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Seismic phononic crystals by elastodynamic Navier equation
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The phenomenon, known as a complete band gap in photonic crystals consisting of periodically arranged
manmade nanostructures, caused a huge sensation in photonics. Inspired by the physical methodology, we extend
it to large-scale wave propagation for seismic waves. In particular, we exploit the elastodynamic Navier equation
in the medium for seismic phononic crystals to induce complete band gaps of body (P) and shear (S) waves. We
also show a technique that uses weak formulation to analyze band structures. Estimation of evanescent modes
by complex-valued wave vectors yields propagation length, then we redesign bulky phononic crystals to be as
thin as possible. We also investigate how material properties affect the relation between propagation length and
effective particle velocity. This study will contribute to seismic-resistant techniques in seismology.
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I. INTRODUCTION

An earthquake caused by the shaking ground motion on
the Earth’s layer, arising from the sudden release of energy
in the crust, generates seismic waves. There is no doubt that
the study of seismic wave propagation is essential due to the
long and short return periods for large and small earthquakes,
threatening our lives and assets. Earthquakes give rise to
serious economic and social consequences to be taken into
account.

Earthquake engineering is an application of multidisci-
plinary knowledge of how the ground motion generated by
an earthquake affects typical buildings or any other manmade
structures, and an application of this knowledge to design
structures to withstand earthquakes. Therefore, an estimation
of the expected ground motion at a particular site is required
with one constraint that the cost must be minimized while
assuring earthquake resistance.

Recently developed optical metamaterials and photonic
crystals exploit the interaction between light and matter. For
instance, negative effective parameters [1–3], metasurface
cloaks [4–7], and photonic crystals [8–13] are now available
in photonics. These systems consist of periodic or quasi-
periodic artificial inclusions within effectively homogeneous
media under the long-wavelength limit or on the relevant
scale. If analogous seismic metamaterials and phononic crys-
tals can be more developed, they may have applications in
defense against seismic waves.

For instance, a seismic cloak that works in a thin plate has
been proposed theoretically and numerically [14], analogous
to the mechanism of an invisibility cloak with metamaterials.
The cloaking structure is composed of radially symmetric
multi-layers that have nearly the same mass density, but a
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gradual variation in Young’s modulus to avoid a huge mis-
match of impedance and to manipulate bending waves. Theo-
retical studies have suggested real materials in each layer, to
be evaluated experimentally.

In particular, an earlier study of seismic phononic crystals
has been experimentally reported by exploiting periodic ar-
rangements of boreholes under the condition of the approx-
imate Mindlin plate model [15]. Analyses of the crystal’s
responses suggested that Bragg scattering causes partial band
gaps that are confirmed in a narrow band of frequencies
along high-symmetry lines. However, in terms of first large-
scale experimental works, it should be considered as the best
achievement in this field so far. Another idea is to use a
“natural forest via tree network” to trap Rayleigh waves. The
tree network is composed of locally resonant metamaterials;
it develops several band gaps with strong attenuation at the
sub-wavelength scale [16]. Such a vertical alignment of rods
on the substrate for seismic waves has been consequently in-
vestigated [17–19]. A gigantic work called the METAFORET
project in 2018 was conducted to report the result of sub-
wavelength pine-tree forests as coupled resonators that may
enable attenuation of seismic surface waves [20]. Moreover,
numerous other yet-unpublished suggestions that use meta-
materials and phononic crystals to shield seismic waves can
be obtained from arXiv [21–24]. Explicit experimental work
on this topic is uncommon, because it requires large-scale
samples and artificial sources to emulate the actual seismic
environment. However, we believe that newly discovered
approaches should extensively be used in theoretical and
numerical studies of methods to confront seismic waves.

In this paper, we examine phononic crystals in seismic
systems, analogous to photonic crystals in optical devices.
The main governing equation that we consider is the elas-
tic Navier’s equation in homogeneous and isotropic media,
which is usually used to describe seismic waves. Seismic
body waves (P-waves) and shear waves (S-waves) can be
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readily decoupled and estimated by both analytic and numer-
ical approaches. Specifically, we exploit a newly developed
numerical technique to calculate band structures by using
a weak-form-based finite element method (FEM) technique
for k(ω) formulation in acoustics [25] rather than for ω(k)
formulation [26–29]. We show how to implement the main
equation that is not easy to apply using conventional built-in
modules in a commercial FEM simulator (COMSOL MULTI-
PHYSICS 5.3a). To ensure that the obtained numerical solu-
tions by weak formulation are reasonable, we also conduct
an analytic approach. In order to investigate the behavior
of seismic phononic crystals in the band gap, we analyze
band structures for the P- and S-waves, and obtain complete
band gaps with a given cylindrical design in a square unit
cell. The displacement fields at several frequencies are shown
to observe the band gap phenomenon. Moreover, once we
know a propagation length that has not been discussed yet
in existing relative researches, a bulky crystal system can
be designed and simplified to a thin one. Furthermore, we
discuss material properties in the band gap evaluating an
effectively complex particle velocity by a parametric study of
mass density, and by comparison of several materials. Results
show that hard materials have a lossy component of particle
velocity, so propagation length is infinitesimal in the band
gap, whereas soft materials have no lossy component, so the
propagation length is enormous out of the band gap.

II. ANALYTIC AND NUMERICAL SOLUTION TO
ELASTIC NAVIER’S MODEL

A. Analytic solution of wave propagation

The general form of stress-strain constitutive relation by
Hooke’s law is written as

σ = C : ε, (1)

where σ is the stress tensor, ε is the strain tensor, and C
is the stiffness tensor. Assuming a homogeneous isotropic
medium and inserting Newton’s second law yields the elastic
Navier’s equation as seismic waves, which we consider in this
paper [30–32]:

ρü = (λ + 2μ)∇(∇ · u) − μ(∇ × ∇ × u), (2)

where ρ is the mass density, u is the displacement field, λ and
μ are, respectively, Lamé’s first and second parameters. By
using Helmholtz’s decomposition theorem [33] with a scalar
potential � and a vector potential � with respect to u,

u = ∇� + ∇ × �, (3)

u can be decoupled into two potentials. Using vector iden-
tities, and curl-free and divergence-free properties for each
potential, together with gauge condition ∇ · � = 0, Eq. (2)
can be reduced to [30–32]

∂2�

∂t2
= (λ + 2μ)

ρ
∇2�, (4a)

∂2�

∂t2
= μ

ρ
∇2�, (4b)

where the scalar potential and the vector potential repre-
sent displacement field solutions of P- and S-waves after

postprocessing, respectively. Under the assumption that each
potential is a sinusoidal function of time, Eqs. (4a) and (4b)
are rewritten as [30–32](∇2 + k2

p

)
� = 0,

(∇2 + k2
s

)
� = 0, (5)

where k(·) = ω/c(·) indicates the wave vector for the P- or
S-wave, and cp(= √

(λ + 2μ)/ρ) and cs(=
√

μ/ρ) are par-
ticle velocities with the angular frequency ω. To solve the
Helmholtz equation and obtain the displacement field for
�, we set � = X (x)Y (y) for the separation of variables.
Then Eq. (5) for the two-dimensional case can be reduced to
coupled ordinary differential equations as

1

X

d2X

dx2
= −(

k2
p − λ2

m

)
, (6a)

1

Y

d2Y

dy2
= −λ2

m, (6b)

where λ2
m is a separation constant and m is a mode number

such that λm = 0 for the first mode (m = 1) to accomplish
plane-wave-like propagation along a certain direction. Here,
Eqs. (6a) and (6b) are solved with boundary conditions that
are assumed to be as follows:

� |x=0 = 1 (Dirichlet condition), (7a)

�′∣∣
x=L = 0 (Neumann condition), (7b)

�′∣∣
y=0 = 0 (Neumann condition), (7c)

�′∣∣
y=L

= 0 (Neumann condition), (7d)

where L is the interval length on the spatial dimension. After
applying the boundary conditions to Eqs. (6a) and (6b), then
the potential solution can be obtained as

� = A cosh
(√

λ2
m − k2

p x
) + B sinh

(√
λ2

m − k2
p x

)
, (8)

where A = 1, B = − tanh (
√

λ2
m − k2

p L), and λm = λ1 = 0.
Before seismic waves are considered, we could seek, for

instance, the pressure field P as is computed in a solution
for acoustic waves with ca = 343 m/s and L = 25 mm in
two-dimensional (2D) space [Figs. 1(a) and 1(b)]. In Eqs. (6a)
and (6b), the ordering index m is truncated by an integer N ,
however, the mixture modes by a superposition along N is not
considered here, because we consider the phononic regime in
which the wavelength becomes comparable to the size of a
single crystal. Therefore, in this study, we only consider the
fundamental harmonic (m = 1) that has the lowest frequency
(the longest wavelength) of a sinusoidal waveform, and has
a known fixed single frequency. In this case, the solution of
acoustic pressure field itself represents the scalar potential,
unlike the displacement fields of seismic waves. In particular,
the pressure field solutions by both analytic and numerical
approaches agreed well along frequencies from 10 to 50 kHz
[Fig. 1(b)].

For the vector potential, we simply consider that the S-
wave is a shear horizontal (SH) wave, so that it is horizontally
polarized with respect to the propagation direction [Fig. 1(c)].
Then it gives rise to only a y-directional displacement com-
ponent (0, us, 0) and ∇ · u = 0 arising from ∂us/∂y = 0.
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FIG. 1. (a) Pressure field in 2D space obtained by the analytic
approach. (b) Analytic solutions (solid line) of pressure field in com-
parison with numerical solutions (asterisk) using weak formulation
at 10 kHz (black), 20 kHz (violet), 30 kHz (green), 40 kHz (orange),
and 50 kHz (red). (c) Schematic of a seismic wave, which consists of
a P-wave and an S-wave.

Therefore, Eq. (2) simplifies to(∇2 + k2
s

)
us = 0, (9)

where � in Eq. (4b) is replaced with us for the transverse
motion. In the next subsection, numerical solutions by weak
formulation will be introduced and compared to analytic
solutions of two displacement fields.

B. Numerical solution of wave propagation through weak
formulation

Here, we consider the elastodynamic Navier equation in
a weak variational form and evaluate the displacement field
solutions. The strong form of the P-wave in Eq. (5a) can be
formulated imposing a functional F as an integral sense:

F (�,ϕ) =
∫

�

ϕ

(
1

ρ
∇2 + ω2

(λ + 2μ)

)
� d� = 0, (10)

where ϕ is a test function which is assumed to be smooth and
compact in the domain �. Using the integration by parts, we
can rewrite Eq. (10) as

F (�,ϕ) =
∫

�

[
∇ ·

(
1

ρ
ϕ∇�

)
− 1

ρ
∇ϕ · ∇�

+ϕ
ω2

(λ + 2μ)
�

]
d� = 0, (11)

in which the divergence theorem can be applied in the first
term of integrand:

F (�,ϕ) =
∫

	1∪	2∪	3∪	4

n̂ ·
(

1

ρ
ϕ∇�

)
d	

+
∫

�

[
− 1

ρ
∇ϕ · ∇� + ϕ

ω2

(λ + 2μ)
�

]
d� = 0.

(12)

FIG. 2. Schematic of a system composed of the domain � and
the boundary 	 (= 	1 ∪ 	2 ∪ 	3 ∪ 	4) with a unit vector n̂ which is
outward normal to each boundary.

Here, we suppose that the Dirichlet (� = 1) and the Neumann
[n̂ · (∇�) = 0] conditions, which are exactly the same condi-
tions as in Eqs. (7a)–(7d), are imposed on 	1 and 	2 ∪ 	3 ∪
	4, respectively [Fig. 2]. Since n̂ · (∇�) = 0 on 	2 ∪ 	3 ∪
	4, the integrals on those boundaries vanish. Therefore, only
the integral by the inhomogeneous Dirichlet condition on 	1

remains. Then Eq. (12) reduces to

F (�,ϕ) =
∫

	1

n̂ ·
(

1

ρ
ϕ∇�

)
d	

+
∫

�

[
− 1

ρ
∇ϕ · ∇� + ϕ

ω2

(λ + 2μ)
�

]
d� = 0,

(13)

where the functional F is subject to those boundary condi-
tions, and the displacement field of the P-wave is defined
as up = ∇�. In the same way, the weak variational form of
the S-wave in Eq. (9) can be formulated by introducing a
functional G as

G(us, ϕ) =
∫

	4

n̂ ·
(

1

ρ
ϕ∇us

)
d	

+
∫

�

[
− 1

ρ
∇ϕ · ∇us + ϕ

ω2

μ
us

]
d� = 0.

(14)

We use the “weak form PDE” interface as an ad hoc finite
element simulation in COMSOL to compute Eqs. (13) and (14)
for seismic waves. When computing the equations, a mesh
generation should properly be considered to ensure accurate
weak solutions. All results in this study are estimated along
the appropriate assigned mesh. For instance, we evaluate �

of the P-wave in soil with the properties: ν = 0.3 (Poisson’s
ratio), E = 0.153 GPa (Young’s modulus), ρ = 1800 kg/m3,
and L = Lx = Ly = 5 m. We also take the modulus conversion
formula for homogeneous isotropic matter to obtain λ and μ
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FIG. 3. Mesh convergence of the solution � according to the
number (No.) of mesh grids at (a) ε = 0 m, (b) ε = 10−4 m, (c) ε =
10−3 m, (d) ε = 10−2 m away from the 	1 at 100 Hz.

as

λ = Eν

(1 + ν)(1 − 2ν)
, (15a)

μ = E

2(1 + ν)
. (15b)

Hence, with the assigned conditions and properties in
Eq. (14), we impose the mapped meshing in � and the bound-
ary layer meshing on 	, and seek the displacements fields. The
mesh generation establishes well that the solutions converge
to the value (1 m) prescribed by the Dirichlet condition at a
location ε which is away from the boundary 	1 (Fig. 3). At the
frequency 100 Hz as an example, 	1 with small numbers (ε =
0 m, 10−4 m, 10−3 m, and 10−2 m) shows a fine numerical
stability. The number of mesh grids is obtained by counting
the numbers of grid lines along the boundary (not the entire
domain), as estimated from 25 to 200 with a step of 25. Also,
the solution us as well as � converges to the value (1 m)
at other frequencies. Following the generation of appropriate
mesh, the obtained numerical solutions for �, up (= ∇�), and
us agree well with analytic solutions at 20 to 40 Hz (Fig. 4).
In particular, we take ∂ (∗)

∂x êx + ∂ (∗)
∂y êy instead of ∇ during the

computation because it considers a 2D system in which ∗ is
any solution such as � and uy even though the Del operator
is specified in all mathematical expressions. The numerical
method that uses the weak formulation is reliable, so we adopt
it in the subsequent section that considers band structure in
seismic phononic crystals to achieve wave vector k, rather than
the potential or displacement field.

III. BAND STRUCTURES AND PROPERTIES FOR SEISMIC
PHONONIC CRYSTALS

A. Weak-form-based band structure

So far we have investigated several solutions that arise from
the elastodynamic Navier equation, and found that numerical

FIG. 4. Solutions of (a) and (b) �, (c) and (d) up (= ∇�), and
(e) and (f) us. Left-hand panel indicates each analytic solution in 2D
space compared to corresponding numerical solutions on the right-
hand side at 20 Hz, 30 Hz, and 40 Hz.

solutions by weak formulation are trustworthy in comparison
with analytic solutions. However, the formulas [Eqs. (13) and
(14)] must be modified with respect to wave vector k in order
that seismic phononic crystals should be analyzed for band
structures. Periodically arranged inclusions are embedded in
the phononic crystal medium; therefore, we can apply the
Floquet-Bloch theorem as

F (u′
p, ϕ

′) =
∫

�

[
− 1

ρ
(−ik + ∇)ϕ′ · (ik + ∇)u′

p

+ϕ′ ω2

(λ + 2μ)
u′

p

]
d� = 0, (16a)

G(u′
s, ϕ

′) =
∫

�

[
− 1

ρ
(−ik + ∇)ϕ′ · (ik + ∇)u′

s

+ϕ′ ω
2

μ
u′

s

]
d� = 0, (16b)

where up = ∇� = u′
peik·r , us = u′

se
ik·r , and ϕ = ϕ′e−ik·r are

assigned. (·)′ denotes the periodicity as a Bloch function
that satisfies (·)′(r) = (·)′(r + a) for translational symmetry
in which r is a position vector and a is a translational vector.
Here, a can be expressed as 2π

L (nx, ny, nz )T ∈ R3 where the
real-valued n is determined depending on critical points of the
primitive cell in reciprocal space. Then Eqs. (16a) and (16b)
represent the k eigenvalue problem to be solved in free space,
constrained by Neumann conditions [n̂ · (∇u) = 0] for all
boundaries. Thus, the integral part over the boundary has
been vanished by setting it to be zero, and it enforces a
slope continuity of the component u in an outward normal
direction on external boundaries. To assure the periodicity
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FIG. 5. (a) Schematic of the system based on the square lattice
with high symmetry points and lines with respect to reciprocal space.
(b) Schematic of the model as a single unit cell composed of steel
columns and soil background. Band structures along high symmetry
lines for the (c) P-wave and (d) S-wave. Red region: complete band
gap caused by Bragg scattering. Magnified image demonstrates that
weak formulation method (WFM) gives the same results as the
equifrequency method (EFM).

of u, the periodic boundary condition is employed on inlet
and outlet boundaries that override the Neumann condition.
For an internal boundary in between two domains of the
host-inclusion system, the displacement continuity condition
(u+ = u−) is imposed along the surface where the symbols +
and − indicate the opposite sides of the internal boundary. De-
pending on appropriate symmetry lines on the square lattice
in this study, we can obtain the information of k with given
frequencies. The symmetry points were placed considering
the reciprocal lattice [Fig. 5(a)], and the schematic of our
model is considered of steel columns and soil background
[Fig. 5(b)]. Material properties of the steel column have ν =
0.28 and E = 200 GPa with radius r = 2.25 m. Given the
information about k, we can reconstruct band structures of
the P-wave [Fig. 5(c)] and S-wave [Fig. 5(d)] along the high
symmetry lines for the real component of wave vector Re(k).
In both cases, Bragg scattering within seismic phononic

FIG. 6. Reduced Brillouin zone scheme for 	 to X , and eigen-
modes at upper and lower edges according to the obtained eigenval-
ues. Reduced Brillouin zone for the (a) P-wave and (d) S-wave. Black
dashed line: a dispersion curve in the case of free space only with
soil background; red triangle: lower and upper edges. Displacement
fields for the P-wave at (b) the lower edge (at 27 Hz) with eigenvalue
1 + 0.0073193i and (c) upper edge (at 53.5 Hz) with eigenvalue
1 − 0.099831i. Displacement fields for the S-wave at (e) lower edge
(at 14.5 Hz) with eigenvalue 1 − 0.050357i and (f) upper edge (at
28.5 Hz) with eigenvalue 1 + 0.11834i.

crystals generates a complete band in which Re(k) is absent
[Figs. 5(c) and 5(d), red area]. In addition, comparison of
the results obtained by the weak formulation method agree
well with results obtained using the equifrequency method
[Figs. 5(c) and 5(d), magnified image]. The complete band
gap is generated in a lower frequency range for the S-wave
than for the P-wave due to the restriction of particle veloc-
ity (i.e., cp > cs). Moreover, in the reduced Brillouin zone
scheme in 	-X [Figs. 6(a) and 6(d)], the dispersion curve in
free space (black dashed line) is well organized and agrees
with the obtained values of Re(k) until the X point, at which
the band gap opens. The eigenmodes of displacement fields
for both the P- and S-wave are also computed at upper and
lower edges at the X point along the corresponding eigenval-
ues [Figs. 6(b) and 6(c), and 6(e) and (f)].

B. Behavior of seismic phononic crystals in band gap

Using the previously analyzed data with the same design
as in Fig. 5, we periodically arranged the replicas to examine
the wave propagation dynamics in the band gap. The P-wave
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FIG. 7. Displacement fields of periodically arranged seismic
phononic crystals. Excitations of the P-wave at 45 Hz by (a) plane
wave and (b) 45◦-tilted wave in band gap; (c) at 60 Hz out of band
gap, and (d) at 10 Hz out of band gap. Excitations of S-wave at 20 Hz
by (e) plane wave and (f) 45◦-tilted wave in band gap, and by (g)
35 Hz and (h) 10 Hz out of band gap.

cannot pass through the crystals in the x-direction in the
band gap at 45 Hz, because the waves have no propagation
mode [Fig. 7(a)], whereas the waves do propagate at 60 Hz
[Fig. 7(c)] and 10 Hz [Fig. 7(d)]. Moreover, because of
the complete band gap, any oblique incident waves are also
forbidden within the crystals. Therefore, the result for the
45◦-tilted wave at 45 Hz is the same as for the normal-incident
wave [Fig. 7(b)]. The behavior of the S-wave in the y-direction
within crystals is also the same as that of the P-wave.

For practical reasons, the seismic phononic crystals should
be as thin as possible in a lateral direction. In order to
achieve this miniaturized structure, the “propagation length”
or “skin depth”, which is widely used in surface plasmon
polariton, should be investigated in a similar way. The analogy
of phononic crystals is preserved because evanescent modes
instead of propagation modes occur in band gaps. Therefore,
if we assume that a wave that propagates in the x-direction has
an exponential decaying component in band gaps, one can be
expressed as

u = u0ei(Re(kx )x+i Im(kx )x)

= u0ei|Re(kx )||x|e−|Im(kx )||x|, (17)

where the imaginary term determines the propagation length
as

lp = 1

|Im(kx )| , (18)

where lp denotes the distance for the absolute displacement
field to decay by a factor of 1/e. Due to internal Bragg
scattering, aseismic waves within phononic crystal medium
cannot propagate in band gaps. The medium has only evanes-
cent modes [Im(k)], but no propagation modes [Re(k)], so
it can be considered to be a locally evanescent regime. Our
approach yields a complex-valued k, so lp can be evaluated.
Therefore, we explicitly obtain the maximum propagation
lengths in the entire frequency range of the band gap regime;

FIG. 8. Propagation length along frequency, and redesigned seis-
mic phononic crystals following the maximum propagation length
in the band gap region. (a) and (c) indicate that lp in the band gap
regime is a sufficiently predictable variable (magnified image) of
P- and S-waves. (b) and (d) are the rearrangements of miniaturized
phononic crystals for P- and S-waves, resulting in adequate band gap
phenomena.

the results were lp,max = 10.131 m for the P-wave [Fig. 8(a)]
and lp,max = 8.4505 m for the S-wave [Fig. 8(c)]. Such in-
formation enables us to redesign phononic crystals to be as
thin as possible in a lateral direction, because the length
of the whole crystal that exceeds propagation length is not
necessary anymore for practical usage. Here, we rearrange
seismic phononic crystals from P- and S-waves, and the
length of miniaturized crystal Lm is subject to restriction Lm =
[(lp,max + L)/L] × L � lp,max + L, where [· · · ] is the largest
integer that is less than or equal to · · · [Figs. 8(b) and 8(d)].
The minimized structures work well in band gaps at 45 Hz
and 20 Hz as expected.

C. Material property dependency on propagation length

We also investigated the dependency of particle velocity
on varying mass densities (ρ = [1.8 × 103, 8 × 105] kg/m3)
while obtaining the complex-valued effective particle velocity
by a parametric study of mass density, while maintaining the
same ν = 0.3, E = 0.153 GPa as the soil background. The
effective particle velocity is defined as

ceff = 1/neff = kb/keff , (19)

where kb = ω/cb and ω = 2π f , and the effective refractive
index neff is the inverse of ceff . cb is determined differently for
P- and S-waves. Preserving f = 45 Hz for the P-wave, and
f = 20 Hz for the S-wave, the lossy component of ceff be-
comes the dominant factor for hard materials (high mass den-
sity) and yields precise low lp still in the band gap [Fig. 9(a)],
whereas no lossy component of ceff occurs in soft materials
(low mass density) so they have extremely high lp that does
not occur in the band gap [Fig. 9(b)]. In addition, mechanical
properties for several materials (Table I) were used for data
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FIG. 9. ceff/cb along lp. Hard materials (left region) such as steel
and concrete with high mass density generate low lp induced by
occurrence of Im(ceff/cb). On the other hand, soft materials (right
region) such as wood (oak) and PMMA with low mass density
generate extremely high lp without any disturbance of Im(ceff/cb).

in Fig. 9 as reference. For hard materials, seismic waves
weakly experience propagation modes, but instead experience
evanescent modes induced by multiple scattering between
inclusions within the medium; this phenomenon yields a band
gap that arises from Im(k). However, for soft materials, the
waves strongly experience propagation modes in that medium
and still propagate through the crystals with no reflection.

D. Depth effect in three-dimensional system

Until now, all analyses of seismic phononic crystals have
entirely been done with a 2D model. In this case, the depth of
the 2D model on the z-axis is regarded as an infinitely long
height. However, in real systems, the depth must be finite and
therefore the effect of it is the primary consideration. Follow-
ing the concern, we added two domains at the top and bottom
of phononic crystals (main domain) with perfectly matched
layers (PMLs) in Fig. 10(a). PMLs have been imposed to
reduce unwanted numerical reflections on interfaces. For both

TABLE I. Several mechanical material properties used in Fig. 9.
It is expected to distinguish which material effectively belongs to a
hard material with given single frequency regarding the propagation
length.

Mass Young’s
Materials density (ρ ) modulus (E ) Poisson’s ratio (ν )

Steel 8000 kg/m3 200 GPa 0.28
Concrete 2400 30 0.15
Wood (oak) 720 6.1 0.37
PMMA 1180 3.2 0.35

FIG. 10. (a) Three-dimensional (3D) computational schematic
domains. The seismic phononic crystals (main domain) is embedded
in between two PMLs with the variable h, and have periodic bound-
ary conditions at both sides. (b) Reduced Brillouin zone scheme of
the P-wave in 3D space. Re(kx ) with respect to h steadily converge
to the obtained values when the periodic condition rather than finite
h is considered.

sides of the main domain on the x- and y-axes, periodic
conditions have been imposed the same as in the 2D model.
Reduced Brillouin zone of the P-wave shows that the depth
h of seismic phononic crystals should be at least h � 4 × L
[Fig. 10(b)] to ensure that Re(kx ) with finite h converges
to the case when the periodic condition is imposed on the
z-axis.

IV. CONCLUSION

In summary, we have investigated seismic phononic crys-
tals driven by an elastodynamic Navier equation. From the
consistent values of the potential and displacement fields by
analytic and numerical approaches, the numerical analysis via
weak formulation method shows a satisfactory stability. Using
the proposed method, we have analyzed band structures of
seismic phononic crystals with cylindrical steel inclusions and
soil background, and observed complete band gaps for the
P- and S-waves. Moreover, utilizing the propagation length
by information of complex-valued wave vector, we showed
the feasibility of miniaturized seismic phononic crystals for
practical usage. Also, we have shown how the relation be-
tween effective particle velocity and propagation length is
affected by evaluating material property. Furthermore, three-
dimensional analysis for depth effect of phononic crystals has
been conducted showing that the depth should be at least
larger than 4 times by lattice constant. With the presented
work, we hope that this understanding of wave propagation in
periodic composites will be used to develop seismic-resistant
construction materials. These future-oriented manmade struc-
tures can potentially be buried beneath the ground surround-
ing regions such as nuclear power station, geothermal power
plant, and electricity pylon that should be isolated from an
unexpected state.
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