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We report on a particle-based numerical study of sheared amorphous solids in the dense slow flow regime.
In this framework, deformation and flow are accompanied by critical fluctuation patterns associated with the
macroscopic plastic response. The former is commonly attributed to the collective slip patterns that relax internal
stresses within the bulk material and give rise to an effective mechanical noise governing the latter particle-level
process. In this paper, the avalanche-type dynamics between plastic events is shown to have a strong relevance
on the self-diffusion of tracer particles in the Fickian regime. As a consequence, strong size effects emerge in
the effective diffusion coefficient that is rationalized in terms of avalanche size distributions and the relevant
temporal occurrence.
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I. INTRODUCTION

Plasticity in amorphous solids refers to intense (irrecov-
erable) shear deformation that the flowing material goes
through macroscopically without any crushing or crumbling.
The plastic flow and deformation are accompanied by in-
termittent spatiotemporal fluctuation patterns that have been
recently described within the context of yielding transition
[1]. The microscopic basis of the fluctuations relates to the
appearance of Eshelby-like events, small-scale rearranging
particles that relax internal stress locally but incur long-range
elastic-type perturbations in the medium [2]. In the absence
of thermal fluctuations, local isolated events are initially
activated in driven systems, but then further instability may
be triggered and propagates due to long-range interactions.
The nonlocal triggering mechanism leads to an avalanchelike
dynamics that reveal critical scale-free statistics. This in-
cludes power-law distributions of avalanche size and duration
associated with diverging relevant length and/or timescales
[3,4]. In this context, the failure phenomenon may be viewed
as a true nonequilibrium transition with universal scaling
properties [5].

Another important microscopic picture pertains to the dif-
fuse nature of particle trajectories within sheared disordered
solids, akin to a thermally assisted process. Based upon mean-
field arguments, the observed diffusivity can be ascribed to
the emergence of “mechanical noise” generated by large
relaxation events. A priori, dynamics of plastic avalanches
must have a strong bearing on the diffusion process down
at microscales. Within this context, Martens et al. used a
mesoscopic elastoplastic model to relate flow-induced het-
erogeneities and diffusion constant with regard to shearing
rate sensitivity and finite size effects [6]. Using a related
numerical model in Refs. [1,7], avalanche statistics were
shown to be straightly linked to rheological flow properties
based upon generic scaling arguments and a formal anal-
ogy with the depinning transition. Particle-based simulations

*kamran.karimi1@ucalgary.ca

revealed system-spanning slip patterns that were argued to
govern long-time diffusive behavior [8–13]. Recent studies
[14,15] report on the emergence of anomalous diffusion (Lévy
flight, in particular) in driven amorphous solids that may be
qualitatively understood in view of the broadly distributed
mechanical noise released by scale-free relaxation events
[16]. The observed superdiffusive dynamics was rationalized
within the context of continuous time random walk theory
[17] taking into consideration a Poissonian temporal process
with broad “jump” size distributions.

Here, in this paper, our aim is to build a generic relationship
between diffusivity and avalanche dynamics that should not
be specific to microscopic constituents and/or interactions.
In this framework, displacement fluctuations are shown to
exhibit nontrivial scale-dependent features that could be quan-
tified in terms of the magnitude and geometry corresponding
with individual avalanches. We provide a mean-field-type pre-
diction for the scaling observations based on the fact that the
geometry of each slip event may be idealized as a collection
of elementary Eshelby transformations. The interoccurrence
time distributions, on the other hand, can be interpreted in
terms of a Poisson point process with the activity rate that
shows nontrivial scaling features. These mechanisms lead up
to a long-time diffusionlike process that is characterized by a
size-dependent diffusion constant.

The mean-field treatment we propose is based on the fact
that stress avalanches in slowly driven systems exhibit strong
fluctuations over a broad range of scales. This varying size
may be associated with a few individual particles that abruptly
rearrange or system-spanning slip lines. The latter scale can
be taken as a “cutoff” length controlled by the distance
to the (yielding) transition point and was referred to as a
typical cooperative length [6] or a characteristic quasilinear
avalanche scale [9,10]. In this framework, no or very small
fluctuations were attributed to this effective size and a single
avalanche size was used as a simplification in this mean-field
picture. Our proposed approach, however, takes these missing
ingredients into consideration with a direct reference to the
true dynamics of plastic avalanches.
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FIG. 1. Biaxial loading setup. The white disks (with radii Rs and
Rb) represent the bulk sample with size L. The overlapping particles
interact via a linear spring kn as sketched in the inset. The dashpot
represents the viscous dissipation contribution with drag ratio γ . The
white arrows indicate the strain-controlled condition with a constant
strain rate of ε̇xx = −ε̇yy = ε̇.

The organization of the paper is as follows. In Sec. II, the
biaxial shear setup, packing preparation, driving protocol, and
relevant simulation details are discussed. In Sec. III, we quan-
tify avalanche size fluctuations along with variations in tracer
particles displacements. We use a mean-field level argument
to link the two sets of statistics and validate the proposed
scaling by numerical data. The interevent time distributions
and associated scaling features will be the subject of Sec. IV.
In Sec. V, the results from Secs. III and IV are integrated
to describe the diffusion process that governs the long-term
temporal dynamics.

II. MODEL AND PROTOCOL

We used bi-disperse packings of N two dimensional (d =
2) disks with radii Rs and Rb in a biaxial loading geometry
illustrated in Fig. 1. We set Rb/Rs = 1.4 and Nb/Ns = 1 where
Nb(s) denotes the number of particles in each species. The ith
and jth particles with position vectors �ri, �r j may interact with
each other when the overlap δ = Ri + Rj − |�ri − �r j | > 0. The
normal contact forces is �fn = −kn δ�en with the unit normal
vector �en = (�ri − �r j )/|�ri − �r j |. Here, kn is the normal spring
constant. A linear drag force �fvis = −mτ−1

d
�̇r is applied on

each particle with dissipation rate τ−1
d . The rate unit (inverse

timescale) is set by the vibrational frequency ω2
n = kn/m

where m denotes the particle mass. Newton’s equations of
motion were solved in LAMMPS [18],

mi �̈ui = �fn + �fvis. (1)

We also set the discretization time �t = 0.05ω−1
n . An over-

damped dynamics was imposed by setting a high value of
the damping rate τ−1

d (in comparison with the vibrational
frequency ωn).

Prior to shearing, samples were prepared by assigning N
particles randomly in a biperiodic L × L square box with area

(a)

(c)

(b)

FIG. 2. Results of strain-controlled biaxial tests at L = 80. Evo-
lution of (a) the bulk shear stress σ and (b) the tracer particle
displacement u per unit time step along x and y with the imposed
strain ε. The insets are the closeup views of the main graphs.
(c) −∂εσ versus ε corresponding to the ith avalanche. The hatched
areas over [ε (i)

a , ε
(i)
b ] and [ε (i)

b , ε (i+1)
a ] denote the avalanche size S and

stress threshold fy indicated by the corresponding arrows. The flat
(red) line indicates ∂εσ = 0.

fraction φ = L−2 ∑N
i=1 πR2

i . We set φ = 0.9, well above the
jamming threshold in two dimensional packings. A strain-
controlled condition was then applied by deforming the pe-
riodic box along x and y at a constant strain rate ε̇xx = −ε̇yy =
ε̇. The loading protocol was implemented in a discontinuous
fashion to ensure the quasistatic condition. That is, the sample
accommodates the incremental strain of ε̇ �t each time step
which is followed by a relaxation period with no further
deformation (fixed L). The latter phase terminates once the
total kinetic energy K = 1

2

∑N
i=1 mi �̇ri · �̇ri < 10−10 before the

next loading period resumes. We checked that ε̇ was small
enough that the stress condition was almost insensitive to the
loading rate.

The results of the shear tests may be used to determine the
bulk shearing strength together with the structure of defor-
mation during plastic flow. The macroscopic stress tensor is
defined as

σαβ = L−d
∑

i

∑
i< j

( �fi j ⊗ �ri j )αβ, (2)

using the Kirkwood-Irvine expression [19] where �fi j = �fn and
�ri j = �ri − �r j . We also compute the nonaffine displacement
�ui = �utot

i − �uaff
i of the ith tracer particle accumulated over time

step �t with the total displacement �utot
i = �ri(t + �t ) − �ri(t )

and affine contribution �uaff
i = ε̇ �t (�ex ⊗ �ex − �ey ⊗ �ey){�ri(t ) −

�ro}. Here, �ro and �ex(y) denote the position vector of the box
center and unit vector along x(y), respectively.

The resulting load curves σ = 1
2 (σxx − σyy) against shear

strain ε = 1
2 (εxx − εyy) are reported in Fig. 2(a). Figure 2(b)

shows the nonaffine displacements u of a tracer particle along
x and y which are accumulated over one time step (or the
duration of one single avalanche). Upon shear loading, the
response reveals a well-established steady flow in Fig. 2(a)
following the initial yielding regime. As evidenced in the
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(a) (b)

FIG. 3. Statistics of (a) avalanche sizes S and (b) particle displacements u at multiple system sizes L = 10, 20, 40, 80. The dashed-dotted
line indicates a power-law S−τ with τ = 1.20 ± 0.09. The left inset plots the rescaled distributions P(S)Lτd f versus S/Ld f with df = 1.05 ±
0.05. The right inset is the same as the main graph in (b) but plotted on the log-linear scale.

upper inset of Fig. 2(a), the stress dynamics is characterized
by abrupt falloffs which are preceded by longer periods of
stress buildup, an expected feature of amorphous structures.
This bursty dynamics becomes further apparent in ∂εσ , the
derivative of the stress signal with respect to strain, which
is shown in the lower inset of Fig. 2(a). Figure 2(b) shows
intermittent features that are also present in the tracer particle
trajectory and appear to statistically correlate with the extent
of stress drops as the deformation proceeds. The latter, indeed,

relates to the avalanche size S
.= −Ld

∫ ε
(i)
b

ε
(i)
a

∂εσ dε which has
dimensions of energy and corresponds to the ith avalanche in-
curred at the strain interval [ε (i)

a , ε
(i)
b ] as sketched in Fig. 2(c).

Another fluctuating quantity is the stress threshold fy
.=∫ ε (i+1)

a

ε
(i)
b

∂εσ dε which measures the amount of stress the system

can accumulate between the ith and the (i + 1)st avalanche
over the strain period [ε (i)

b , ε (i+1)
a ]. The stress threshold fy

together with the tracer displacement u and avalanche size
S show nontrivial statistics which will be the subject of the
following sections.

III. PARTICLE DISPLACEMENT STATISTICS

The statistical metric we probe is the probability dis-
tribution function for plastic avalanches P(S) and particle
displacements P(u). Due to the loading symmetry along x and
y, the corresponding displacements are statistically equivalent
and we, accordingly, drop the subscript for u hereafter. The
statistics are collected independently over multiple sheared
samples once a steady-state flow regime was established
following an initial transient response, i.e., ε > 0.1. We used
the full set of particles and associated trajectories so as to
improve particle-based statistics.

In Fig. 3(a), we show avalanche size statistics P(S) scaling
as a power-law P(S) ∝ S−τ with over almost three decades.
The steep decay at large S values is a signature of ex-
tended system-spanning events that will typically scale with
the physical size of the sample, i.e., Ld f . In the inset of
Fig. 3(a), the distribution of avalanche sizes is collapsed using

τ = 1.20 ± 0.09 and d f = 1.05 ± 0.05 (cf. Appendix A). The
former exponent is reasonably close to the mean-field predic-
tion of τ = 3

2 [7]. The latter denotes the fractal dimension
quantifying the spatial extension of slip events. The prelim-
inary plateau regime corresponds to localized shear modes
that would naturally depend on microscopic details rather than
linear size L.

As for particle displacement distributions in Fig. 3(b), P(u)
does not seem to include critical scaling features present
in avalanche size statistics. The data develop a cusp in the
center which extends to an exponential decay at intermediate
and large u values as illustrated in the inset of Fig. 3(b).
The typical scale (of order unity or particle size) within the
exponential tail corresponds with the geometry of locally
rearranging particles which is analogous to “T1” events in
foam dynamics [20]. This upper bound is, therefore, almost
insensitive to the macroscopic size L as reported in Ref. [8].
However, size effects are evident in terms of distribution
widths with larger samples containing weaker displacement
fluctuations.

We further examined the root mean squared fluctuations
〈u2|S〉1/2 conditioned on avalanche size S. Apart from the
plateau region at small values of S, the scatter plot of Fig. 4(a)
indicates that avalanches with larger magnitudes will, in gen-
eral, result in a broader noise distribution. We noted similar
trends in a model metallic glass where the crossover behavior
was associated with the interplay between small and large
events [21]. The data collapse in Fig. 4(b) signifies that the
width of distributions is uniquely determined by the rescaled
avalanche size S/Ld f .

We rely on a mean-field approximation introduced in
Ref. [10] to explain the observed scaling behavior associ-
ated with displacement fluctuations. Within this approach,
avalanches are effectively treated as quasilinear objects in
two dimensional space (d = 2) extended over size ξ within
a system of linear size L. This fractal unit is assumed to
be constructed by a set of individual Eshelby elements that
incur decaying displacements of the form u ∝ 1/rd−1 in the
elastic medium [22]. Superimposing individual contributions,
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FIG. 4. Statistics of tracer particles motion conditioned on avalanche size S at different sample sizes L. (a) Scatter plot of the correlations
between displacements u and S at L = 20, 80. The solid curves show conditional variance 〈u2|S〉 plotted against S, (b) 〈u2|S〉 versus S/Ld f at
L = 10, 20, 40, 80. The dashed-dotted line indicates the 〈u2|S〉 ∝ −(S/Ld f )2/d f ln(S/Ld f ) scaling with df = 1.05. The inset plots the expected
variance 〈u2〉 against L. The dashed-dotted (red) line is a guide to the power-law 〈u2〉 ∝ L−d f (τ−1) with τ = 1.2. The lower dashed-dotted
(black) line indicates the measured slope based on the least-squares regression.

it follows that:

u(r|ξ ) =
∫ +(ξ/2)

x=−(ξ/2)

1

|r − x|2−1
dx

∝ tanh−1

(
ξ

r

)
, r >

ξ

2
, (3)

which shows a slow logarithmic decay in the near field. Note
that the u ∝ 1/r scaling will be recovered using the far-field
approximation at r � ξ .

The displacement distribution conditioned on size ξ will be
given as

P(u|ξ ) =
∫ L

r=ξ/2
δ

[
u − tanh−1

(
ξ

r

)]
dd r

∝ cosh(u)

sinh3(u)
, tanh−1

(
ξ

L

)
< u < ∞, (4)

with the lower cutoff set by the finite system size. Therefore,

〈u2|ξ 〉 =
∫

u2P(u|ξ )du

∝ −
(

ξ

L

)2

ln

(
ξ

L

)
+ O

[(
ξ

L

)3
]
, ξ 	 L. (5)

Inserting ξ ∝ S1/d f , the proposed scaling is plotted in Fig. 4(b)
which appears to slightly overestimate the power-law-like
growth of fluctuations. Here, we note that the existence of
(anti) correlations between individual avalanches might result
in higher order contributions to Eq. (5) which is currently
derived based on the hypothesis of independence between
plastic events. Furthermore, the methodology assumes a sim-
ple fractal geometry of stress avalanches which is not neces-
sarily descriptive of more complex objects with multifractal
topology.

Contrary to Ref. [10], which considered a single avalanche
size, we explicitly take into account the distribution of
avalanche sizes and their individual contributions. Given

the above functional forms, the expected variance 〈u2〉 =∫ 〈u2|S〉P(S)dS should now scale as 〈u2〉 ∝ 1/Ld f (τ−1). The
derived scaling relation indicates that a reduction in τ

will amplify fluctuations which is meaningful since shallow
avalanche distributions imply high occurrence frequencies of
large avalanches. The numerical data agree pretty well with
theoretical predictions as in the inset of Fig. 4(b) indicating
the strong relevance of stress fluctuation patterns (and asso-
ciated critical exponents) on single particle statistics. In this
framework, our Eshelby-based methodology differs from pre-
viously reported approaches [6,9] which inferred the mean-
squared displacements based on a characteristic avalanche
hypothesis ignoring the full avalanche size distributions. This
might be a valid assumption at finite driving rates and/or in
the presence of thermal fluctuations which, in general, tend to
suppress scale-free statistics [23].

IV. “WAIT TIME” DISTRIBUTIONS

Statistically speaking, the temporal characteristics of single
particle diffusion should pertain to the dynamics of stress
avalanches as is qualitatively seen in Fig. 2. Stress drops
tend to be well coincided with intensely rearranging tracer
particles. The quiescent intervals in u, on the other hand,
correspond closely with the accumulation periods of bulk
stress.

In the framework of the yielding transition, this interevent
dynamics is commonly quantified via the instability threshold
fy. Figure 5 quantifies fluctuations in this quantity at multiple
system sizes. In Figs. 5(b) and 5(c), the exponential decay
of our data, i.e., P( fy) = f̄ −1

y exp(− fy/ f̄y), suggests a Pois-
sonian nature of the underlying yielding mechanism. The data
collapse of Fig. 5(a) validates this hypothesis. The inset of
Fig. 5(a) confirms that the mean stress threshold f̄y decays
with system size L. The associated scaling exponent follows
from the stress conservation argument, i.e., 〈σ̇ 〉 = 0 which
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FIG. 5. Statistical behavior of the failure threshold fy at different
sizes L = 10, 20, 40, 80. (a) Rescaled distributions f̄yP( fy ) plotted
against fy/ f̄y. (b) Threshold distributions P( fy ) on the log-log scale.
(c) P( fy ) versus fy on the log-linear scale. The inset plots the
mean threshold value f̄y against L. The dashed-dotted (red) line is
a guide to power-law f̄y ∝ 1/Ld−d f (2−τ ) with d = 2, df = 1.05, and
τ = 1.2. The (black) dashed-dotted curve in the main plot indicates
an exponential decay.

results in f̄y = L−d〈S〉. The mean avalanche size is given
by [1]

〈S〉 =
∫

SP(S)dS

∝ Ld f (2−τ ), 1 < τ < 2, (6)

and, therefore, f̄y ∝ 1/Ld−d f (2−τ ). Lower τ exponents (or
equivalently higher frequency of larger events) tend to in-
crease f̄y, in accordance with the proposed scaling, as the
system will have to accommodate further stress to compensate
larger avalanche-induced energy losses.

V. DIFFUSIVE DYNAMICS

In previous sections, the emerging fluctuations as a con-
sequence of intermittent stress relaxations were shown to in-
clude scaling characteristics that could be mainly interpreted
in the plastic yielding framework. The long-term dynamics,
however, may still enter a limiting Fickian regime which
largely neglects short-lived correlation features leading to an
effective Brownian process at infinite times.

In order to validate the diffusion-based picture, we ana-
lyzed the total nonaffine displacements X = ∑N

i=1 ui accu-
mulated over N loading steps. Figure 6(a) displays the tem-
poral evolution of X associated with several tracer particles.
Such signals can be typically obtained by integrating over
the fluctuating noise as in Fig. 2(b). The inset of Fig. 6(a)
presents the power spectrum of the signal 〈|X̂ (ω)|2〉 decaying
as ω−2, an expected scaling for a Brownian-type noise. In
the inset of Fig. 6(b), the probability distributions P(X ) are
plotted at large strain values ε. The rescaled data in Fig. 6(b),
ε1/2P(X ) versus X/ε1/2, collapse on a master curve indicating
a Brownian diffusion process at long times.

Fluctuations in X will certainly depend on how frequent
stress avalanches occur over the course of plastic flow. We
further ignore tracers motion during elastic loading phase
which are presumably small, compared to plastic deforma-
tions, making negligible contributions to the long-time parti-
cle diffusion. Accordingly, N may represent the total number
of incurred events over a given strain interval ε and fluctuate
in accordance with the Poisson distribution,

P(N ; ε) = (λε)N

N!
exp(−λε), (7)

with the event rate λ and mean number 〈N〉 = λε. Con-
sidering independent events, it follows that 〈X 2|N〉 = N〈u2〉
and, therefore, 〈X 2〉 = λ〈u2〉ε. We additionally assume that
f̄y controls the yielding rate, i.e., λ−1 ∼ f̄y. Inserting f̄y ∝
1/Ld−d f (2−τ ) and 〈u2〉 ∝ 1/Ld f (τ−1) gives 〈X 2〉 ∝ Ld−d f ε with
the effective diffusion constant scaling as D ∝ Ld−d f , in line
with the derivation in Ref. [24].

(a) (b)

FIG. 6. Dynamics of the integrated noise X = ∑N
i=1 ui and relevant statistics at L = 80. (a) Accumulated displacements X incurred over

the imposed strain ε corresponding to multiple tracer particles. The inset illustrates the associated power spectrum 〈|X̂ (ω)|2〉 in the frequency
domain ω. The dashed-dotted line indicates 〈|X̂ (ω)|2〉 ∝ ω−2. (b) Rescaled probability distributions ε1/2P(X ) as a function of X/ε1/2 at different
ε’s. The inset shows the unrescaled data.

063003-5



KAMRAN KARIMI PHYSICAL REVIEW E 100, 063003 (2019)

(a) (b)

(c)

FIG. 7. Temporal evolution of the mean-squared displacement at
multiple size L, (a) 〈X 2〉 against ε. The dashed-dotted line with slope
1 indicates the linear growth 〈X 2〉 ∝ ε. (b) Rescaled quantity 〈X 2〉/ε
versus ε. (c) Size dependence of the effective diffusion coefficient
D. The dashed-dotted line is a guide to power-law D ∝ Ld−d f with
d = 2 and df = 1.05.

Interestingly, D will have no dependence on τ , according
to the derived relation, as this critical exponent makes equal
contributions to the fluctuation size 〈u2〉 and average yielding
time f̄y. This will result in a diffusion coefficient that is only
sensitive to the topology of triggered avalanches (i.e., d f at a
fixed system size L). In other words, the size dependence will
drop with uncorrelated avalanches filling up the entire space
uniformly or equivalently d � d f .

Figure 7(a) examines the linear growth of the mean-
squared displacements with ε within the steady-state flow
regime. At all system sizes, 〈X 2〉 exhibits a robust crossover
to the Fickian regime at large strains, i.e., ε > 0.1 (see
Appendix B). The transition is more evident in Fig. 7(b)
with 〈X 2〉/ε reaching a size-dependent plateau as the de-
formation proceeds. The initial faster-than-diffusive regime
can be attributed to the correlated elastic-type deformation
that a marginally stable system accommodates up to a size-
dependent threshold fy. Figure 7(c) shows size effects as-
sociated with the effective diffusion coefficient along with
the proposed finite-size scaling that seems to be robust over,
at least, one order of magnitude. In Ref. [9], it was argued
that, at the vanishing shear rate in two dimensions, the
diffusion constant should scale as D ∝ L which is slightly
different than the observed scaling. The discrepancy might
come from different loading protocols, namely, the quasistatic
loading and finite rate shearing in the limit of zero strain
rate.

VI. CONCLUSIONS

We have analyzed the trajectories of individual particles
in driven soft amorphous solids that exhibit scale-dependent
fluctuation features both in terms of fluctuation amplitudes
and in terms of occurrence frequencies. The observed prop-
erties were attributed to spatially extended avalanches that
induce long-range deformation within the medium which
can be quantified based on the concept of Eshelby shear

transformations. The temporal dynamics, on the other hand,
was described by introducing the stress instability threshold
fy, that is, on average, related to the mean avalanche size,
as a result of the energy conservation principle. Fluctuations
in fy reveal a fast exponential-like decay which is at odds
with broad scale-free avalanche-size distributions. The former
exhibits a size-dependent characteristic stress scale f̄y that
must be linked with local energy “cages” in glassy structures
[15]. The metastability hypothesis implies that fluctuations in
local energy thresholds will be bounded as the driven solid
always remain in near-critical states within the plastic flow
regime [7]. Recent analysis of local yield stresses in sheared
glasses made by Patinet et al. [25] led to narrow thresh-
old distributions which is in agreement with this stability
argument.

The scaling relations we have proposed are generic and
potentially relevant for other disordered nonequilibrium sys-
tems that also show critical behavior but belong to a different
universality class. For instance, Salerno et al. [26] argued that
both inertial and overdamped samples have distinct but still
critical avalanche size characteristics under steady shear. It
would be interesting to validate our mean-field framework
in the presence of inertia, particularly, in terms of jump
size distributions and statistics of waiting times. It should be
noted that the scaling of the diffusion factor could be quite
different if the statistics of the avalanche size did not show
scale-free regimes (i.e., due to thermal noise or finite shearing
rate).

We have quantified displacement statistics by separating
plastic avalanches and analyzing their individual contribution
to diffusion. This will have important implications for a group
of mean-field models that are formulated based on the notion
of the mechanical noise, similar in essence to the Langevin
dynamics with a stochastic source term that accounts for the
effect of elastic couplings [27]. The structure of the input
noise can be directly inferred from the statistics of stress
avalanches (described by scaling exponents τ and d f ) which
is commonly overlooked in current implementations. Another
possible application could be in experimental contexts where
accurate tracking of (small) individual particles is not feasible
and, instead, the relevant statistical properties may be inferred
from bulk stress measurements.
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APPENDIX A: AVALANCHE SIZE DISTRIBUTION

We have made a quantitative fitting analysis using the
empirical relation P(S) ∝ 1

1+( S
Smin

)
τ e−(S/Sc )α . The lower power-

law cutoff Smin controls the roll-off at small avalanche sizes
and is expected to scale as Smin ∝ L−2. Here, α > 1 describes
the compressed exponential decay at S > Sc. Figure 8 plots
the results of the maximum likelihood method and iterative
curve fitting carried out at different system sizes L. We find
α = 1.40 ± 0.06 and τ = 1.20 ± 0.09. The inset quantifies
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FIG. 8. Avalanche size distributions P(S) at multiple system
sizes L = 160, 80, 40, 20, 10. The solid curves indicate fits based on
the functional form P(S) ∝ 1

1+( S
Smin

)
τ e−(S/Sc )α . We find τ = 1.20 ±

0.09 using nonlinear curve fitting and the maximum likelihood
method. The inset quantifies the scaling of the upper cutoff Sc with
the system size L. The (red) dashed-dotted line indicates Sc ∝ Ld f

with df = 1.05 ± 0.05.

the scaling of the upper cutoff Sc with the system size L.
The (red) dashed-dotted line indicates Sc ∝ Ld f with d f =
1.05 ± 0.05, in agreement with Refs. [7,26,28].

FIG. 9. Linear regression analysis of the mean-square displace-
ment at multiple system sizes L = 160, 80, 40, 20 and large strains
ε > 0.2. The inset shows the prefactors D versus L. The dashed-
dotted line indicates D ∝ Lα with α = 0.80 ± 0.07.

APPENDIX B: MEAN-SQUARE DISPLACEMENTS

We have performed a regression analysis of the mean-
square displacement at multiple system sizes L and large
strains, i.e., ε > 0.1. The power-law fits in Fig. 9 indicate
〈X 2〉 = Dεβ with the scaling exponent β = 1.02 ± 0.01 and
size-dependent prefactor D corresponding to the diffusive
regime in the large strain limit.
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