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Saturated random packing built of arbitrary polygons under random sequential adsorption protocol
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Random packings and their properties are a popular and active field of research. Numerical algorithms that
can efficiently generate them are useful tools in their study. This paper focuses on random packings produced
according to the random sequential adsorption (RSA) protocol. Developing the idea presented by G. Zhang
[Phys. Rev. E 97, 043311 (2018)], where saturated random packings built of regular polygons were studied, we
create an algorithm that generates strictly saturated packings built of any polygons. Then, the algorithm was
used to determine the packing fractions for arbitrary triangles. The highest mean packing density, 0.552 814 ±
0.000 063, was observed for triangles of side lengths 0.63 : 1 : 1. Additionally, microstructural properties of such
packings, kinetics of their growth, as well as distributions of saturated packing fractions and the number of RSA
iterations needed to reach saturation were analyzed.
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I. INTRODUCTION

Random sequential adsorption (RSA) is a numerical pro-
tocol to generate random packings of particles with a given
shape [1,2]. It is based on sequential trials to add a randomly
placed particle to a packing. The particle is added when it does
not intersect with any previously placed particle; otherwise, it
is removed. When added, it will hold its position and orienta-
tion inside the packing forever. The process is continued until
the packing is saturated, i.e., there is no area large enough to
place any new particle.

The history of RSA began in 1939 when Flory was study-
ing random attachment of atomic groups to a long polymer.
In 1959, Renyi solved the so-called “car parking problem”
[3], which was a one-dimensional implementation of RSA.
The popularity of RSA, however, is owing to Feder, who
noted that RSA packings resemble the structure of monolayers
created during irreversible adsorption processes [4]. RSA is
also studied as one of the simplest yet not trivial protocols to
generate random packings, which takes into account excluded
volume effects. In contrast to random close packings, which
are the most popular models of granular matter, saturated RSA
packings have well-defined mean densities [5].

One of the biggest issues of the RSA protocol is its inef-
ficiency for almost saturated packings. When the probability
of successfully adding another particle to the packing is tiny,
the algorithm needs a tremendous amount of random trials
to insert any new particle. Moreover, even if the packing is
already saturated, it is often difficult to ascertain saturation in

*michal.ciesla@uj.edu.pl
†pkua.log@gmail.com
‡gezhang@alumni.princeton.edu

order to stop trying to add subsequent particles to the packing.
The most common way to deal with this problem is to stop the
simulation after some large but arbitrarily defined number of
iterations and then estimate interesting properties of saturated
packings (e.g., its density) by extrapolating packing growth
kinetics [6,7]. Although such an approach can give pretty
accurate results [8], it requires a large amount of computer
resources and still is burdened with systematic error due to the
estimation. The best method so far to deal with this problem
is to trace regions where the next particle can be added. It
allows to significantly speed up packing generation because
subsequent attempts to place an object can be restricted only
to these regions. Moreover, when all such regions vanish,
insertion attempts may cease since the packing is known to
be saturated. The method is illustrated in Fig. 1 for two-
dimensional disks.

The method of tracing available regions has been suc-
cessfully applied for packing built of spherically symmetric
shapes [9–11] and, recently, for ellipses and spherocylinders
[12], regular polygons [13], rectangles [14], and any shapes
built of several disks [15].

The aim of this study is to show how the idea used for
generating saturated random packing built of regular polygons
[13] can be expanded to work for any polygon. It is worth
noting, that together with a recent algorithm presented in
Ref. [15], this method allows one to generate strictly saturated
RSA packings for a large range of two-dimensional shapes.
Therefore it enables us to effectively model the majority of
monolayers produced in irreversible adsorption experiments.
For example, the presented algorithm is used here to de-
termine the shape of triangles that build the densest RSA
packing. Although the RSA packings built of triangles do not
have a direct application in modeling adsorption monolayers
of realistic molecules, their study may help answer some
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FIG. 1. Stages involved in generating an RSA packing of 2D disks. Red disks represent nonpenetrable particles. Yellow indicates regions
where it is impossible to place the center of another disk due to intersection with the existing ones. Black square voxels approximate
an area where placing of a subsequent disk is possible. In each subsequent stage, these voxels are divided into 2d subvoxels to better
approximate available space as well as are filled up with new disks. In panel (d), there are no black voxels; thus, the packing is
saturated.

fundamental questions regarding random packing properties.
Firstly, it was observed that shapes of higher symmetry, such
as disks or spheres, form less dense packings than anisotropic
shapes such as ellipses or ellipsoids [12,16–20]. Triangles
do not have continuous symmetry groups such as disks or
spheres, but they may have D3 dihedral symmetry (equilateral
triangles) or axial symmetry (isosceles triangles). It is im-
portant to check if these symmetries influence the properties
of the obtained packings. It was observed that in the case
of rectangles, the local minimum of the packing fraction is
observed for squares [14,16]. Another recent study of random
packings built of shapes with tetrahedral and octahedral sym-
metry shows that it is not true that octahedral symmetry will
always lead to less dense packings than tetrahedral symmetry
[21]. Secondly, recent analytical results obtained by Baule
shows that the kinetics of packing growth near saturation
limit may depend on properties of the contact function—the
touching distance between two objects as a function of their
relative orientation [22]. For example, the long-time scaling
of the kinetics is different between packings built of ellipses
and rectangles with centers placed on a one-dimensional
line. This has not been observed so far for two-dimensional
packings that are almost saturated [8,17,23] but now, using
the algorithm that generates strictly saturated packings, it is
possible to check this arbitrarily close to saturation limit.
Additionally it would be possible to check if the scaling of
the number of RSA iterations needed to reach saturation is
governed by the same exponent as the kinetics of packing
growth [24].

II. ALGORITHM

The crucial stage of the algorithm is when it determines
if a given voxel can be eliminated due to the impossibility
to add another particle inside it. In the case of disks or
spherically symmetric objects, a voxel can be eliminated if
the distance from each of its vertices to the center of any
already added disk is smaller than 2r, where r is the disk’s
radius [9,11,12,14]. Because a voxel is convex, it is removed
when all its corners are inside the excluded area around an
already placed particle. Another analytic approach is to define

the intersection function and estimate its behavior inside a
voxel. For example, in the case of the disk, such function can
be defined as

Fdisk(x, y) = (x − x0)2 + (y − y0)2 − 4r2, (1)

where (x0, y0) are coordinates of the disk center from the
packing, and r is its radius. Thus, the voxel v can be removed
only if for all (x, y) ∈ v, Fdisk(x, y) < 0, or equivalently

max
(x,y)∈v

Fdisk(x, y) < 0. (2)

Although, in general, finding the maximum of F (x, y) for
(x, y) inside a voxel analytically can be difficult, it is enough
to use an upper limit of F (x, y): F̃ (x, y) � F (x, y), as long
as F̃ (x, y) tends to F (x, y) when the voxel size goes to 0.
The Zhang algorithm used for generating saturated RSA pack-
ings of two-dimensional regular polygons [13] employs this
approach. The following is its brief summary. Two polygons
intersect only if any of their edges intersect. Assume that there
are two line segments, A and B, each defined by two vectors
pointing at their two ends, (a1, a2) and (b1, b2), respectively.
Segments A and B intersect if and only if the ends of segment
A lay on the opposite sides of the line containing segment B,
and vice versa. Thus,

F1(a1, a2, b1, b2)= f (a1, a2, b1) · f (a1, a2, b2) < 0 and

F2(a1, a2, b1, b2)= f (b1, b2, a1) · f (b1, b2, a2) < 0, (3)

where f (a, b, c) = (c − a) · (b − a) is positive if the point c
is on one side of the line passing through a and b, and negative
if c is on the other side.

When generating two-dimensional RSA packings of poly-
gons, the placement of an incoming particle can be specified
by three scalars: the coordinate of its center, (x, y), and the
angle between the orientation of the polygon and a reference
orientation, φ. Thus, each point of a three-dimensional aux-
iliary space (x, y, φ) corresponds to an insertion of a trial
polygon in this particular location and orientation. Three-
dimensional voxels are employed to trace parts of this space
where successful insertion trials are possible. In subsequent
stages of the algorithm, some of these voxels are covered by
newly added polygons; others are divided into 23 subvoxels to
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FIG. 2. Example of a voxel (the black square) that would never
be removed by the algorithm described in [13]. The solid rectangle
is already part of the packing while the dashed one is the virtual one
with the center inside the black square voxel. Rectangles partially
overlap but their edges do not, according to the criterion (3).

approximate the available space better. As mentioned above,
the crucial stage of the algorithm is determining if a voxel
can be removed, as inserting a new polygon inside any of its
points leads to an intersection with previously placed objects.
The algorithm identifies polygon overlaps by checking if any
sides of two polygons overlap using Eq. (3). To determine if a
given voxel overlaps with an existing polygon, the algorithm
treats the voxel as a trial insertion with an uncertainty (x ±
δx, y ± δy, φ ± δφ), and performs a worst-case error analysis
of the intersection criterion. The analysis is based on the
functions δFi(a1, a2, b1, b2), which provide the error bounds
of conditions (3) for edge A belonging to a polygon already
added to the packing and edge B from a trial particle within the
voxel [see Eqs. (8)–(15) in Ref. [13]]. When F̃i = Fi + |δFi| <

0, an intersection always exists no matter how δx, δy, and δφ

vary within their respective limits (determined by the voxel
size); and thus the entire voxel can be removed. Additionally,
if condition (1) is fulfilled for the existing polygon’s inscribed
circle, a voxel is removed too.

It turns out that for nonregular polygons, this algorithm
requires a modification. If one employs the original algorithm,
certain unavailable voxels can never be correctly identified.
For example, the black voxel in Fig. 2 will never be removed
as it contains a point (corresponding to the center of the
dashed rectangle) for which the functions Fi = 0. Therefore,
even if |δFi| → 0 with decreasing voxel size, the maximum
over the voxel is F̃i � 0. Thus, the voxel will not be eliminated
even though there is no possibility to place the nonintersecting
rectangle in it. A similar situation is shown in Fig. 3, where
the edges of one object cross the vertices of the other one.
While both objects intersect, their edges, according to (3), do
not. Again, a small voxel containing the center of the black
polygon should be removed because the black polygon inter-
sects with the existing blue polygon. However, the program
could not ascertain its unavailability since the black polygon’s
sides only touch the sides of the blue polygon. In this case,
the functions Fi are again equal to zero, and their upper bound
Fi + δFi � 0. Thus, this voxel will not be eliminated and the
algorithm will never stop. It is theoretically possible that such
trial object will be randomly selected, which would lead to
packing with overlapped objects. Practically, the probabil-
ity of such selection is negligible ∼(1/253)3, assuming that
three double-precision variables determine the position and
orientation of the object. Even if strong inequalities in (3)
are replaced by weak ones, which is a protection against
overlapping of packed objects, the problem with voxels that
can never be removed still remains.

FIG. 3. An unavailable voxel that could not be identified as such
using the original algorithm [13]. Blue pentagons are objects already
inserted into the packing and the black pentagon represents the
unavailable voxel.

In this paper, we present a way to fully overcome this
issue. We place so-called “helper segments,” which are
additional line segments, within a polygon. Although there
might be many different ways of adding helper segments
to overcome this problem, here we present two generic and
numerically efficient methods. The first method is to add
helper segments from an arbitrary point inside the polygon
to all vertices. The second method is to add a parallel helper
segment behind each of the polygon’s edges. The distance
between the edge and the helper segment parallel to it should
be smaller than the distance between any two vertices. Our
experience shows that the first method is generally faster,
since the helper segments share one endpoint with polygon
edges, and therefore do not need to be recalculated. However,
the second method may be required when the first method
is inapplicable. (For example, if it is impossible to find a
point inside a particular nonconvex polygon such that all
helper segments from the point to its vertices are inside the
polygon). The two ways to add helper segments are illustrated
in Fig. 4.

Another possibility is to treat all polygon diagonals as
helper segments, which works well for rectangles. How-
ever, the number of diagonals grows quadratically with the
number of vertices, which significantly reduces the effi-
ciency of the algorithm for polygons with a high number of
vertices.

FIG. 4. Illustration of the two ways to add helper segments to an
irregular pentagon to solve the problem detailed in the text.
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FIG. 5. Model of a triangle of side lengths ratio a � 1 � b.
Dashed lines are helper segments from the triangle mass center to
its vertices.

III. TEST CASE—RSA OF TRIANGLES

To prove the correctness of the presented algorithm, satu-
rated packings built of identical triangles were generated in
order to find a shape that provides the densest packings.

A. Model

The shape of an arbitrary triangle is fully determined by
three numbers corresponding to its side sizes. Without any
loss of generality, the length of the middle side can be taken
as the unit of length. Thus, there are only two independent
variables a and b such that a � 1 � b, and additionally,
due to triangle inequality condition, a + 1 � b (see Fig. 5).
Triangles were rescaled to have a unit area, and were put
randomly on a square box of size S = 300 × 300. Periodic
boundary conditions were used as it has been shown that they
reduce finite-size effects [25]. For each shape of triangle, N =
100 independent, saturated packings were generated. The
mean packing fraction was equal to θ = (1/N )(

∑N
i=1 ni/S),

where ni was the number of triangles in the ith packing (see
Supplemental Material [26]). The estimated statistical error
of θ , given by σ (θ ) = (1/N )[

∑N
i=1(θ − ni/S)2]1/2, was below

10−4. During packing generation, three helper segments from
the mass center of the triangle to its vertices were used (see
Fig. 5).
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FIG. 7. The mean saturated packing fraction for isosceles trian-
gles. The parameter x denotes the length ratio of the isosceles triangle
base to its arm, e.g., x = 1 corresponds to equilateral triangle. Dots
are numerical results, and the solid line is to guide the eye. Statistical
errors are smaller than the size of dots.

B. Packing fractions

Fragments of example packing are shown in Fig. 6.
The analysis of the obtained values of the mean saturated
packing fractions started with the case of isosceles triangles
of side lengths 1, 1, x, where x can be any positive value. The
results are shown in Fig. 7. The highest packing fraction is
reached for x = 0.63 and equals θ = 0.552 814 ± 0.000 063.
A slightly lower value is observed for x = 1.31, where θ =
0.550 906 ± 0.000 057. The local minimum is present for the
equilateral triangle, which agrees with theoretical arguments
that shapes of higher symmetry form less dense packings
[20]. Similar behavior has been observed for other anisotropic
shapes [12,14,16,17]. The packing fraction for the equilateral
triangle is θ = 0.525 818 ± 0.000 059 which agrees with pre-
viously reported values [13,23].

The results for packings built of arbitrary triangles are
shown in Fig. 8. Interestingly, for all studied sets of param-
eters (a, b) not a single packing was found that was denser
than the one obtained for isosceles triangles. In addition, the
maximum in the (a, b) plane seems to be almost flat along
the direction that connects two maxima for isosceles triangles.
Therefore, at this level of accuracy, it is hard to determine if

FIG. 6. Fragments of example saturated random packings of triangles for (a) a = b = 1.0; (b) a = 0.63, b = 1.0; and (c) a = 1.0,
b = 1.31.
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FIG. 8. The mean saturated packing fraction for arbitrary triangles.

the global maximum is reached for the isosceles triangle or
for another shape that is close to (a = 0.63, b = 1). However,
it is unexpected that the shape of higher symmetry does not
correspond to a local minimum of the packing fraction, i.e.,
the packing fraction does not decrease towards edges given
by a = 1 and b = 1 [20].

C. Microstructural properties

Microstructural properties of the obtained packings can be
studied using density autocorrelation function:

G(r) = lim
dr→0

N (r, r + dr)

2πr dr θ
, (4)

where N (r, r + dr) is the mean number of triangles with the
mass center at the distance between r and r + dr from the
center of a reference particle. The results for sample packings
are shown in Fig. 9. The behavior observed is typical for
random media. For the equilateral triangle the first maximum
is higher and sharper due to the symmetry—when two tri-
angles are touching their sides, the distance between their
centers does not depend on which sides are in touch. For
isosceles triangles, this is not true, and therefore instead of
one maximum, two smaller maxima are observed. For larger
distances, G(r) oscillations are damped. It has been shown
analytically that for one-dimensional RSA packings these
oscillations vanish superexponentially with the distance [27].
Here, G(r) ≈ 1 for r > 5.

0 1 2 3 4 5r
0.0

0.5

1.0

1.5

G
(r

)

a = 1.00, b = 1.00
a = 0.63, b = 1.00
a = 1.00, b = 1.31

FIG. 9. Density autocorrelation functions for packings built of
three different triangles.
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FIG. 10. The dependence of saturated mean packing fraction
on packing size. For all packing sizes except S = 90 000, packing
fraction was calculated by averaging over 100 independent random
packings. For S = 90 000, 104 independent packings were used.
Error bars correspond to the standard deviation of the mean packing
fraction. Solid black line corresponds to θ (S = 9000) = 0.525 811 9.
Dashed blue lines correspond to the range of θ determined by Zhang
[13].

D. Finite-size effects

It has been shown for the RSA of disks that the mea-
sured value of saturated packing fraction for small packings
oscillates with respect to the system size, similar to the
oscillations found in the tail of the autocorrelation function
[25]. Therefore, it was expected (as a packing side length used
in the study is much larger than 5) that the finite-size effects
should not affect the obtained values of packing fraction. To
prove that, the dependence of packing fraction on packing size
for equilateral triangles was analyzed. The results are shown
in Fig. 10. The result from our previously used system size,
S = 90 000, certainly agrees with the best estimation given by
the solid black line. Here we also present the packing fraction
range reported earlier in [13], which is slightly higher but
very close to the one reported here. This can happen with
approximately one-third probability due to the probabilistic
interpretation of standard deviations.

E. Kinetics of packing growth

Kinetics of RSA packing growth near saturation depends
on the number of iterations according to the power law [6,7]

θ (t ) = θ − At−1/d . (5)

The number of iterations is often measured in the so-called
dimensionless time, which unit corresponds to S/Sp iterations,
where Sp is the area covered by a single particle in the packing.
Such a scaling does not affect the exponent in the above
power law and is commonly used to compare RSA kinetics
of differently sized packings. Although the parameter d in (5)
is simply the space dimension for spheres, Baule has shown
recently that when anisotropic particles are placed according
to the RSA protocol in such a way that their centers lay on
a one-dimensional line, d depends on properties of contact
function of packed shapes. Parameter d is noticeably bigger
when this function is not analytic [22]. For two-dimensional
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FIG. 11. The dependence of increments of packing fraction on
dimensionless time for equilateral triangles. Black dots are measured
data and red dashed line is a power-law fit dθ/dt = 0.127 28 t−1.3387.
Inset shows the value of parameter d estimated from data obtained
for times within [0.01t, t]. Red dashed line corresponds to d = 3.

nonspherical RSA packings, there is a numerical evidence
that d = 3 for RSA of ellipses [8,17], or rectangles [28,29];
however, these studies do not reach saturation limit. In this
study, using the algorithm described above, we can check the
validity of (5) and calculate d arbitrarily close to saturation.
For all examined shapes, the determined value of parameter
d was in the range of (2.79, 3.17) with the fitting error at
the level of 0.05. Figure 11 shows example data obtained for
saturated packings built of equilateral triangles. The slope of
the dependence is almost constant (see inset in Fig. 11) for
large enough t , and d ≈ 3.

For saturated packing of spherically symmetric particles,
it was previously established that parameter d can also be
obtained from the dependence of the median of iterations
needed to generate saturated packings expressed in dimen-
sionless time units on packing size [24]:

M(t ) ∼ Sd . (6)

As shown in Fig. 12, the above relation is also valid for
equilateral triangles, and, because its derivation is based on
very general assumptions [24], we expect it to be valid for
other anisotropic shapes.

Figure 12 also confirms that d for triangles is the same
as for other anisotropic shapes with analytic contact func-
tion. Thus, the result obtained by Baule for RSA on a one-
dimensional line [22] cannot be directly extended to higher
dimensions.

Lastly, we study the distributions of packing fractions and
the number of iterations needed to generate saturated pack-
ings. They are important because the full distribution provides
extra information besides the mean and standard deviation.
Here, as we can see in Fig. 13, the packing fraction is
normally distributed, while a power law gives the distribution
of the number of iterations needed to saturate a packing. It
is noteworthy that the same was observed for RSA of disks
[24,30]. Thus again, this seems to be a universal property for
RSA of arbitrary shapes.

103 104 105 106
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108

1010
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1014

1016

M
(t)

FIG. 12. The dependence of the median of the number of itera-
tions (expressed in dimensionless time) needed to generate saturated
RSA packing built of equilateral triangles on packing size. Squares
represent numerical data obtained from 100 packings. Solid line is a
power fit: M(t ) = 0.043 177S3.0649.

IV. SUMMARY

This study presents an algorithm that allows generating
saturated random packings according to the RSA protocol for
a wide range of shapes. The algorithm is based on the idea
recently introduced in [13], and incorporates an additional
step of adding helper segments to a polygon in order to
determine if another trial particle can be added to the packing
in a given area.

This algorithm was used to generate saturated random
packings of triangles to find the shape that yields the dens-
est packings. It appeared that the highest packing fraction,
0.552 814 ± 0.000 063, was observed for isosceles triangles
of side length ratios 0.63 : 1 : 1. Also, a previous estimation
of the mean packing fraction for equilateral triangles [13] is
improved to 0.525 811 9 ± 0.000 005 9.

2×1013 4×1013 6×1013 8×1013 1×1014
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0.524 0.525 0.526 0.527 0.528
θ

0
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FIG. 13. Histograms of the number of iterations (expressed in
dimensionless time) needed to generate saturated packing and the
packing fraction (inset) obtained from studying 104 packings built of
equilateral triangles.
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The presented algorithm was also used to check kinetics of
the growth of RSA packing built of triangles near saturation,
and it was found that in contrast to one-dimensional RSA,
it is governed by the same exponent as for other smooth
shapes. Additionally, it has been shown that the number of
iterations needed to saturate a packing scales with packing
size according to a power law, which is the same as for
spherically symmetric particles.

See Ref. [31] for the source code of the program generat-
ing saturated random packings of arbitrary polygons and, in
particular, triangles.
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