although observed long ago on ground [8,11] and even in
microgravity [25], this is the first experiment that the authors

are aware of to quantify the vibroequilibria effect and to
compare the observed amplitude of solutions directly with nu-
merical simulations of the Navier-Stokes equations and with
calculations using the more recently developed vibroequilibria
theory, which relies on a separation of timescales [19–21].
An analogous experiment on ground would be hampered by
the large amplitudes required and, with that, the simultaneous
excitation of other dynamical modes.

In the CFVib experiment, in fact, drop ejection from large-
amplitude surface waves was often observed in the case of
water and 5-cSt silicone oil, and excessive drop ejection some-
times prevented the vibroequilibria effect from being clearly
measured. However, despite the presence of a small number
of drops, the cuboidal containers with water provided good
results that allowed for a clear quantitative comparison with
direct numerical simulations and with theory. The agreement
demonstrates, experimentally, the validity of the vibroequilib-
ria theory and shows that it can be used to accurately predict
the position of fluids in microgravity.

With appropriate container design and choice of excitation
(here determined by the resonance modes of the beam), it
should be possible to use the vibroequilibria effect for con-
trol and management of fluids in microgravity environments.
Aside from this consideration, the amplification of the vibroe-
quilibria effect in weightlessness, where the reorientation is
countered only by surface tension and contact forces, means
that it should be taken into consideration whenever sufficient
vibrations, known as g-jitter [37], are present.
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