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Symmetry-breaking morphological transitions at chemically nanopatterned walls
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We study the structure and morphological changes of fluids that are in contact with solid composites formed
by alternating and microscopically wide stripes of two different materials. One type of the stripes interacts with
the fluid via long-ranged Lennard-Jones-like potential and tends to be completely wet, while the other type
is purely repulsive and thus tends to be completely dry. We consider closed systems with a fixed number of
particles that allows for stabilization of fluid configurations breaking the lateral symmetry of the wall potential.
These include liquid morphologies corresponding to a sessile drop that is formed by a sequence of bridging
transitions that connect neighboring wet regions adsorbed at the attractive stripes. We study the character of
the transitions depending on the wall composition, stripes width, and system size. Using a (classical) nonlocal
density functional theory (DFT), we show that the transitions between different liquid morphologies are typically
weakly first-order but become rounded if the wavelength of the system is lower than a certain critical value Lc.
We also argue that in the thermodynamic limit, i.e., for macroscopically large systems, the wall becomes wet
via an infinite sequence of first-order bridging transitions that are, however, getting rapidly weaker and weaker
and eventually become indistinguishable from a continuous process as the size of the bridging drop increases.
Finally, we construct the global phase diagram and study the density dependence of the contact angle of the
bridging drops using DFT density profiles and a simple macroscopic theory.
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I. INTRODUCTION

The presence of a (flat) solid substrate can induce local
condensation of an ambient gas into a high-density, liquidlike
film, the width of which depends on microscopic interactions
and thermodynamic conditions. On a macroscopic level, this
ability can be characterized by a contact angle θ of a sessile
liquid drop deposited on the wall as given by Young’s law [1],

cos θ = γwg − γwl

γ
, (1)

balancing the surface tensions between the wall-gas (γwg),
wall-liquid (γwl), and liquid-gas (γ ) interfaces, respectively.
If θ = 0, the droplet spreads over the surface of the wall,
meaning that in the grand-canonical ensemble the height of
the induced liquid film tends, in the absence of gravity, to
diverge and the wall becomes completely wet. If θ > 0, the
affinity of the wall toward the liquid is weaker and the height
of the liquid film is only of a microscopic (molecular-scale)
dimension; the wall is then partially wet. If θ > π/2, the
substrate prefers contact with the gas, and in an extreme case
of θ = π the wall is completely dry.

The wall, embedded into a three-dimensional reservoir of a
(simple) fluid, also disrupts the isotropic character of the bulk
system. If the wall is flat and chemically homogeneous, the
system loses its symmetry in the direction normal to the wall
but still preserves translational invariance in the remaining
two Cartesian dimensions tangent to the wall. However, if
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the (planar) wall is chemically heterogenous, i.e., consisting
of two or more species, at least one of these continuous
symmetries is broken and so is the shape of the adsorbed
liquid film. The generalization of Young’s law for chemically
heterogeneous walls leads to Cassie’s law [2,3] for the effec-
tive contact angle of the sessile drop,

cos θ∗ =
∑

i

χi cos θi, (2)

where the summation is taken over all domains of the wall,
each characterized by its fractional area, χi, and the corre-
sponding Young’s contact angle θi.

Cassie’s law is a macroscopic result assuming that the
interfacial free energy of a composite wall is a sum of con-
tributions from individual regions, which themselves behave
as if they were of infinite extent. However, the recent ad-
vances in experimental techniques [4,5] enabled us to carry
out a number of experiments [6–13] that revealed that the
phenomenology of wetting on chemically patterned surfaces
of various scales is much more complex than that expressed
by Eq. (2), especially when the fine structure of the substrate
is taken into account [14]. This, in turn, invoked theoretical
and computational efforts for a description of liquid adsorp-
tion on chemically heterogeneous surfaces by considering
further aspects, additional to the surface tension arguments,
such as the relevance of microscopic forces, packing effects,
thermal fluctuations, line tension, etc., all ignored within
the original description of Cassie. These include molecular-
based simulations [15–22], stability analysis of liquid struc-
tures at microchannels [6,23–27], exact statistical-mechanical
arguments [28,29], various modifications of the effective
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Hamiltonian model [30–33], as well as studies using the
density functional theory (DFT) approach [34–43].

In terms of the quantitative validity of Cassie’s law, the
conclusions based on different approaches are contradictory.
For example, Gao et al. suggest that the use of Cassie’s
law cannot be recommended as the contact angle behavior
is determined by interactions of the liquid and the solid at
the three-phase contact line alone and thus the interfacial
area within the contact perimeter is irrelevant [44]. On the
other hand, the experimental studies dealing with anisotropic
wetting [8,12] show that Cassie’s law is rather accurate but
only in the direction along the wetting stripe. Finally, there
are arguments [19,45] that Cassie’s equation is applicable
provided the wavelength of the surface heterogeneity is suffi-
ciently large, estimated to about 15 molecular diameters [19].

In this work, we present a fully microscopic study of
fluid adsorption on nanopatterned planar walls consisting of
alternating hydrophilic and hydrophobic stripes. The parallel
stripes are assumed to be microscopically narrow but macro-
scopically long, so that the system is translationally invariant
in the direction along the stripes, and the wall potential thus
varies only in two dimensions. The external potential exerted
by the wall is periodic but the system itself is finite and closed
containing a fixed number of particles. In contrast to open
systems treated in a grand-canonical ensemble where the fluid
structure must follow the symmetry of the external field, it is
conceivable for systems with a constrained density to allow
for equilibrium states that break the symmetry of the wall
potential, which may bring about a significantly larger number
of distinct fluid configurations. Using a nonlocal density func-
tional theory (DFT) [46] based on Rosenfeld’s fundamental
measure theory [47], the objectives of this work are as follows:
(i) We want to investigate possible fluid morphologies that can
be adopted at the given wall, their stability, and the character
of the transitions between them as the density of the system
varies; (ii) we want to investigate the contact angle depen-
dence on the system density for droplet liquid morphologies
and compare with the macroscopic Cassie’s law; and finally
(iii) we want to know what the impact is of the length-scale
characterizing the wall patterning on the phase behavior of
the system.

Before concluding the Introduction, we underline a priori
some of the main simplifying assumptions that we have
adopted within our analysis and their expected repercussions.
First, we assume that despite it being chemically heteroge-
neous, the wall is perfectly smooth and formed either by
uniformly distributed Lennard-Jones (LJ) atoms (hydrophilic
parts) or by atoms interacting with the fluid via only the
repulsive bit of the LJ potential (hydrophobic parts); the net
potential of the wall is obtained by summing up the individual
LJ potentials over the whole domain of the wall. Due to
the long-range character of the LJ potential, it follows that
the wall attraction is not only exerted exclusively above the
attractive stripes but extends above the repulsive parts as well.
This will presumably give rise to strong solvationlike forces
between liquid drops adsorbed at the neighboring attractive
stripes. As already mentioned above, we assume translational
invariance along the stripes, which excludes the possibility of
liquid morphologies, the shape of which varies in all three
dimensions; this includes an important case of the breakup

of cylindrical threads, a point that we shall discuss in some
detail in the concluding remarks. Although of finite width,
the system is assumed to be a subject of a periodic external
field, and the effect of the confining side walls is neglected
by imposing periodic boundary conditions along the lateral
dimension of the wall. The system is deemed sufficiently high
such that the local fluid density does not change appreciably
near the top of the box. Furthermore, throughout this work
we neglect the effect of gravity, which is justified due to the
typical length scales (stripe width, atom diameter, correlation
length) that are all much smaller than the capillary length [48].

II. MODEL AND DENSITY FUNCTIONAL THEORY

Classical density functional theory is a statistical me-
chanical tool for a description of the structure and thermo-
dynamics of molecular inhomogeneous systems [46,49,50].
Within DFT, all the information about the fluid microscopic
properties is embraced in the intrinsic free-energy functional
F[ρ(r)] of the fluid one-body density (density profile) ρ(r)
and which is typically separated into the ideal gas and excess
contributions,

F[ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)]. (3)

The ideal-gas part

Fid[ρ] = 1/β

∫
dr ρ(r)[ln (�3ρ(r)) − 1] (4)

is known exactly, where β = 1/kBT is the inverse temperature
and � is the thermal de Broglie wavelength that can be set to
unity without loss of generality.

As the exact knowledge of Fex is almost never accessible,
reasonable and computationally tractable approximations are
required. For atomistic models (as opposed to coarse-grained
models), the excess free-energy functional is often treated in
a perturbative manner, such that the excess term is further
separated into a purely repulsive hard sphere and attractive
contributions where the latter is usually treated in a mean-field
fashion [51]:

Fex[ρ] = Fhs[ρ] + 1

2

∫
dr ρ(r)

∫
dr′ ρ(r′)uatt (|r − r′|).

(5)
The attractive tail of the fluid-fluid interaction uatt (r) is taken
to be a truncated Lennard-Jones-like potential

uatt (r) =
⎧⎨
⎩

0, r < σ,

−4ε
(

σ
r

)6
, σ < r < rc,

0, r > rc,

(6)

which is cut off at a distance of rc = 2.5σ . Here, ε and σ

are the interaction parameters that we eventually take as the
energy and length units, respectively. Furthermore, we asso-
ciate the parameter σ with the hard-core diameter of the fluid
particles, the presence of which models repulsive interaction
between the fluid atoms and which contributes to the repulsive
bit of the excess free energy (5). This contribution, which
is responsible for the short-range correlations between fluid
particles and accounts for packing (exclusion volume) ef-
fects, is approximated using the fundamental measure theory

062802-2



SYMMETRY-BREAKING MORPHOLOGICAL TRANSITIONS … PHYSICAL REVIEW E 100, 062802 (2019)

(a)

(b)

L1 L2

L

x
y

z

y

z

x

FIG. 1. Sketch of the model substrate consisting of periodically
repeating “hydrophilic” stripes (contact angle θ = 0) of width L1 and
“hydrophobic” stripes (θ = π ) of width L2. The stripes are assumed
to be macroscopically long. The sketch illustrates one of the possible
liquid morphologies corresponding to a cylindrically shaped drop
that connects three wetting layers; (a) top three-dimensional view,
(b) two-dimensional cross section.

(FMT) [47]

Fhs[ρ] =
∫

�({nα}) dr, (7)

where the free-energy density � is a function of six weighted
densities {nα} given by a convolution of ρ(r) with the cor-
responding weighting function. Among various versions of
FMT [52] we have adopted the original Rosenfeld functional
[47], which provides both a fully consistent and accurate
approach for the fluid state.

In general, the effect of a confining wall is included in
DFT as an external field that the wall exerts. In this work,
we consider a solid planar wall consisting of periodically
repeating “hydrophobic” and “hydrophilic” stripes with a
periodicity of L (see Fig. 1). The latter are represented by
Lennard-Jones atoms interacting with the fluid particles via
the potential

φ1(r) = 4εw

[(
σ

r

)12

−
(

σ

r

)6
]
, (8)

the strength of which is controlled by the parameter εw.
The “hydrophobic” parts of the wall are taken to be purely

repulsive by “turning off” the attractive contribution to the
Lennard-Jones potential of the wall atoms leading to

φ2(r) = 4εw

(
σ

r

)12

. (9)

The net potential of the wall is obtained by integrating the
wall-fluid pair potential over the whole domain of the wall.
Here we assume that the stripes are macroscopically long, so

that the system can be treated as translationally invariant along
the stripes (Cartesian axis y) and the wall atoms are distributed
uniformly with a density ρw. Hence, the wall potential can be
written as

V (x, z) = 4

45
πεwρwσ 3

(
σ

z

)9

+
∞∑

n=−∞
VL1 (x + nL, z). (10)

The first term is the total repulsion of the wall, while the
second part is a sum over the attractive wall-fluid interaction
due to a single hydrophilic stripe of width L1 represented by
the potential VL1 (x, z), which can be expressed as

VL1 (x, z) = −4εwσ 6ρw

∫ x

x−L1

dx′
∫ ∞

−∞
dy′

∫ ∞

z
dz′

× 1

(x′2 + y′2 + z′2)3

= αw

[
1

(x − L1)3
− 1

x3
+ ψ6(x − L1, z)−ψ6(x, z)

]
,

(11)

where

αw = − 1
3πεwσ 6ρw (12)

and

ψ6(x, z) = −2 x4 + x2z2 + 2 z4

2z3x3
√

x2 + z2
. (13)

Within the standard formulation of DFT one deals with an
open system that is in contact with a bulk reservoir of temper-
ature T and chemical potential μ. Here, we deal with closed
systems with the fixed average fluid density ρav, rather than μ,
defined as

ρav =
∫

V dr ρ(r)

V
, (14)

where V = LxLyLz is the volume and Li are the Cartesian
dimensions of the rectangular system. The equilibrium den-
sity profile is obtained by minimizing the total free-energy
functional,

F [ρ(r)] = F[ρ(r)] +
∫

dr ρ(r)V (r), (15)

where V (r) = V (x, z) is the external potential induced by the
wall as given by Eqs. (10) and (11). The minimization is
subject to the constraint∫

V
dr ρ(r) = N, (16)

which after substitution of (3) and (4) into (15) leads to the
Euler-Lagrange equation

ρ(x, z)

LxLz
= ρav exp[c(1)(x, z)]∫ Lx

0 dx
∫ Lz

0 dz exp[c(1)(x, z)]
, (17)

where

c(1)(x, z) = −βδF [ρ(r)]

δρ(r)
(18)

is the single-particle direct correlation function [46].
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(a) (b)

FIG. 2. (a) Density dependence of the free energy per unit length for the neutral substrate (χ = 0.5) with stripe widths of L1 = L2 = 5σ .
The full lines represent the free-energy envelope corresponding to the equilibrium states of various liquid structures that are separated by
first-order morphological transitions highlighted by filled squares. The configuration corresponding to a microscopic coverage of separated
wetting layers (orange curve) is followed by symmetry-breaking states with a drop attached on two (red), three (green), four (blue), and five
(magenta) stripes; the free-energy branch of a liquid slab morphology is in black. Also shown are the metastable extensions of the equilibrium
states that correspond to local minima of the free-energy functional (15) depicted by dashed lines. (b) Contact angle density dependence of
the bridging drop for the corresponding substrates as obtained from the DFT density analysis. The results correspond to stable configurations
of a drop attached on two (red circles), three (green upward triangles), and four (blue downward triangles) attractive stripes. The symbols are
connected by lines to guide the eye, and vertical lines represent the estimated inaccuracy in the determination of the contact angle. The dashed
horizontal line shows the value of Cassie’s apparent contact angle as given by Eq. (2).

Equation (17) is solved numerically on a two-dimensional
rectangular grid with an equidistant spacing of 0.1σ using
Picard’s iteration. At the ith step of the iteration, the new
density profile ρ (i+1)(x, z) is obtained from the previous one
ρ (i)(x, z) by computing the one-body direct correlation func-
tion (18) following a methodology described in Ref. [53].
Unless stated otherwise, the dimensions of the system are
set to Lx = Lz = 60σ and we impose the periodic bound-
ary conditions along the x-axis ρ(x, z) = ρ(x + Lx, z). The
interaction wall parameter is set to εw = ε for which the
wetting temperature of the hydrophilic parts is Tw ≈ 0.8Tc,
where kBTc = 1.41ε corresponds to the critical temperature
of the bulk liquid-vapor transition. Throughout this work we
consider the temperature T = 0.92Tc > Tw, which means that
the hydrophilic parts of the wall tend to be completely wet
(θ = 0), in contrast to the rest of the wall which, regardless
of the temperature, tends to be completely dry (θ = π ). At
this temperature, the bulk fluid phases coexist at the chemical
potential μsat = 3.97ε and the corresponding fluid particle
densities are ρg = 0.10σ−3 and ρl = 0.44σ−3.

III. RESULTS

A. Neutral substrate, χ = 0.5

To begin, we consider the neutral substrate formed by
equal portions occupied by attractive and repulsive stripes.
This means that the composition parameter χ ≡ L1/L = 0.5,
where the width of the attractive stripes is L1 = 5σ and the
wall periodicity is thus L = 10σ . In Fig. 2(a) we display the
dependence of the free energy per unit length on the fluid
particle density. The results are obtained from DFT by solving
Eq. (17) as a subject to various initial conditions that lead
to different, stable or metastable, fluid configurations. The
equilibrium states correspond to the global minimum of the

constrained free energy, which is denoted by the solid line.
The solid line exhibits several kinks that reflect the presence
of metastable extensions of the free energy (dotted lines).
This means that the system undergoes several first-order phase
transitions at which the fluid morphology changes abruptly.
For low densities, the stable configurations correspond to
microscopic layers adsorbed at the hydrophilic stripes. The
coverage and thus the height of the layers grows gradually
with the density and so does the total surface free energy as
the total liquid-gas interface increases. However, this contin-
uous process terminates at the density ρav ≈ 0.12σ−3 where
the system changes its morphology, such that a liquid drop
forming a bridge between two neighboring attractive stripes
occurs. In contrast to the previous state, this configuration
breaks the system symmetry generated by the wall potential
with the location of the bridging drop being ambiguous, as
there is no free-energy cost for shifting the drop by an integer
multiple of L. This solution is stabilized by imposing the
constraint on the number of the fluid particles, as opposed
to a grand-canonical treatment of DFT, in which case all
the energetically equivalent states (with a different location
of the drop) would be averaged to give either a low density
state (separated layers) or a high density state (liquid film
with a corrugated, L-periodic interface and gas voids above
the repulsive stripes). At the fixed density, the morphologi-
cal transition is simply a consequence of lowering the total
interfacial area. However, the comparison of the coexisting
density profiles as displayed in Fig. 3 (top row) reveals that the
decrease in the surface free energy is not due to the bridging
itself but because it decreases the local coverage and thus the
interface area outside of the drop.

By increasing the fluid density still more, the system
eventually experiences another morphological transition, such
that the new state now contains a liquid drop spanning three
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FIG. 3. Two-dimensional density profiles of coexisting liquid
morphologies corresponding to states denoted by squares in Fig. 2(a).
Contour lines corresponding to the arithmetic mean of coexisting
bulk liquid and vapor densities, (ρl + ρg)/2, are also shown.

attractive states. This transition is substantially weaker than
the previous one, since the change in the fluid morphology
is much less pronounced than that breaking the system sym-
metry. Moreover, the coexisting density profiles shown in the
second row of Fig. 3 suggest that also the mechanism of the
transition is different and is now dominated by the free-energy
change associated with the bridging, since the coverage out-
side of the drop does not change appreciably. Therefore, the
shapes of the coexisting drops can roughly be estimated by
balancing the corresponding surface free energies per unit
length F2 = F3 and by imposing a complementary condition
fixing the droplet area S (see Fig. 4). Hereafter the subscript
i = 2, 3, . . . refers to a state containing a drop spanning over i
attractive stripes. The free-energy change �F = F3 − F2 due
to the formation of a drop spanning three attractive stripes and
bridging over two repulsive stripes is

�F = γ (�3 − �2) + γ L2. (19)

Here, the first term is the free-energy change in the out-
side liquid-gas area, which, per unit length, is given by the
decrease in the length �i of the arc approximated by the
circular segment with the chord of ci = iL1 + (i − 1)L2. The
second term is the free-energy change due to the covering, by
liquid, of a repulsive stripe with Young’s contact angle θ = π ,
hence the corresponding wall-liquid surface tension satisfies
γwl = γwg + γ .

FIG. 4. Sketch of a drop spanning two (left) and three (right)
attractive stripes. The sketch shows the meaning of the contact
angles θi, the opening angles αi, the drop areas Si, the chords ci,
and the contour lengths �i, all used in the macroscopic description
[Eqs. (19)–(21)] of the drop shapes. The subscript i refers to the
number of connected attractive stripes.

If αi denotes the central angle (in radians) of the drop
(see Fig. 4), the area of the circular segment spanning over
i attractive stripes is

Si = c2
i (αi − sin αi )

8 sin2
(

αi
2

) (20)

and its arc length is

�i = (2π − αi )ci

2 sin
(

αi
2

) . (21)

The contours of the drops can then be determined by solving
the set of coupled equations �F = 0 and S2 = S3 for α2 and
α3, which in turn determines the corresponding contact angles
θi = π − αi/2.

By substituting for the values of the chords c2 = 15σ and
c3 = 25σ into Eqs. (19)–(21), we find the estimated values
of the contact angles: θ2 = 124◦ and θ3 = 84◦. This can be
compared with our DFT results by analyzing the density
profiles. We define the contour of the drop using a mean
density criterion, i.e., as loci of the density profile satisfying
ρ(x, z) = (ρg + ρl )/2. It allows us to estimate the contact
angles of the drops by constructing a tangent to the contour
where the drop meets the wall. In Fig. 2(b) we display the DFT
dependence of the contact angle on the fluid density. From the
graph, we can read off the contact angles θDFT

2 = 114◦ and
θDFT

3 = 87◦ corresponding to the coexisting drops bridging
two and three attractive stripes, respectively, that are in very
reasonable agreement with the previous macroscopic results.

As the fluid average density is increased still more, the
liquid drop grows continuously before another morphological
transition occurs, such that the drop bridges over another
repulsive stripe in order to connect four attractive parts. The
macroscopic arguments predicting the contact angles of the
coexisting drops can again be tested against the DFT results.
Note that the equation expressing the free-energy balance,
which is now F3 = F4, is completely analogous to (19), such
that the first term is replaced by γ (�4 − �3) while the second
term, which accounts for the surface free-energy contribu-
tion due to bridging over a repulsive stripe, is unchanged.
Complemented with the geometric equations (20) and (21),
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(a) (b)

(c) (d)

FIG. 5. Left column: Density dependence of the free energy per unit length for the hydrophobic substrates with the composition parameters
(a) χ = 0.3 and (c) χ = 0.4. In both cases, the stripe widths are L1 = L2 = 5 σ . The full lines represent the free-energy envelope corresponding
to the equilibrium states of various liquid structures that are separated by first-order morphological transitions highlighted by filled squares.
The configuration corresponding to a microscopic coverage of separated wetting layers (orange curve) is followed by symmetry-breaking states
with a drop attached on one (purple), two (red), three (green), and four (blue) stripes; the free-energy branch of a liquid slab morphology is in
black. Also shown are the metastable extensions of the equilibrium states that correspond to local minima of the free-energy functional (15)
depicted by dashed lines. Right column: Contact angle density dependence of the droplet configurations for the corresponding substrates as
obtained from the DFT density analysis. The results correspond to stable configurations of a drop attached on one (purple squares), two (red
circles), and three (green upward triangles) attractive stripes. The symbols are connected by lines to guide the eye, and vertical lines represent
the estimated inaccuracy in the determination of the contact angle. The dashed horizontal line shows the value of Cassie’s apparent contact
angle as given by Eq. (2).

one obtains θ3 = 117◦ and θ4 = 90◦, which is in even better
agreement with the DFT results than in the previous case.

Although, upon a further increase in density, a morphology
involving drop bridging five attractive stripes can still be
stabilized, the drop configuration is already metastable with
respect to a thick slab of liquid (with gaslike voids above the
repulsive stripes). Therefore, the largest number of bridged
attractive stripes that corresponds to an equilibrium state is
four, but this number clearly depends on the (lateral) system
size; we will return to this point in the final paragraph of this
section. The liquid slab is the ultimate morphology by which
the system retrieves its L-periodic symmetry, and a further
increase in the fluid density leads to a continuous growth in
the liquid height.

B. Hydrophobic substrates, χ < 0.5

We now turn our attention to substrates that are predom-
inantly formed by repulsive, rather than attractive, parts and

which we thus term as hydrophobic. Keeping the system
periodicity fixed to L = 10σ , let us first consider the sub-
strate with the composition parameter χ = 0.4 (L1 = 4σ and
L2 = 6σ ). Now, in comparison with the previous neutral case,
the fluid phase behavior does not allow for the formation
of stable drops spanning four attractive parts, so that the
phase diagram shown in Fig. 8(a) displays only three mor-
phological transitions. These are, however, distributed over
a larger interval in the fluid density, since the formation of
the thick liquid film occurs, as expected, at a larger density
now. The macroscopic predictions can now be applied for
a single transition involving only two and three attractive
stripes, with the chords of the circular segments c2 = 14σ

and c3 = 24σ . The resulting values of the contact angles are
θ2 = 135◦ and θ3 = 99◦, which is again in good agreement
with those obtained from DFT that are displayed in Fig. 8(b).

The phase behavior of the fluid adsorbed at even more
hydrophobic substrate characterized by the composition pa-
rameter, χ = 0.3, is shown in Fig. 5(c). The interval in the
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FIG. 6. Density profile of a one-stripe drop for the substrate
composition χ = 0.3 and the average fluid density ρav = 0.125σ−3.

fluid density within which the morphological transitions occur
is still larger and involves four first-order transition points
again, as in the case of the neutral substrate, but over a
different spectrum of morphologies. Interestingly, and per-
haps somewhat counterintuitively, a morphology of a drop
attached to a single attractive stripe is now possible, even
though the width of the stripe is as small as L1 = 3σ . This
configuration, shown in Fig. 6, is more stable at low densities
than the one corresponding to a drop spanning two attractive
stripes in view of a large free-energy barrier to be overcome
to form a bridge over a long repulsive bit. For the same
reasons, the configuration involving a drop spanning more
than three stripes is now absent and not even metastable. The
contact angle density dependence for the drop morphologies is
shown in Fig. 5(d). The values of the contact angles obtained
from the macroscopic description for the coexisting one-stripe
and two-stripe drops are θ1 = 163◦ and θ2 = 100◦, while for
the coexistence between two-stripe and three-stripe drops the
predictions are θ2 = 145◦ and θ3 = 115◦.

However, for strongly hydrophobic substrates with the
composition parameter χ � 0.2, the situation becomes quite
different. In these cases, the effective contact angle is already
so high that the substrates essentially tend to avoid any contact
with the liquid and act effectively as a hard wall. Therefore,
sessile drops are not stabilized anymore and the systems
experience only one morphological transition corresponding
to the formation of a single drop floating above the wall as the
density is sufficiently high; see Fig. 7. The location of the drop
is again largely arbitrary, and the averaging over all droplet
morphologies would lead to a complete drying scenario with
a gas film intruding at the wall-liquid interface.

C. Hydrophilic substrates, χ > 0.5

Let us now turn our attention to substrates where the
dominating portion of the surface is occupied by attractive
stripes and for which the application of Cassie’s law leads
to an effective contact angle θ∗ < π/2. Adsorption properties
of only slightly hydrophilic substrate with the composition
parameter χ = 0.6 can be distinguished from those at the
neutral substrate in two aspects, as can be observed from the
phase diagram shown in Fig. 8(a). First, the density interval

FIG. 7. Density profile of a nonsessile drop for the substrate
composition χ = 0.2 and the average fluid density ρav = 0.158σ−3.

within which the morphological transitions occur is markedly
shorter, which is because the transition to the complete wet-
ting state (liquid slab) can be accomplished more easily now
and thus occurs at the lower density. Secondly, and more
importantly, the system now exhibits a triple point where four-
stripe drops, five-stripe drops, and liquid film morphologies
all coexist. Note also that except for the triple point itself, the
five-stripe drop morphology is always metastable, although
its extension is substantially larger than in the neutral case.
Interestingly, the predicted values of the contact angles for
coexisting states based on Eqs. (19)–(21)—θ2 = 115◦ and
θ3 = 73◦, θ3 = 108◦ and θ4 = 79◦, θ4 = 104◦ and θ5 = 83◦—
are in even better agreement than in the neutral case, as can
be seen from the comparison with the DFT results shown in
Fig. 8(b).

For moderately hydrophilic substrate with χ = 0.7, the
morphology involving a five-stripe drop becomes stabilized
before the liquid slab configuration forms, see Fig. 8(c),
and it is the first case when the system undergoes five
morphological transitions. Moreover, the transitions are now
packed over a still shorter period of density; this is also
reflected by the contact angle behavior, which is now much
more sensitive to the change in density than in the previous
cases and forms a sequence of nearly straight lines rather
than concave curves, as depicted in Fig. 8(d). Again, the
values of the contact angles for the coexisting states as given
by Eqs. (19)–(21)—θ2 = 104◦ and θ3 = 62◦, θ3 = 97◦ and
θ4 = 68◦, θ4 = 93◦ and θ5 = 71◦—are in very good agree-
ment with the DFT results, except for the smallest, two-
stripe drop. Qualitatively the same behavior is observed also
for χ = 0.8.

However, for strongly hydrophilic substrates, the adsorp-
tion scenario changes dramatically. We find that there exists
a critical value of the composition parameter χc ∼ 0.85 such
that the systems with χ > χc do not exhibit any symmetry
breaking and the adsorption is a fully continuous process.
Here, the repulsive stripes are already so narrow that the bridg-
ing barrier vanishes, so that the microscopic wetting layers
get connected directly to form a liquid film in a continuous
manner. Hence, this class of substrates acts effectively as the
homogeneous wall with χ = 1.
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FIG. 8. Left column: Density dependence of the free energy per unit length for the hydrophilic substrates with the composition parameters
(a) χ = 0.6 and (c) χ = 0.7. In both cases, the stripe widths are L1 = L2 = 5σ . The full lines represent the free-energy envelope corresponding
to the equilibrium states of various liquid structures that are separated by first-order morphological transitions highlighted by filled squares.
The configuration corresponding to a microscopic coverage of separated wetting layers (orange curve) is followed by symmetry-breaking states
with a drop attached on two (red), three (green), four (blue), and five (magenta) stripes; the free-energy branch of a liquid slab morphology
is in black. Also shown are the metastable extensions of the equilibrium states that correspond to local minima of the free-energy functional
(15) depicted by dashed lines. Right column: Contact angle density dependence of the droplet configurations for the corresponding substrates
as obtained from the DFT density analysis. The results correspond to stable configurations of a drop attached on two (red circles), three (green
upward triangles), four (blue downward triangles), and five (magenta diamonds) attractive stripes. The symbols are connected by lines to guide
the eye, and vertical lines represent the estimated inaccuracy in the determination of the contact angle. The dashed horizontal line shows the
value of Cassie’s apparent contact angle as given by Eq. (2).

In conjunction with the results shown in the previous
paragraph, we summarize the main results by constructing the
global phase diagram that depicts the most stable configura-
tions for the given values of χ and ρav; see Fig. 9. For our
model consisting of six attractive and six repulsive stripes,
and with a wavelength of L = 10σ , we could stabilize eight
different configurations. Only two of them, corresponding to
a low-density coverage and a thick liquid film, follow the sym-
metry of the wall potential. The remaining six configurations
involve a liquid drop, which necessarily breaks the symmetry
of the system. Typically, the liquid drop is sessile, attached
at one or more attractive stripes and bridging over the inner
(if any) repulsive parts. For strongly hydrophobic walls with
χ < 0.3, though, the liquid drop unbinds from the wall and
floats freely in the gas phase. All the morphological changes
are of first-order except for the transition from separate mi-
croscopic wetting layers to thick liquid film configurations,
occurring at high values of χ , which is continuous.

D. Impact of periodicity and system size

We further investigate the influence of the substrate pe-
riodicity L and the size of the system on the fluid phase
behavior. We first focus on the neutral substrates, χ = 0.5,
with the same system size of Lx = 60σ as before, but with
a finer structure, i.e., with a shorter periodicity. In particular,
for L = 6σ we have still observed a sequence of first-order
transitions between morphologies including drops spanning
over up to six attractive stripes, but the transitions become
extremely weak and the metastable extensions of the drop
configurations are hardly detectable. As the periodicity is still
lowered, however, we already could not detect any multiple
solutions, and the low coverage and the thick liquid film con-
figurations are connected via a series of continuously devel-
oping symmetry-breaking morphologies with a drop spanning
a gradually increasing number of attractive stripes. This is
illustrated in Fig. 10, which shows the free-energy density

062802-8



SYMMETRY-BREAKING MORPHOLOGICAL TRANSITIONS … PHYSICAL REVIEW E 100, 062802 (2019)

FIG. 9. The global phase diagram showing the equilibrium fluid
morphologies for different substrate composition χ and average fluid
density ρav. The inscriptions represent the following morphologies:
microscopic wetting layers (MWL), thick slab (TS), and floating
drop (FD), and the roman numerals refer to a bridging drop spanning
the corresponding number of attractive stripes. The critical composi-
tion χc above which the system fluid adsorption is continuous is also
displayed.

dependence for L = 4σ , which now consists of only three
branches.

As a final point, we want to discuss the impact of the
system width Lx. If this dimension is increased by considering
more stripes of the wall, one expects that the number of
symmetry-breaking structures also increases simply because
the liquid drop can adopt a larger spectrum of states that
differ by the number of bridged attractive stripes. To get
a more detailed insight into the finite-size effects, we have
performed DFT calculations for the composition parameter
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FIG. 10. Free-energy density dependence for the neutral sub-
strate (χ = 0.5) and periodicity L = 4σ . Apart from the low cov-
erage and the thick liquid film branches, the system develops contin-
uously over droplike structures with a gradually increasing number
of attractive stripes onto which the drop is attached.
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FIG. 11. The comparison of the free-energy (per unit volume)
density dependence of two systems of different width: Lx = 60σ

(dotted lines) and Lx = 120σ (full lines). In both cases, the substrates
are neutral (χ = 0.5) and of a periodicity L = 10σ .

χ = 0.5 and periodicity of L = 10σ but with Lx = 120σ ,
i.e., by considering a system consisting of 12 attractive (and
repulsive) stripes. The height of the system is unchanged,
Lz = 60σ . A comparison of the phase behavior between the
large (Lx = 120σ ) and the small (Lx = 60σ ) systems is shown
in Fig. 11, where we now display the density dependence of
the free-energy density F/(LxLyLz ). We can see that the parts
of the free energies corresponding to the lowest and highest
densities, i.e., morphologies that do not break the system
symmetry, essentially overlap, which is because the free en-
ergy for these configurations is extensive. This, however, does
not apply for the remaining symmetry-breaking morphologies
containing a single drop, in which case the free energy does
not scale with Lx anymore. Here, the free-energy density for
the larger system is shifted to lower values, and the density
differences between the successive transitions are reduced,
except, of course, for those that are not present in the smaller
system; these include (stable) drops that connect six to eight
attractive stripes.

Now, the natural question to pose is as follows: What is the
phase behavior of an infinitely wide system Lx → ∞? There
are several conceivable scenarios: (i) the system exhibits an
infinite number of first-order morphological transitions; (ii)
there is a finite number of morphological first-order transitions
that eventually become continuous; (iii) in the limit of Lx →
∞, all the transitions collapse into a single point; (iv) the
adsorption process becomes continuous.

Scenario (iv) would only apply for a very fine structure of
the wall with L � 4σ , or for a very high value of the com-
position parameter χ > χc, as discussed previously. Although
the density intervals separating the morphological transitions
are reduced with the size of the system, the presence of
sufficiently wide repulsive stripes still generates a free-energy
barrier that must be overcome to connect wetting layers on
the attractive stripes. It is still admissible, though, that the
system in the limit of Lx → ∞ exhibits a single first-order
transition from the low- to the high-coverage state, and this
is indeed what happens in an open system [43]. However, this
scenario is inconsistent with our DFT results shown in Fig. 11,
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FIG. 12. Slope differences of free-energy branches associated
with the change of liquid morphology for the neutral substrate of
the width of Lx = 120σ . The horizontal axis denotes the number of
attractive stripes that the bridging drop connects.

since the nonextensive free-energy branch clearly does not
disappear in the limit of Lx → ∞ and there is no reason to
expect that the transitions corresponding to a formation of
the drop become rounded in this limit. Therefore, we are left
with only the first two options. Although it is unreasonable
to expect that there exists a singular point in the system
associated with the finite critical number of attractive stripes
nc, such that the bridging transitions lose their first-order
character when nc stripes are involved, it is clear that the
“strength” of the transitions must decay sufficiently rapidly
with the size of the bridging drop, since each transition is
accompanied by the change in the free-energy slope, the sum
of which must remain finite for Lx → ∞. This is indeed
supported by the results displayed in Fig. 12 showing the
slope difference between consecutive free-energy branches
determined at the morphological transitions, as obtained from
the DFT calculations for the large system (Lx = 120σ ). As
expected, the slope difference decays monotonically with the
number of bridged attractive stripes n, and any reasonable
extrapolation of this dependence suggests that the asymptotic
value of the graph is zero, such that the slope difference is
of the order of 10−5 rad, i.e., practically indistinguishable,
already for n ≈ 20.

IV. SUMMARY AND CONCLUDING REMARKS

In this work, we studied the adsorption properties of molec-
ularly patterned walls using a nonlocal density functional
theory and simple macroscopic arguments. We have consid-
ered planar model substrates formed by regularly alternating
stripes of contrasting wettability. To this end, the potential
of one type of the stripes was set to be strongly attractive,
such that it induces complete wetting (Young’s contact angle
θ = 0), while the other type of the wall is purely repulsive and
tends to be complete dry (θ = π ).

We assumed that the stripes are macroscopically long but
the remaining dimensions of the system are microscopic (i.e.,
of the order of molecular diameters) and that they confine a

fixed amount of fluid particles. This allows for a formation of
fluid structures that would not be stable in open systems, in
which case the fluid structure must follow the symmetry of an
external field exerted by the wall. In this way, we were able
to observe various liquid morphologies typically separated by
first-order transitions, as the number density of the fluid atoms
varies. We have studied the mechanism leading to complete
wetting (or drying) of the wall depending on the composition
parameter χ (characterizing the relative width of the attractive
and repulsive stripes), the system wavelength, and the system
size.

The main results are summarized in the diagram shown
in Fig. 9. At low densities, the wall is generally covered by
a microscopic amount of liquid concentrated at the attractive
stripes. Except for the extreme cases of the wall composition,
the increase in the fluid density leads to a formation of a
thick slab of liquid via a sequence of fluid morphologies
breaking the system symmetry; these correspond to a liquid
drop bridging several attractive stripes. The drop size in-
creases continuously with density via increasing its contact
angle before it adopts a more favorable formation by bridging
another wetting layer at the neighboring attractive stripe.
This morphological change that changes the shape of the
drop abruptly is typically accompanied by a weak first-order
transition.

However, there are several important exceptions regarding
the nature of the morphological transitions. The transitions
between different drop configurations all become rounded if
the wavelength of the system L is below Lc, the magnitude of
which is a few molecular diameters. Moreover, there exists a
critical wall composition that for our model is χc ≈ 0.85, such
that the entire adsorption process is continuous for χ > χc,
akin to complete wetting on a homogeneous wall. In both
cases, the character of the rounding of the transitions below
the critical values is analogous to the presence of the critical
radius for bridging of spherical nanoparticles [54,55]. In the
opposite extreme case of a strongly hydrophobic wall with
χ � 0.2, the system exhibits a single morphological transition
from a microscopic coverage state to a state containing an
unbound liquid drop floating above the wall.

Finally, we have argued that in the thermodynamic limit,
i.e., when the lateral size of the system is macroscopic (in-
finite), the wall (of a moderate value of χ and for L > Lc)
becomes completely wet via a sequence of morphological
first-order transitions that are, however, gradually weaker
as the size of the bridging drop increases, such that they
eventually become effectively continuous. This mechanism
sharply contrasts with that for an open system, in which
case the system may only undergo a single, prewetting
transition [43].

We have also formulated a simple macroscopic theory to
predict the contact angles of coexisting bridging drops, i.e.,
the contact angle of a drop before and after the morphological
transition when it forms another bridge. Here we assumed that
the drop adopts a shape of a circular segment with an appro-
priate chord corresponding to a number of bridged stripes and
that the volume of the drop is conserved at the transition. The
comparison with the results obtained from an analysis of the
DFT density profiles revealed a surprisingly good agreement,
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especially for drops spanning a larger number (three or more)
of bridged stripes.

We conclude with two remarks pertinent to the relevance
of our findings:

First, in our model, the “hydrophobic” parts of the wall
were considered to be purely repulsive. Clearly, this is a sim-
plification of any realistic situation, since attractive forces are
ubiquitous in nature. However, the absence of the attraction
and also the implied fact that Young’s contact angle of these
stripes is θ = π are not crucial for our model, and our con-
clusions would not qualitatively change if the “hydrophobic”
stripes were partially wet (instead of completely dry); if it was
the case (which would require another interaction parameter),
the bridging of microscopic wetting layers into a drop would
still need to overcome a free-energy barrier, although smaller
than in the present case. We thus expect a shift in the critical
values of χc (downward) and Lc (upward).

Second, our DFT analysis is of a mean-field character
and largely neglects the interfacial fluctuations, which may
destroy some of the phase transitions. Indeed, any mor-
phological phase transition involving a cylindrically shaped
drop will strictly speaking be rounded due to fluctuations
along the stripes; these will break the cylindrical drops up
into liquid and gas domains in view of their pseudo-one-
dimensional character, even if the substrate width is infinite

[56]. However, the rounding is proportional to the Boltzmann
factor exp[−βγ S] where according to our macroscopic result
S ∝ (nL − L2)2 is the area of the lateral cross section of
droplets covering n hydrophilic stripes. Therefore, although
it is rounded, the transition is expected to be very sharp out
of the critical region (where γ is very small), especially for
larger drops. On the other hand, in contrast to free cylindrical
liquid streams, the cylindrical drops should be resistent toward
the Plateau-Rayleigh instability [57,58] since they are pinned
to the edges of the hydrophilic stripes, which thus does not
allow for pinching of the cylinder into drops. However, it is
conceivable that for substrates with a small difference in the
surface interaction exerted by the hydrophilic and hydropho-
bic stripes, in which case the pinning is much weaker, the
Plateau-Rayleigh instability can also be relevant. Finally, the
effect of the capillary-wave fluctuations, which is character-
ized by the roughness parameter [59] ξ⊥ ∝ √

ln(nL − L2) (in
units of σ ), is completely negligible for the present model.
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