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Multiple minimum-energy paths and scenarios of unwinding transitions
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We apply the minimum-energy paths (MEPs) approach to study the helix unwinding transition in chiral
nematic liquid crystals. A mechanism of the transition is determined by a MEP passing through a first order
saddle point on the free energy surface. The energy difference between the saddle point and the initial state
gives the energy barrier of the transition. Two starting approximations for the paths are used to find the MEPs
representing different transition scenarios: (a) the director slippage approximation with in-plane helical structures
and (b) the anchoring breaking approximation that involves the structures with profound out-of-plane director
deviations. It is shown that, at sufficiently low voltages, the unwinding transition is solely governed by the
director slippage mechanism with the planar saddle-point structures. When the applied voltage exceeds its
critical value below the threshold of the Fréedericksz transition, the additional scenario through the anchoring
breaking transitions is found to come into play. For these transitions, the saddle-point structure is characterized
by out-of-plane deformations localized near the bounding surface. The energy barriers for different paths of
transitions are computed as a function of the voltage and the anchoring energy strengths.
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I. INTRODUCTION

Helical superstructures naturally arise in certain liquids
with long-range orientational order characterizing the liquid
crystalline (mesomorphic) state that occurs in a temperature
range between the liquid and the solid (crystalline) phases.
In these orientationally ordered liquids known as the liquid
crystals (LCs) the molecules tend to align along a preferred
direction typically described in terms of the LC director which
is a unit vector n̂(r) representing the locally averaged direc-
tion of the LC molecules at a point r in the liquid crystalline
material [1,2]. It is the presence of the LC orientational order
that leads to an optical and electromagnetic anisotropy which
has been extensively exploited in the nowadays widespread
liquid crystal technology [3,4].

Helical twisting patterns where the director rotates in a
helical fashion about a uniform twist (helical) axis sponta-
neously form in unbounded chiral liquid crystals and are
caused by the presence of anisotropic molecules with no
mirror plane—the so-called chiral molecules. These patterns
thus represent self-organized soft helical superstructures.

The supramolecular helical architectures are at the heart of
a unique combination of photonic properties of chiral nematic
liquid crystals, otherwise referred to as the cholesteric liquid
crystals (CLCs).

LCs are known to be responsive materials that are highly
sensitive to external stimuli such as electromagnetic fields and
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boundary (anchoring) conditions. This responsiveness under-
pins tunability of the helical structures underlying most of
the fascinating device applications of CLCs and controllable
manipulation of the CLC helical superstructures presents a
challenging problem which is of vital importance for both
fundamental and technological reasons [5–8].

An ideal CLC helix is specified by orientation of the
twisting axis, ĥ, and the helix pitch, P, that also govern its
optical properties. In planar confining geometry of typical
CLC cells, where the CLC is sandwiched between two parallel
bounding surfaces (substrates), the planar Grandjean structure
(texture) which is the uniform standing helix state with the
helical axis ĥ = ẑ normal to the substrates

n̂ = cos φ x̂ + sin φ ŷ, φ = qz + φ0, (1)

where q = ±2π/P is the helix wave number which is pos-
itive (negative) for the right-handed (left-handed) helix and
exemplifies the special case of anisotropic one-dimensional
photonic crystals. It is characterized by a chirally sensitive
photonic band gap. Circularly polarized light with helicity
identical to the handedness of the helix cannot propagate, and
selective reflection takes place.

The well-established continuum theory describing the phe-
nomenology of CLCs is formulated in terms of the Frank-
Oseen free energy functional Fel[n] and the elastic free energy
density fel [9,10]:

Fel[n] =
∫

V
fel dv, fel = 1

2
{K1(∇ · n)2

+ K2[n · ∇ × n + q0]2 + K3 [n × (∇ × n)]2

− K24 div[n div n + n × (∇ × n)]} , (2)
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where K1, K2, K3, and K24 are the splay, twist, bend, and
saddle-splay Frank elastic constants. As a manifestation of
the chirality caused by the broken mirror symmetry the ex-
pression for the bulk free energy (2) contains a chiral term
proportional to the free twist wave number q0 that gives
the pitch P0 ≡ 2π/|q0| of equilibrium helical structures in
unbounded CLCs.

An efficient method widely used to prepare CLCs is dop-
ing nematic LC mixtures with chiral additives that induce
a helical structure [2,8]. For photosensitive chiral dopants
(photoswitches), their helical twisting power and thus the
CLC equilibrium helix pitch P0 can be controlled by light
through photoinduced changes in chiral molecular switch
conformation that influence the LC’s helical twisting power
[11–18]. Phototunability of the helix pitch leads to a variety
of technologically promising effects such as the phototunable
selective reflection, i.e., a light-induced change in the spectral
position of the band gap [19–22].

An important point is that director configurations in the
planar CLC cells are strongly affected by the anchoring condi-
tions at the substrates. These conditions break the translational
symmetry along the twisting axis and, in general, the helical
form of the director field will be distorted. Nevertheless,
when the anchoring conditions are planar and out-of-plane
deviations of the director are suppressed, it might be ex-
pected that the configurations still have the form of the ideal
helical structure (1). But, by contrast with the case of un-
bounded CLCs, the helix twist wave number q will now differ
from q0.

A mismatch between the twist imposed by the boundary
conditions and the equilibrium pitch P0 may produce two
metastable twist states that are degenerate in energy and can
be switched either way by applying an electric field [23].
More generally metastable twist states in CLC cells appear
as a result of competing influences of the bulk and the surface
contributions to the free energy leading to frustration [2,24]
and giving rise to multiple local minima of the energy [25]
(results on multiple equilibria of LCs confined in the two-
dimensional geometry of square domains were reported in
Ref. [26]). Properties of the metastable helical structures are
determined by the free twisting number q0 and the anchoring
energy. Variations in q0 will affect the twisting wave number,
q, and may result in sharp transitions—the so-called pitch
transitions—between different branches of metastable states.

In particular, these transitions manifest themselves in a
jumplike temperature dependence of selective light trans-
mission spectra [27–30]. Different mechanisms behind the
temperature variations of the pitch in CLC cells and hysteresis
phenomena were discussed in Refs. [31–33]. A comprehen-
sive stability analysis of the planar helical structures in CLC
cells with symmetric and asymmetric boundary conditions
was performed in Ref. [34]. The effects of bistable surface
anchoring and mechanical strain on the pitch transitions
have been studied theoretically in the recent papers [35] and
[36,37], respectively. Results on light-induced dynamics of
the pitch transitions in photosensitive CLCs were reported in
Refs. [15,38]. The photoresponsive substrates can also be used
as aligning surfaces with the anchoring conditions driven by
light that result in surface mediated orientational dynamics
[39–41].

Another standard and widely exploited technique to ma-
nipulate the helical structures uses their sensitivity to external
(magnetic or electric) fields applied to CLC cells. An external
field will generally distort the free energy landscape. These
distortions lead to a variety of field-induced orientational
effects such as the Fréedericksz and unwinding transitions
that have attracted considerable attention in the context of
electro-optics of LC display devices.

In the technologically important geometry where the elec-
tric field is applied across the CLC cell, these effects crucially
depend on a number of factors such as the cell thickness L, the
pitch P0, the applied voltage U , the anchoring conditions, and
elastic and dielectric properties of the CLC material [23,42–
48]. In this geometry, the CLC cell with planar (homoge-
neous) anchoring conditions is subjected to the field applied
along the twisting axis of the planar helical structure (1). This
is the case of our primary concern.

The purpose of this paper is to explore global properties of
the free energy landscape related to transitions between CLC
states which are local minima (minimizers) of the free energy.
The free energy pathways connecting pairs of metastable he-
lical states appear as basic elements of a natural mathematical
language dealing with the relevant geometry of the landscape
viewed as a multidimensional free energy surface [49–51].

The key elements associated with the transitions are the
minimum-energy paths (MEPs) between the initial and final
states on the free energy surface. Every point on such a
pathway is a free energy minimum in all but a certain direction
in the configuration space of CLC director structures. The
maximum along the MEP determines the transition state
which is a saddle point on the free energy surface. The MEP
itself represents a path with the maximal statistical weight and
defines a scenario of the most probable transition between the
states. The energy barrier separating the states can be found as
the difference between the saddle-point energy and the energy
of the initial state. When the transition goes through several
metastable states, the MEP gives a sequence of the barriers to
be passed in the course of the transition.

Information about such energy barriers is required to assess
the effect of thermally activated transitions within the frame-
work of the rate theory [52,53]. Similarly, in Refs. [54,55], the
barrier heights and the Arrhenius formula were employed to
estimate the rate of transitions between metastable twist states
and the effective intrinsic torsional viscosity of LC cells with
strong anchoring conditions.

In this paper we restrict our analysis to the case where
stability of the CLC helix is determined by the threshold
voltages of the Fréedericksz transition and apply the geodesic
nudged elastic band (GNEB) method [50] to calculate MEPs
of the helix unwinding transition between a metastable CLC
twist state and the untwisted ground state. From the computed
MEPs we identify two different scenarios for unwinding of the
CLC helix to occur. These are (a) the transitions dominated
by in-plane director slippage and (b) the transitions involving
localized anchoring breaking. We shall study how these tran-
sitions and their free energy barriers depend on the electric
field and the anchoring conditions.

The layout of the paper is as follows. General relations
that determine the characteristics of the helical structures in
CLC cells are given in Sec. II. Then in Sec. III we outline
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the numerical procedure that we employ to compute MEPs
and describe the results obtained using the director slippage
and anchoring breaking approximations as starting approx-
imations for the MEPs. Finally, in Sec. IV we discuss our
results and make some concluding remarks.

II. FREE ENERGY

We consider a CLC cell of thickness L sandwiched
between two parallel plates that are normal to the z axis:
z = −L/2 (lower substrate) and z = L/2 (upper substrate).
Anchoring conditions at both substrates are planar (homo-
geneous) with the preferred orientation of CLC molecules at
the lower and upper plates defined by the two vectors of easy
orientation: ê− and ê+, where a hat will indicate unit vectors.
These vectors are given by

ê± = cos ψ± x̂ + sin ψ± ŷ. (3)

Then �ψ = ψ+ − ψ− is the twist angle imposed by the
boundary conditions.

We shall also write the CLC free energy functional as a
sum of the bulk and surface contributions

F [n, E] = Fb[n, E] + Fs[n],
(4)

Fs[n] =
∑
ν=±1

∫
z=νL/2

Wν (n) ds,

where E is the electric field, and assume that both the polar
and the azimuthal contributions to the anchoring energy Wν (n)
can be taken in the form of the Rapini-Papoular potential [56]:

Wν (n) = W (ν)
φ

2
[1 − (n · êν )2]z=νL/2

+ W (ν)
θ − W (ν)

φ

2
(n · ẑ)2|z=νL/2, (5)

where W (+)
φ (W (−)

φ ) and W (+)
θ (W (−)

θ ) are the azimuthal and the
polar anchoring strengths at the upper (lower) substrate.

Then we express the CLC director n in terms of the polar
and the azimuthal angles, θ and φ, as follows:

n = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ, (6)

where the angles are functions of z, θ = θ (z), and φ = φ(z),
provided invariance with respect to in-plane translations is
unbroken. After substituting the director parametrization (6)
into Eq. (5), we have the surface potential in the following
form:

Fs[n]/A =
∑
ν=±1

[
W (ν)

φ

2
sin2 θν sin2(φν − ψν )

+ W (ν)
θ

2
cos2 θν

]
, (7)

where A is the area of the substrates, θν ≡ θ (νL/2), and φν ≡
φ(νL/2).

The bulk part of the free energy functional (4)

Fb[n, E] = Fel[n] + FE[n, E] (8)

is a sum of the Frank-Oseen elastic energy Fel[n] given by
Eq. (2) and the electrostatic energy of interaction between the

electric field E and CLC molecules, FE[n, E]. For the CLC
director (6), the elastic energy (2) takes the following form:

Fel[n]/A = 1

2

∫ L/2

−L/2
{K1(θ )[θ ′]2 + K2(θ ) sin2 θ [φ′]2

− 2C(θ )φ′}dz, (9)

Ki(θ ) = Ki sin2 θ + K3 cos2 θ, C(θ ) = q0K2 sin2 θ, (10)

where the prime symbol stands for the derivative with respect
to z.

In our case, the electric field is normal to the substrates
E = Ez(z)ẑ with Ez(z) = −V ′(z), where V (z) is the electro-
static potential. It meets the Maxwell equation: div D = 0
for the electric displacement D = ε E linearly related to E
through the uniaxially anisotropic dielectric tensor ε with the
components

εi j = ε⊥δi j + εanin j, εa = ε‖ − ε⊥, (11)

where δi j is the Kronecker symbol and i, j ∈ {x, y, z}; ε⊥ and
ε‖ are the dielectric constants giving the principal values of ε.
So, the normal component of D, Dz = εzzEz, is independent of
z and we obtain the relation linking the voltage applied across
the CLC and Dz:

U = V (−L/2) − V (L/2) =
∫ L/2

−L/2
Ezdz

= Dz

∫ L/2

−L/2

dz

εzz(θ )
, (12)

where εzz(θ ) = ε⊥ + εa cos2 θ . When the applied voltage is
fixed, the electrostatic part of the energy

FE = −1

2

∫
V

(
E · D

)
dv (13)

assumes the form of a nonlocal functional:

FE/A = − U 2

2E [θ ]
, E [θ ] =

∫ L/2

−L/2

dz

εzz(θ )
. (14)

In our subsequent calculations, we shall use the Frank
elastic constants typical for 5CB [57]—K1 = 4.5 pN, K2 =
3.0 pN, and K3 = 6.0 pN—and consider the case of the
weakly twisted symmetric CLC cell of the thickness L =
5 μm with q0L = 0.05, W (±)

φ ≡ Wφ = 0.05 mJ/m2, and ê± =
x̂. These parameters are used to obtain the estimates we briefly
discuss below.

In the absence of an electric field, the field free planar
CLC helical structures (1) can be analyzed using the results
of Ref. [34]. According to this analysis, the transitions of
our primary concern involve three (meta)stable structures
shown in Fig. 1: (a) the left-handed twisted structure with
qL ≈ −3.066, (b) the right-handed twisted structure with
qL ≈ 3.069, and (c) the nearly untwisted (nematic) structure
with qL ≈ 0.001. Since the free twist parameter q0L is small,
the twisted structures are nearly degenerate in energy. The
nematic structure is the stable state with the lowest energy
(the energy difference per unit area can be estimated at about
3.0 μJ/m2).

The threshold voltage of the Fréedericksz transition Uth can
be estimated using the analytical relations derived in Ref. [48]:
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FIG. 1. Field free states: (a) the metastable left-handed helical (twisted) structure; (b) the metastable right-handed helical (twisted)
structure; (c) the stable untwisted (nematic) structure.

Uth ≈ 0.578 V. These relations also predict that, in our case,
the transition leading to instability of the ground state will be
continuous.

III. RESULTS

In this section, we will focus on the unwinding transition
from the metastable left-handed helix state to the stable ne-
matic (equilibrium) state (see Fig. 1). Such a situation may
occur in the light-induced pitch transitions in CLCs doped
with photosensitive chiral dopants [15] when under the action
of irradiation the free twisting number q0 changes from the
initial value close to −π/L to the value close to zero.

The states differ in the parity of half turns [34] and are thus
topologically distinct. The latter implies that, in the strong
anchoring limit, the helical state cannot be smoothly deformed
into the untwisted state without destroying the local degree
of molecular ordering. By contrast, in the weak anchoring
regime where the anchoring strength Wφ is not infinitely large,
these states are local minima of the multidimensional free
energy surface separated by the finite energy barriers. We
shall apply the minimum-energy path approach to study how
these barriers are affected by the applied electric voltage U
and the anchoring strength ratiorW = Wθ /Wφ , where Wθ =
W ±

θ . After brief discussion of our method, we present the
results for two classes of the pathways representing the two
different scenarios of the unwinding transition: The director
slippage transitions where the out-of-plane deviations of the
director are suppressed (θ ≈ π/2) and the anchoring breaking
transitions that involve the states characterized by profound
variations in the polar angle θ .

A. Minimum-energy paths

In our calculations, the cell is divided into 100 equidistant
layers and the director orientation is assumed be constant
inside each layer. Since the director in each layer has two

degrees of freedom (the azimuthal and the polar angles),
the dimension of the free energy surface equals twice the
number of the layers. This surface can be regarded as a 200-
dimensional Riemannian manifold defined as a direct product
of 100 two-dimensional spheres.

As in Ref. [51], we have used the GNEB method to
find MEPs between local minima on the curved manifolds
[50]. This approach involves taking an initial guess of a path
between the two minima and systematically bringing that to
the nearest MEP. A path is represented by a discrete chain of
states, or “images,” of the system, where the first and the last
image are placed at the local energy minima corresponding
to the initial and final metastable configurations. In order
to distribute the images evenly along the path, springs are
introduced between adjacent images. At each image, a local
tangent to the path needs to be estimated, and the force
guiding the images towards the nearest MEP is defined as the
sum of the transverse component of the energy antigradient
plus the component of the spring force along the tangent to
the path. The position of intermediate images is then adjusted
so as to zero the GNEB forces.

An important point is that the MEP connecting the
metastable structures generally depends on the starting ap-
proximation for the path. Variations in the initial approxi-
mations may produce different MEPs. Such paths represent
distinct scenarios of the transition. Therefore, we have used
different initial paths in order to study the two scenarios of
the unwinding transition.

To find the director distributions for the initial and final
states that should be solutions of the stationary point boundary
problem (the Euler-Lagrange equations with the correspond-
ing boundary conditions) we have started from the initial
approximation for the director structure and then minimized
the energy using the velocity projection algorithm [58]. The
position of the maximum (saddle point) along the MEP was
found using the Climbing Image algorithm [50].
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FIG. 2. Energy per unit area along the MEP for the director
slippage transition computed at U = 0.53 V and rW = 1.0. The filled
circles correspond to the images of the system used in the GNEB
calculation. The reaction coordinate is defined as the displacement
along the path normalized by its total length.

B. Director slippage transitions

According to Ref. [34], under certain conditions the pitch
transitions being solely governed by in-plane director fluctu-
ations do not involve tilted configurations and the transition
mechanism can be described as director slippage through the
energy barriers formed by the surface potentials. In what
follows, such transitions will be referred to as the director
slippage transitions.

In our calculations, the left-handed helix [see Fig. 1(a)] and
the nematic equilibrium structure [see Fig. 1(c)] are used as
the initial and final states, respectively. The starting approx-
imation for the path involves the in-plane helical structures
with θ = π/2 assuming that the azimuthal angle, φ+, at the
top substrate uniformly varies along the path approaching the
untwisted state value equal to the twist angle at the bottom
substrate φ− = 0. In what follows such an initial approx-
imation of the MEPs will be called the director slippage
approximation.

In Fig. 2, we present the energies of director configurations
along the MEP computed at U = 0.53 V and rW ≡ Wθ /Wφ =
1.0. In addition, Fig. 2 shows the director structures for a
set of the selected images (the total number of the computed
images is 18) along the path. The first image is the metastable
helical structure, whereas the last image is the stable nematic
state. The fourth numbered image is the transition (saddle-
point) state giving the energy that determines the energy
barrier (activation energy) of the transition. The profiles of
the azimuthal angle φ for CLC structures shown in Fig. 2 are
plotted in Fig. 3. Clearly, similar to the initial and final states,
the profile for the transition state appears to be linear with the
director at the top substrate oriented along the normal to the
easy axis. By contrast, it turns out that the profiles of other
states along the MEP demonstrate nonlinear behavior of the
azimuthal angle evaluated as a function of z. Such profiles
significantly differ from the Grandjean texture (1).

The director slippage scenario implies that, below the
threshold voltage, tilted structures have no effect on unwind-
ing of the helix and the corresponding MEPs. For the planar

FIG. 3. Profiles of the azimuthal angle for each image in the
MEP for the director slippage transition.

structures with θ = π/2, the orientation dependent part of the
energy (4) is independent of both the polar anchoring strength
Wθ and the applied voltage U . In particular, for the ideal
helical structures (1), this energy is

F0(α, β ) = K2

2L
(β − β0) + Wφ

4
[2 − cos(β + α)

− cos(β − α)], (15)

where β = qL and α = 2φ0 gives the two-dimensional free
energy surface. Part of this surface with the two minima
representing the twisted (β ≈ −π ) and unwound (β ≈ 0)
structures under consideration is depicted in Fig. 4(a).

The energy along the path connecting the minima and
passing through the saddle point [this path is shown as the
red line in Fig. 4(a)] is plotted versus the twisting parameter
β in Fig. 4(b). It can be readily found that the saddle-point
state is the structure with α = −β = π/2 and the energy
barrier can be estimated at about �E = F0(π/2,−π/2) −
F0(π,−3.07) ≈ 22.6 μJ/m2. This estimate is close to Wφ/2.

When using the minimum-energy paths method, a MEP
evaluated at certain values of the anchoring ratio rW and
the applied voltage U gives the energy barrier �E (rW ,U )
computed as the difference between the energies of the tran-
sition (saddle-point) state and of the initial twisted state. The
energy barrier map in the rW -U plane computed for the di-
rector slippage transitions is presented in Fig. 5. In agreement
with the above discussion, below the critical voltage Uth, the
director structure of the transition state is uniformly twisted
and the energy barrier is independent of both the anchoring
ratio rW and the voltage U (for illustrative purposes, the
low-voltage part of the map shown in Fig. 5 is truncated). In
this low-voltage regime, the above analysis of the ideal helical
structures and the MEP method give identical results for the
value of the energy barrier.

As is seen from Fig. 5, above the threshold voltage Uth

of the Fréedericksz transition, the energy barrier increases
with the anchoring ratio rW and, in general, is a nonmono-
tonic function of the applied voltage U . In this region, the
planar states are unstable and all the structures involved in
the transitions are deformed by the applied field. These are
the tilted structures characterized by profound out-of-plane
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FIG. 4. (a) Free energy surface for the helical structures (1). (b) Energy along the path passing through the saddle point. The energy barrier
is �E ≈ 22.6 μJ/m2.

director deviations. The MEPs above the critical voltage Uth

will be discussed in Sec. III D.

C. Anchoring breaking transitions

In order to study an alternative scenario of the unwinding
transition, we have used another starting approximation for
the MEPs that involves the CLC structures where the uniform
twist from φ− = 0 to φ+ is superimposed by the out-of-plane
director deformation with the polar angle θ varying from
θ− = π/2 to θ+. In this approximation, similar to the case of
the director slippage transitions, the twist angle φ+ along the
path monotonically unwinds changing from −π to zero. By
contrast, for the polar angle θ+ at the top substrate, the initial
decrease from θ+ = π/2 to the value close to zero θ+ ≈ 0 that
occurs in the first half of the path is followed by the increase
in θ+ that restores its initial value θ+ = π/2 at the final state
in the second half of the path. So, the initial guess for the MEP
assumes that, for the transition state, the CLC director at the
top substrate is nearly normal to the bounding surface. Such

FIG. 5. Energy barrier map in the rW -U plane for the director
slippage transitions. The green line with squares indicates the thresh-
old voltage of the Fréedericksz transition Uth and the energy barrier
scale is given in μJ/m2.

a starting guess will be referred to as the anchoring breaking
approximation.

Figure 6 presents the results for the energies of the CLC
structures along the MEP computed at U = 0.53 V and
Wθ /Wφ = 1.25 using the initial anchoring breaking approx-
imation. Similar to Fig. 2, the first image is the metastable
left-handed helical structure and the last image represents the
stable untwisted state. The energy barrier is determined by
the energy of the transition state corresponding to the fifth
numbered image.

As is illustrated in Fig. 6, in the first half of the path, the
region of pronounced out-of-plane deviation approaches the
top boundary surface reaching the transition (saddle-point)
structure with the director orientation close to the normal to
the substrate (θ ≈ 0). Such structure implies that the twisted
structure unwinds via anchoring breaking that occurs at the
upper substrate and such unwinding transition will be referred
to as the anchoring breaking transition.

Note that, in contrast to the director slippage transition
(see Fig. 2), there is a flattened region in the close vicinity
of the maximum of the energy curve shown in Fig. 6. The
reason is that, at θ ≈ 0, variations in the azimuthal angle
φ have negligible effect on the energy. On the other hand,

FIG. 6. Energy per unit area along the MEP for the anchoring
breaking transition computed at U = 0.53 V and rW = 1.25.
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FIG. 7. Profiles of (a) the azimuthal and (b) the polar angles for each image in the MEP for the anchoring breaking transition.

these variations produce noticeable changes in the reaction
coordinate which is the normalized sum of the angles, θ and
φ, along the path.

The profiles of the azimuthal and the polar angles com-
puted for the images of the anchoring breaking transition
shown in Fig. 6 are presented in Figs. 7(a) and 7(b), respec-
tively. It can be seen that, except for the initial and final states,
all the profiles are nonlinear. The fifth curve for the polar angle
of the transition state clearly shows homeotropic orientation
of the director at the upper substrate with θ+ ≈ 0.

In Fig. 8, we show the results for the energy barrier com-
puted as a function of the anchoring ratio rW and the voltage
U . From the energy barrier map presented in Fig. 8, it can be
inferred that the energy barrier is independent of rW and U
until the voltage exceeds its critical value Uc ≈ 0.29 V. So, at
U < Uc, the anchoring breaking approximation produces the
results identical to the director slippage transitions. For the
voltages above Uc, the tilted CLC structures come into play
and the anchoring strength Wθ will affect the values of the
energy barrier.

FIG. 8. Energy barrier map in the rW -U plane for the anchoring
breaking transitions. The green line with squares indicates the thresh-
old voltage of the Fréedericksz transition Uth and the energy barrier
scale is given in μJ/m2.

D. Comparison between two scenarios

Below the threshold voltage U < Uth, dependence of the
energy barrier on Wθ originates from the tilted saddle-point
structure representing the transition state. The corresponding
out-of-plane deviations of the director can be quantitatively
described by the minimum polar angle

θmin = min
z

θ (z) (16)

evaluated for the transition state of a MEP. The smaller the
value of θmin is the more tilted the saddle-point state is.

The maps of the angle θmin in the rW -U plane calculated
using the director slippage and the anchoring breaking initial
approximations are shown in Figs. 9(a) and 9(b), respectively.
Referring to Fig. 9, it can be seen that, for the anchoring
breaking transitions, a noticeable decrease in θmin takes place
when the voltage exceeds Uc, whereas, for the director slip-
page transitions, this happens in the close vicinity of the
threshold voltage Uth. So, we arrive at the conclusion that
the two mechanisms become essentially distinct at voltages
higher than Uc.

In order to further emphasize the difference between the
two scenarios, Fig. 10 presents the distribution of the ratio of
the energy barriers in the rW -U plane. It can be seen that, at
U > Uc, this ratio is an increasing function of rW and, when
the difference between the azimuthal and polar anchoring
strengths is small with rW ≈ 1, the barriers are nearly equal.

It turns out that, even after the Fréedericksz transition
takes place, the barriers of the MEPs may significantly differ.
The maximum value of the barrier ratio is reached at large
values of anchoring strength ratio in the voltage interval lying
just above the threshold voltage. This is the interval where,
according to Figs. 5 and 9, the effect of the saddle-point tilt
for the director slippage scenario is much less pronounced as
compared to the MEPs evaluated using the anchoring breaking
initial approximation.

When the voltage further increases, the transition state
director structures will be dominated by the field induced de-
formations. As is clearly demonstrated in Fig. 10, the result is
that the two scenarios eventually merge into one and become
indistinguishable at sufficient voltages above the Fréedericksz
threshold.
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FIG. 9. Map of the minimum polar angle θmin [≡ minz θ (z)] at the saddle point (transition state) for (a) the director slippage transition and
(b) the anchoring breaking transition in the rW -U plane. For each contour line, digits in squares indicate the value of θmin measured in degrees.

We have used the initial anchoring breaking approximation
to compute the MEP in this high-voltage region (U = 0.64 V)
at the anchoring strength ratio rW = 2. The results for the
energies along the MEP and for the profiles of the azimuthal
and polar angles are shown in Figs. 11 and 12, respectively.
Interestingly, the transition state (the fifth numbered image
and its profiles) of this MEP bears close resemblance to the
one for the anchoring breaking transition (see Figs. 6 and 7).
By contrast to the latter, the initial twisted and the final un-
twisted states (the first and the seventh images, respectively)
of this transition reveal significant out-of-plane deformations
induced by the electric field.

IV. CONCLUSION

In this paper, we have studied the minimum-energy paths
for the unwinding transition in the chiral nematic liquid crystal
cell. Such pathways connect the metastable CLC states, which
are local minima of the multidimensional free energy surface,
and the energy of the saddle point (transition state) of the
paths gives the energy barrier separating the metastable states.

FIG. 10. Map of the ratio of the energy barriers for the anchoring
breaking and the director slippage transitions in the rW -U plane.

Therefore, the MEP and its saddle points characterize the
mechanism (scenario) of the transition.

We have employed the GNEB method as a computational
procedure to evaluate the MEPs. This method requires an
initial guess for the path and various starting approximations
can generally produce different MEPs. In our approach, this
dependence of the MEPs on the starting approximation is
exploited to examine two scenarios of the unwinding transi-
tion from the metastable left-handed CLC helix to the ground
untwisted state. For this purpose, we have used the director
slippage (see Sec. III B) and the anchoring breaking (see
Sec. III C) approximations as the starting paths for the MEPs.

These MEPs and the energy barriers are calculated at
various values of the voltage U applied across the CLC cell
and the anchoring strength ratio rW = Wθ /Wφ . For the director
slippage scenario, orientational configuration of the transition
state is found to remain planar until the voltage reaches
the Fréedericksz threshold Uth. By contrast, in the saddle-
point state of the MEPs representing the anchoring breaking

FIG. 11. Energy per unit area along the MEP for the transition
above the Fréedericksz threshold computed at rW = 2 and U =
0.64 V.
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FIG. 12. Profiles of (a) the azimuthal and (b) the polar angles for the images along the MEP calculated above the Fréedericksz transition
at rW = 2 and U = 0.64 V.

scenario of the transition, out-of-plane deformations of the
director structure are localized near the bounding surface
chosen by the initial approximation. This scenario comes into
play only when the voltage exceeds its critical value Uc < Uth.

At voltages above the Fréedericksz threshold Uth, both the
initial metastable twisted state and the final untwisted state are
deformed by the applied electric field. In this case, electrically
induced deformations also affect the saddle-point state of the
MEPs computed using the director slippage approximation.
The result is that the difference between the two scenarios
becomes negligible at sufficiently high voltages (see Fig. 10).
Note that, in the low-voltage region where U < Uc, the di-
rector structure of the transition state is a planar Grandjean
texture (1) and the MEPs, similar to the high-voltage regime,
are indistinguishable.

Figure 10 also shows that, at U > Uc, the energy barrier
ratio increases with the anchoring strength ratio rW (and
the polar anchoring strength Wθ ) and, when the difference
between the azimuthal and polar anchoring strengths is small
with rW ≈ 1, the barriers are nearly equal. Figure 9 illustrates
that, as opposed to the voltage, an increase in rW reduces the
maximal tilt angle of the saddle-point structure (this angle

is equal to π/2 − θmin). Since the polar anchoring strength
determines energy cost of out-of-plane deformations at the
surface this result comes as no surprise.

Our results are limited to the one-dimensional case where
the LC structures depend on one spatial variable. The three-
dimensional case with the generalized anchoring conditions
requires a more sophisticated analysis. This work is in
progress and the results will be published elsewhere.

We conclude with the remark that the saddle-point states
can also be found without knowledge of the final state using
the minimum mode following the method recently suggested
in Ref. [59]. This promising method, being more complicated
than the GNEB method, allows discovering unexpected final
states and the transition mechanisms.
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