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Molecular dynamics study of a solvation motor in a Lennard-Jones solvent
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The motions of a solvation motor in a Lennard-Jones solvent were calculated by using molecular dynamics
simulation. The results were analyzed considering the large spatial scale effects caused by the motion of the
solvation motor. A reaction site was located on the surface of the solvation motor and the attraction between the
reaction site and the solvent molecules was varied for 100 fs. The motion of the motor was driven by solvation
changes near the reaction site on the motor. Two finite-size effects were observed in the motion. One was the
hydrodynamic effect and the other was the increase in solvent viscosity caused by heat generation. The latter
affected not only the displacement of the motor caused by the reaction but also the wave propagation phenomena.
Both effects reduced the motor displacement. Heat generation affects the displacement, in particular for small
systems. By contrast, the hydrodynamic effect remained even for large systems. An extrapolation method was
proposed for the displacement.
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I. INTRODUCTION

When a long-range flow is induced by motion of a col-
loidal particle, the flow causes other particles to move. This
hydrodynamic interaction, which is a long-range effective
interaction, plays important roles in particle aggregation, gel
formation, and phase separation [1–7]. Simulations for active
matters considering the hydrodynamic interaction are also
performed [2–7]. In the calculation, hydrodynamics equa-
tions, such as the Naiver-Stokes equation, with the implicit
solvent model have been often adopted, because calculations
for the explicit solvent model are expensive for simulating the
collective motions of self-propelled particles.

Before discussing the collective motion of macroparticles,
it is not easy to simulate the motion of only one macro-
molecule in a liquid phase using molecular dynamics (MD)
simulations because of the hydrodynamic effects [8–13]. Even
if the explicit solvent model is adopted, the ensemble of
solvent molecules behaves like a fluid and the motion of a
colloidal particle induces a long-range collective motion as
the average. That is, hydrodynamic effects become important
when we calculate dynamic properties using MD simulation.
The effects are long range, as indicated. Therefore, the finite-
system-size effect cannot be ignored in MD simulations. The
effects on the dynamic properties cannot be removed even if
the periodic boundary condition, which can remove the effects
from the various static properties, is adopted.
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It has been shown that the finite-system-size effect on
the calculation for diffusion coefficient is serious [8,10–
12,14]. Various diffusion coefficients have been obtained from
the velocity autocorrelation functions or gradients of mean-
squared displacements based on the calculated MD results.
The coefficients become larger as the system size increases.
Because of the long-range hydrodynamic effect, the values
do not converge when the volume dependence is examined.
Theoretical approaches without MD simulations are proposed
to avoid this difficulty. There are several theoretical studies
for obtaining the diffusion coefficient of a macromolecule in
explicit solvent molecules [15–17]. However, the appropriate
estimation method based on the simulations becomes more
important for comparison between the theoretical and the
simulation results.

Fushiki [10] pointed out the above difficulty in the cal-
culation of diffusion coefficient using MD simulation and
proposed a method using the linear-response theory and lin-
earized hydrodynamics. We analyzed one of our calculations
[14] based on this method and the difference between the
coefficients is remarkable. For example, for the finite system
of 4000 particles, the estimated diffusion coefficient of a
macroparticle for an infinite system is larger by a factor of
1.23 than the calculated one. This difference corresponds to
the difference between monomer and dimer if the Stokes-
Einstein law is applied.

We have studied the motion of a macroparticle driven by
solvation change by using MD simulation with an explicit
solvent model [14,18]. This self-propelled particle, solvation
motor, has a reaction site on the surface and the particle is
immersed in the solvent (Fig. 1). The interaction between
the reaction site and the solvent molecules is varied for
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FIG. 1. A solvation motor (MR) in a solvent (S). The solvation
motor is composed of a motor part (M) and a reaction site (R).

10–500 fs. This interaction change induces an asymmetric
solvation change and the motor molecule moves. This motor
molecule motion cannot escape from the finite-size effect
caused by the hydrodynamic effect either.

Changes in the solvation structure around the particle [19]
and in solvent viscosity by chemical reaction or laser beam
[20,21] also affect the individual and collective motions of
self-propelled particles. The motions of self-propelled parti-
cles with molecular size are strongly affected by the thermal
fluctuation, so that the individual and the collective motions
are random. To understand the motions, an analysis based on
the average over many trajectories is therefore important.

In this article, a method is proposed to estimate the dis-
placement of the motor molecule in an infinite system. We
also analyze and discuss other behaviors of the motor and sol-
vent molecules. The discussions are important in simulations
of the self-propelled particle with an explicit solvent model.

II. MODEL AND METHODS

We examine a simple system composed of a motor
molecule (MR) and solvent (S) particles. The motor molecule
has a motor part (M) and a reaction site (R). The R–S and
S–S interactions are described by the 6-12 Lennard-Jones (LJ)
potential:

ULJ(ri j ) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
, (1)

and the M − S interaction is described by the Kihara potential
[22]:

UK (ri j ) = 4εi j

[(
σi j − c

ri j − c

)12

−
(

σi j − c

ri j − c

)6
]
, (2)

where ri j , σi j , and εi j are the distance between particles i
and j, the distance at which U (ri j ) = 0, and the depth of
the well, respectively. The core parameter c of the Kihara
potential was set to 2.8 Å. The molecular axis is defined as
the R → M direction at the beginning of the reaction (t = 0)
and is fixed thereafter. The displacement of the center of mass
of the motor molecule along the molecular axis is discussed.
When the motor molecule moves in the R → M direction,
the displacement is positive.

The size of S (σSS) was determined to be 2.8 Å to give
a packing fraction of φ = 0.383, which is almost the same
as the value for water when ρm = 1.0g/cm3. The size of M
(σMM) is three times larger than that of S, σMM = 3σSS =
8.4 Å, which is almost similar to those of small peptide or
of fullerene. The size of R (σRR) is set as 2.8 Å. The distance
between the centers of M and R is 3.4 Å. The surface of R
sticks out from that of M by 0.6 Å. We set the masses of
these particles as mR = mS = 3 × 10−26 kg and mM = 26mR.
The summation of mM and mR is equal to 33mS because we
assume that the mass is proportional to the volume, and the
total volume of M and R is almost equal to 33 times the solvent
volume. The interaction parameters of M, R, and S are set as
εMM = εRR = εSS = 0.6517 kJ/mol = 1.082 × 10−21 J [23].
These parameters ε correspond to an uncharged extended sim-
ple point charge (SPC/E) model of water [24]. The LJ param-
eters between different kinds of particles are determined as:

σi j = σii + σ j j

2
, εi j = √

εii ε j j, (3)

where i, j = M, R, and S.
In this study, only the R–S interaction was changed from

εRS to ε′
RS = 103 εRS. During the “chemical” reaction time

(�tR), the R–S interaction parameter is ε′
RS. After the reaction

time, ε′
RS returns to εRS. The S–S and S–M interactions do

not change before, during, or after the reaction. The R–M
intramolecular interaction was ignored in this model; thus, the
parameter εRM was set as 0.

In our previous work [18], the change in total energy of the
system due to the chemical reaction for �tR = 10 fs and ε′

RS =
103 εRS was found to be about 1 × 10−18 J, which is several
times the reorganization energy of the solvent around a protein
in the experiment, 1 × 10−19 − 3 × 10−19 J [25–29]. We also
found that the displacement of the solvation motor reaches a
maximum when �tR = 100 and 200 fs. The main discussion
of this work is on the dependence of the displacement of the
solvation motor on the size of the system, so that the reaction
time �tR was set at 100 fs to give the largest displacement.
To discuss the system-size dependence for calculations of
diffusion coefficient and average displacement, the number
of particles (M + R + S) was varied to N = 256, 500, 864,
1372, 2048, 4000, 6912, 8788, 13 500, and 19 652. The
average displacement of a larger system, N = 32 000, was
additionally calculated for comparison with that of the infinite
system. The system size was set so that the number density
(weight density) of the solvent was ρn = 33.33nm−3 (ρm =
1.0 g/cm3). Periodic boundary conditions were applied. The
MD simulation period after the beginning of the reaction was
35 ps.

The MD simulations were performed using the velocity
Verlet integration algorithm [30] with a time step of 0.5 fs. The
M–R length was constrained using the RATTLE method [31].
The S–S interactions over 2.5σSS = 7.0 Å were neglected.
The simulations before the reaction were carried out with the
Nosé-Hoover thermostat [32,33] at a constant temperature,
T = 300 K. The initial conditions for the following processes
were prepared in these canonical ensembles (also called
NV T ) calculations. After the beginning of the reaction period,
however, the simulations were carried out in microcanonical
(also called NV E ) conditions.
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The diffusion coefficient and displacement by the reaction
were calculated for each trajectory. The diffusion coefficients
of the solvation motor were calculated by integration of
the velocity autocorrelation function [34,35] between t = 0
and 25 ps. The values were averaged over three dimensions
because the solvation motor is almost spherical. The displace-
ment of the solvation motor was defined as the difference
between positions along the molecular axis at t = 0 and
t = 35 ps. Then the values of the diffusion coefficient and
displacement were averaged over 5000 trials, respectively.
The error bars in the figures were obtained from the standard
deviation, the number of trials (5000), and the multiplier
(1.96) for the 95% confidence interval. The fitting line and
curve in figures were obtained by the least-squares fit of sam-
ples, considering error bars. Standard errors are also shown.

Fushiki [10] proposed a method to estimate the self-
diffusion coefficient of a tagged molecule in a solution using
the linear-response theory and linearized hydrodynamics. In
the method, the diffusion coefficient in the infinite system
is estimated by using the system-size dependence of the
diffusion coefficient. Here the radius of a system, r0, is defined
as follows:

r0 =
(

3V

4π

) 1
3

, (4)

where V is the system volume. The system-size dependence of
the diffusion coefficient as a function of a/r0 sits on a straight
line, where a is the radius of a hard sphere. The extrapolation
value at a/r0 = 0 is the diffusion coefficient in an infinite
system.

The diffusion coefficient is

D = kBT

γ
, (5)

where kB, T , and γ are the Boltzmann constant, temperature,
and the friction for the solvation motor MR in the solvent,
respectively. Here, the solvation motor is almost spherical. If
we assume the Einstein-Stokes law is valid, then the friction
γ is 6πηa′ under the stick condition, where η and a′ are the
viscosity of the solvent and the hydrodynamic radius of the
solvation motor, MR, respectively [36]. Because of solvation
effect, the hydrodynamic radius a′ is not always σMM/2. The
difference often becomes remarkable because of the solute-
solvent interaction and/or effects of additives [15–17].

Here the average trajectory of the solvation motor MR as
a function of time can be obtained by MD simulation. The
average trajectory asymptotically approaches a value 〈x∞〉
and is defined as the displacement, i.e., the average trajectory
〈x(t )〉 at t = ∞. Because the average external force is zero
after the reaction time, the equation of motion of the solvation
motor MR is

m ¨〈x〉 + γ ˙〈x〉 = 0, (6)

where m, 〈x(t )〉, and γ are the mass of the solvation motor
MR, the average trajectory, and the friction, respectively. The
solution is

〈x(t )〉 = −v0
m

γ
exp

[
− γ

m
t
]

+ v0
m

γ
, (7)

where the initial velocity and position are v0 and 0, respec-
tively. The average displacement 〈x(t )〉 approaches to 〈x∞〉 =
v0m/γ , which is the second term on the right-hand side of
Eq. (7), at t = ∞.

III. RESULTS AND DISCUSSION

The system-size dependence of the diffusion coefficients
of a solvation motor MR with no chemical reaction is shown
in Fig. 2. The plotted diffusion coefficients actually sit on a
straight line. Therefore, Fushiki’s theory is satisfied in the
estimation of diffusion coefficient for this system. Figure 2
also shows the importance of this system size analysis in the
calculation of the diffusion coefficient. The coefficients for
the largest system (N = 19 652) and for the smallest system
(N = 256) are about 90% and 55%, respectively, of that for
an infinite system, (6.3 ± 0.1) × 10−9 m2/s. This difference
in the diffusion coefficient is very large when we discuss the
solvation effect based on Eq. (5) because the magnitude of the
finite-system-size effect is comparable to that of the solvation
effect [15–17,38–40].

MD simulations for the solvation motor MR with chemical
reaction were performed. Figure 3(a) shows 10 motion trajec-
tories of the solvation motor. Before the reaction at t = 0, the
motor motions are Brownian and no directional motions are
observed. Just after the reaction, the motor molecule moves
forward; however, each of the trajectories after t = 10 ps
resembles a random walk. Then the motor molecules move
both forward and back. These behaviors mean that the thermal
motion of the solvent molecules strongly disturbs the motion
of the motor.

Figure 3(b) shows the motion plots of the motor along
the molecular axis averaged over 5000 trajectories of the
center of mass of the motor molecule, 〈x(t )〉. The shape of
the average trajectory as a function of time is similar to the
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FIG. 2. The diffusion coefficient of the solvation motor MR
along the molecular axis as a function of system size a′/r0 [14,37].
The R–S interactions do not change in this calculation. Circles are
average MD simulation results of 5000 trials and the straight line
is the least-squares fit of the results. The equation of the line is
D = (−8.3 ± 0.3)(a′/r0) + (6.3 ± 0.1).
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FIG. 3. Motion of the solvation motor MR along molecular axis
with N = 19 652 plotted as a function of time. (a) Ten trajectories of
the solvation motor. (b) Motion of the solvation motor averaged over
5000 trajectories.

solution [Eq. (7)] of the equation of motion. The average
displacement 〈x∞〉 is defined as the position at t = ∞ but is
actually estimated as the position at 35 ps because the average
motion of the solvation motor MR is stopped by the solvent
molecules.

Figure 4 shows the dependence of the velocities of the
solvation motor on system size. The solvation motor moves
backward at first so that its velocity is negative [18]. Then
the velocity turns to positive and reaches the maximum value,
about 7.7 × 102 m/s, at 0.17 ps. It is remarkable that before
the velocity of solvation motor reaches a peak, the system-
size dependence is not observed. The acceleration of solva-
tion motor is due to the collision and dispersion of solvent
molecules near the reaction site [18], so that the driving force
is independent of system size. By contrast, the velocity of
the solvation motor after the peak depends on system size. In
other words, the average displacement depends on the system
size after the maximum velocity but does not depend on the
system size before the maximum velocity. A smaller system
size leads to faster relaxation of the motion of the solvation
motor.

Figure 5 shows the dependence of the displacement of
the solvation motor MR on system size a′/r0. The aver-
age displacement before the maximum velocity (Fig. 4) is
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FIG. 4. Dependence of velocities along the molecular axis of the
solvation motor on system size. The reaction period is t = 0−0.1 ps.

reached, does not depend on system size and the value is about
0.45 Å. The values are 11% and 6% of average displacement
for N = 256 and N = 32 000, respectively. Substituting γ =
v0m/〈x∞〉 into Eq. (5) yields the next relation:

〈x∞〉 = v0m

kBT
D. (8)

If we assume smaller system-size dependencies for T and v0,
then we can expect a linear relationship between displace-
ment 〈x∞〉 and D. When there is a linear relationship, the
displacement as a function of a′/r0 sits on a straight line. The
straight blue dotted line is obtained using six points, N = 864,
1372, 2048, 4000, 6912, and 8788, as in our previous analysis
[14] based on Fushiki’s method [10]. If this dotted line is
adopted, then the displacement for the infinite system is 8.8 Å.
However, in large and small systems, there is a large deviation
from the linear fit (dotted line). It seems that this behavior is
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trials averages. The blue dotted line is the linear fit of six points
(N = 864−8788) [14]. The red solid curve was obtained by the
least-squares fit of all 11 results for Eq. (14).
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(t > 0.1 ps) the chemical reaction.

caused by the increase in kinetic energy of solvent particles.
Next, we will discuss the behavior of the solvation motor
considering the increase in kinetic energy.

Figure 6 shows the time change of the averaged kinetic
energy of the system. It was found that this energy largely
increased by the chemical reaction. In Fig. 6, the averaged
kinetic energy was converted to the pseudotemperature T ′,
which is not the thermodynamic temperature [41], because
the system is not in equilibrium due to the flow and heat
generation. The kinetic energy of solvent molecules around
the reaction site was much larger than that of bulk. When
the system reached equilibrium after the chemical reaction, its
properties would be consistent with those of the temperature,
but it takes a long time to reach equilibrium.

The average displacement of the solvation motor is ex-
pressed as 〈x∞〉 = v0m/γ . Assuming that v0 is equal to the
maximum velocity of the solvation motor, v0 is independent of
system size (Fig. 4). By contrast, the friction γ has a finite-size
effect as

1

γ
= 1

γ∞

[
1 − A

(
a′

r0

)]
, (9)

where γ∞ is friction in an infinite system and A is a constant
[42,43]. To estimate the diffusion coefficient in an infinite
system, a similar relation was also adopted in Ref. [11].
Assuming the Einstein-Stokes law, the friction in an infinite
system γ∞ is written as

γ∞ = 6πηa′, (10)

where η is the viscosity of solvent molecules. The viscosity
is independent of system size at a constant temperature [11].
In the present simulation, however, the kinetic energy of
the solvents was increased by the reaction. The increase in
equilibrium temperature, �T , by the reaction is inversely
proportional to the system volume because the increase in
kinetic energy of the system is independent of the system size:

�T = B

(
a′

r0

)3

, (11)

TABLE I. Values of fit parameters obtained by the fit of Eq. (14)
for the average displacements of 11 finite systems in Fig. 5

Parameters A′ B′ C′

Values 7.5 ± 0.2 −3 ± 2 20 ± 5

where B is a constant. Based on the Green-Kubo formula
[34,35], the viscosity is proportional to the temperature;
therefore, using Eq. (11), the system-size dependence of the
viscosity after reaction is expressed as:

η = η0 + C �T = η0 + BC

(
a′

r0

)3

, (12)

where η0 is viscosity at 300 K before the reaction and C
is a constant. Summarizing these formulas, the system-size
dependence of the average displacement 〈x∞〉 is obtained as:

〈x∞〉 = v0m

γ
=

v0m
6πη0a′

[
1 − A

(
a′
r0

)]
1 + BC

η0

(
a′
r0

)3 . (13)

The part of the displacement before the maximum velocity
that is not dependent on system size was discussed earlier.
Equation (13) does not contain the part that is not dependent
on system size. Therefore, considering also the part that is not
dependent on system size (0.45 Å), the average displacement
is rewritten in simple form as:

〈x∞〉 = A′ + B′ ( a′
r0

)
1 + C′ ( a′

r0

)3 + 0.45, (14)

where A′, B′, and C′ are constants. In large systems (small
a′/r0), the average displacement 〈x∞〉 would be on a straight
line because the hydrodynamic effect is dominant. In small
systems (large a′/r0), the average displacement 〈x∞〉 would
be smaller than the displacement predicted from the straight
line because the increase in viscosity (or averaged kinetic
energy) is dominant. The solid curve in Fig. 5 is the fit of
Eq. (14) for the average displacements of 11 finite systems.
The fit parameters are shown in Table I. In large systems,
the curve is almost linear and the deviation becomes larger
as the system size is reduced. The average displacement in the
infinite system was estimated as 8.0 ± 0.2Å from the value
at a′/r0 = 0. All 11 points indicate that the estimation for the
displacement considering increase in averaged kinetic energy
is more reasonable than that based on the linear estimation and
the background of the phenomena should be important.

We could clarify the motion of the solvation motor by
calculation of 5000 trajectories of finite systems with 256 −
32 000 particles. However, even in the largest system, the
diffusion coefficient and the displacement (5.7 × 10−9 m2/s,
7.7 Å) do not correspond to those of the infinite system
(6.3 × 10−9 m2/s, 8.0 Å). Therefore, extrapolation of the
curve [Eq. (14)] to a′/r0 = 0 is necessary for the prediction
of the motion of solvation motor in the infinite system. Our
analysis using extrapolation based on Eq. (14) will be more
important in the discussion of the motion of a larger and
heavier solvation motor in an infinite system.
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FIG. 7. Contributions of the hydrodynamic and heat-generation
effects for the displacement of solvation motor. The black line shows
displacement in an infinite system obtained from the fit of 11 finite
systems for Eq. (14). The green line shows the system-size depen-
dence of the displacement considering only the hydrodynamic effect,
〈x∞〉 = A′ + B′(a′/r0) + 0.45. The blue curve shows the system-size
dependence of the displacement considering only the heat-generation
effect, 〈x∞〉 = A′/[1 + C′(a′/r0 )3] + 0.45. The red curve shows dis-
placement considering both effects, Eq. (14). This curve was shown
in Fig. 5. The values A′ = 7.5, B′ = −3, and C′ = 20 shown in
Table I were adopted.

The large spatial scale effect for the displacement of the
solvation motor is divided into contributions of the hydrody-
namic and heat-generation effects (Fig. 7). When N > 50 000,
the heat-generation effect is very small and negligible, but the
hydrodynamic effect is dominant. The heat-generation effect
starts to appear at 10 000 < N < 50 000, but the hydrody-
namic effect is still dominant. The contributions of the hy-
drodynamic and heat-generation effects are comparable in
1000 < N < 10 000. The heat-generation effect surpasses the
hydrodynamic effect during this N range. In small systems
(N < 1000), the heat-generation effect is much larger than
the hydrodynamic effect. To summarize the above, the motion
of the solvation motor is mainly affected by the hydrody-
namic effect in large systems (N > 10 000) and by the heat-
generation effect in small systems (N < 1000).

The oscillatory behavior of the motor motions observed
in Figs. 3(b) and 4 seems to be due to the finite size of the
system. At first, we fitted Eq. (7) to the average trajectory by
simulation [Fig. 3(b)]. Next, we took the difference between
the trajectories obtained by simulation and by the fitting.
Then, Fourier transform (FT) of the difference was performed
to extract the frequencies of the solvation motor motion for
N = 4000−19 652 (Fig. 8). There were three or four peaks
(shown by arrows and marks) of frequency that shifted to
a lower frequency as the system size increased. The small
difference between the positions of the sine and cosine peaks
would be due to the motion of the solvation motor itself.

Figure 9 shows the frequency and period of the peaks in
Fig. 8. The solid straight lines are least-squares fits for the
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peaks of the Fourier coefficients. The frequency approaches 0
when the system size becomes infinite and the period of the
wave also approaches 0 when the system size becomes 0, so
that these peaks were due to the periodic boundary condition
and the finite size of the system.

Figure 10(a) shows the velocities of fast and slow (acous-
tic) waves estimated from Fig. 9. The velocity of the acoustic
wave was 1.5 − 1.7 × 103 m/s, which was near that of liquid
water at room temperature, about 1.5 × 103 m/s [44]. During
the chemical reaction period, solvent molecules approach
the reaction site due to the attraction between the solvent
molecules and the reaction site [18]. This acoustic wave
originated from the dispersion of solvent particles that were
attracted close to the reaction site into the bulk after the
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sine components, respectively. Marks in these figures correspond to
those in Fig. 8.
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reaction period. The oscillatory behavior of the motor motion
is mainly due to this acoustic wave.

The origin of the slow wave was confirmed by the follow-
ing procedure. In the system with N = 8788, the motor was
fixed during and after the reaction (t = 0−5 ps), after which
it was made to be free to move after t = 5 ps. Therefore,
only the backward wave from the motor is induced in this
simulation. After t = 5 ps the motor slowly moved backward
with the oscillation. The period of oscillation was 4 ps, which
is same as that of the slow wave in Fig. 9(b). This result means
that the wave induced by the dispersion of solvents near the
reaction site corresponded to the slow acoustic wave through
the system.

The velocity of the fast wave was 2.2 − 2.4 × 103 m/s,
which is 7 × 102m/s faster than that of the acoustic wave.
Figure 4 shows the average velocity along the molecular axis
of MR. The maximum velocity of the solvation motor, 7.7 ×
102 m/s, was almost the same as the difference between the
velocities of fast and acoustic waves in Fig. 10(a). Therefore,
the fast wave will be a shock wave by the forward motion of
solvation motor.

A similar procedure was applied to the analysis of the
velocity of solvation motor (Fig. 4). The result of N = 32 000
was set as reference; then, we took the difference between the
velocity of the other finite systems and that of the reference.
Figure 10(b) shows the velocities of waves obtained by FT of
the difference.

There are three interesting findings. The first one is that the
FT of coordinates [Fig. 10(a)] gives peaks in large–middle-

size systems (N = 19 652−4000), but the FT of velocities
[Fig. 10(b)] gives peaks not only in large–middle-size sys-
tems, but also in small-size systems (N � 2048). The second
one is that the velocity of the waves increases as the system
size decreases [Fig. 10(b)]. This is because the increase in
the averaged kinetic energy becomes larger as the system
size decreases (Fig. 6). The velocities of slow waves in
N = 19 652−4000 of Fig. 10(b) are consistent with those
of Fig. 10(a), so that Fig. 10(b) complements the small-size
system region of Fig. 10(a). The last one is that fast shock
waves are observed in Fig. 10(a) but not in Fig. 10(b). The
increase in averaged kinetic energy is very large in small
systems, so that the velocity of shock wave becomes very
fast (short period). Additionally, a shock wave disperses and
interferes with itself in small systems. Therefore, fast waves
are invisible in small systems.

IV. CONCLUSION

We have investigated the system-size dependence of the
motion of a solvation motor composed of LJ particles. A linear
relationship was observed between the system size (a′/r0)
and diffusion coefficients (D). The value of D of an infinite
system was estimated as 6.3 × 10−9 m2/s by extrapolation of
the straight line. By contrast, the average displacement 〈x∞〉
was not located on the straight line because of increase in
the averaged kinetic energy by the reaction. Considering the
change in viscosity due to the increase in averaged kinetic
energy, 〈x∞〉 of the infinite system was estimated as 8.0 Å.
For a larger and heavier solvation motor, our analysis based
on Eq. (14) will play a more important role for the motion
prediction in an infinite system. Last, we found by using FT
that the oscillation of a solvation motor was due to the acoustic
wave traveling backward of the motor and the shock wave
traveling forward of the motor.

ACKNOWLEDGMENTS

The authors thank Prof. A. Yoshimori, Dr. Y. Nakamura,
and Dr. Y. Uematsu for their comments. This work was sup-
ported by Japan Society for the Promotion of Science (JSPS)
KAKENHI Grants No. JP19H01863, No. JP19K03772,
No. JP18H03673, No. JP18K03555, No. JP17K14550, No.
JP16K05512, and No. JP15K05249. The computations were
mainly performed using the computer facilities at the Re-
search Institute for Information Technology (Kyushu Uni-
versity, Japan) and the Research Center for Computational
Science (Okazaki, Japan).

[1] U. Khadka, V. Holubec, H. Yang, and F. Cichos, Nat. Commun.
9, 3864 (2018).

[2] P. S. Mahapatra and S. Mathew, Phys. Rev. E 99, 012609
(2019).

[3] J. R. Villanueva-Valencia, J. Santana-Solano, E. Sarmiento-
Gómez, S. Herrera-Velarde, J. L. Arauz-Lara, and R.
Castañeda-Priego, Phys. Rev. E 98, 062605 (2018).

[4] A. Barbot and T. Araki, Soft Matter 13, 5911 (2017).

[5] S. K. Schnyder, J. J. Molina, Y. Tanaka, and R. Yamamoto,
Sci. Rep. 7, 5163 (2017).

[6] N. Yoshinaga and T. B. Liverpool, Phys. Rev. E 96, 020603(R)
(2017).

[7] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,
and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

[8] B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys.
53, 3813 (1970).

062608-7

https://doi.org/10.1038/s41467-018-06445-1
https://doi.org/10.1038/s41467-018-06445-1
https://doi.org/10.1038/s41467-018-06445-1
https://doi.org/10.1038/s41467-018-06445-1
https://doi.org/10.1103/PhysRevE.99.012609
https://doi.org/10.1103/PhysRevE.99.012609
https://doi.org/10.1103/PhysRevE.99.012609
https://doi.org/10.1103/PhysRevE.99.012609
https://doi.org/10.1103/PhysRevE.98.062605
https://doi.org/10.1103/PhysRevE.98.062605
https://doi.org/10.1103/PhysRevE.98.062605
https://doi.org/10.1103/PhysRevE.98.062605
https://doi.org/10.1039/C7SM00861A
https://doi.org/10.1039/C7SM00861A
https://doi.org/10.1039/C7SM00861A
https://doi.org/10.1039/C7SM00861A
https://doi.org/10.1038/s41598-017-05321-0
https://doi.org/10.1038/s41598-017-05321-0
https://doi.org/10.1038/s41598-017-05321-0
https://doi.org/10.1038/s41598-017-05321-0
https://doi.org/10.1103/PhysRevE.96.020603
https://doi.org/10.1103/PhysRevE.96.020603
https://doi.org/10.1103/PhysRevE.96.020603
https://doi.org/10.1103/PhysRevE.96.020603
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1063/1.1673845
https://doi.org/10.1063/1.1673845
https://doi.org/10.1063/1.1673845
https://doi.org/10.1063/1.1673845


KEN TOKUNAGA AND RYO AKIYAMA PHYSICAL REVIEW E 100, 062608 (2019)

[9] J. J. Erpenbeck and W. W. Wood, Phys. Rev. A 43, 4254 (1991).
[10] M. Fushiki, Phys. Rev. E 68, 021203 (2003).
[11] I. C. Yeh and H. Hummer, J. Phys. Chem. B 108, 15873

(2004).
[12] R. O. Sokolovskii, M. Thachuk, and G. N. Patey, J. Chem. Phys.

125, 204502 (2006).
[13] Y. Ishii and N. Ohtori, Phys. Rev. E 93, 050104(R) (2016).
[14] K. Tokunaga and R. Akiyama, J. Comput. Chem. Jpn. 17, 80

(2018).
[15] Y. Nakamura, A. Yoshimori, and R. Akiyama, J. Phys. Soc. Jpn.

81, SA026 (2012).
[16] Y. Nakamura, A. Yoshimori, and R. Akiyama, J. Mol. Liq. 200,

85 (2014).
[17] Y. Nakamura, A. Yoshimori, and R. Akiyama, J. Phys. Soc. Jpn.

83, 064601 (2014).
[18] K. Tokunaga and R. Akiyama, J. Phys. Soc. Jpn. 81, SA019

(2012).
[19] S. Y. Reigh and R. Kapral, Soft Matter 11, 3149 (2015).
[20] D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy,

Phys. Rev. Lett. 105, 090604 (2010).
[21] D. Rings, M. Selmke, F. Cichos, and K. Kroy, Soft Matter 7,

3441 (2011).
[22] T. Kihara, J. Phys. Soc. Jpn. 6, 289 (1951).
[23] I. M. Svishchev and P. G. Kusalik, J. Chem. Phys. 99, 3049

(1993).
[24] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys.

Chem. 91, 6269 (1987).
[25] M. R. Gunner and P. L. Dutton, J. Am. Chem. Soc. 111, 3400

(1989).
[26] J. M. Ortega, P. Mathis, J. C. Williams, and J. P. Allen,

Biochemistry 35, 3354 (1996).

[27] J. P. Allen, J. C. Williams, M. S. Graige, M. L. Paddock, A.
Labahn, G. Feher, and M. Y. Okamura, Photosynth. Res. 55,
227 (1998).

[28] J. Li, E. Takahashi, and M. R. Gunner, Biochemistry 39, 7445
(2000).

[29] R. Schmid and A. Labahn, J. Phys. Chem. B 104, 2928 (2000).
[30] W. C. Swope, H. C. Anderson, P. H. Berens, and K. R. Wilson,

J. Chem. Phys. 76, 637 (1982).
[31] H. C. Anderson, J. Comput. Phys. 52, 24 (1983).
[32] S. Nosé, J. Chem. Phys. 81, 511 (1984).
[33] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
[34] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[35] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

(Oxford University Press, Oxford, 1987).
[36] A. Einstein, Ann. Phys. 322, 549 (1905).
[37] Values of a′/r0 were calculated assuming that the hydrody-

namic radius a′ is equal to σMM/2 = 4.2 Å.
[38] S. Nishida, T. Nada, and Terazima, Biophys. J. 87, 2663 (2004).
[39] S. Nishida, T. Nada, and Terazima, Biophys. J. 89, 2004 (2005).
[40] J. S. Khan, Y. Imamoto, M. Harigai, M. Kataoka, and Terazima,

Biophys. J. 90, 3686 (2006).
[41] Solvent molecules around the reaction site have a large kinetic

energy during and just after the chemical reaction. The ther-
modynamic temperature cannot be defined in such a situation.
Therefore, the pseudotemperature in this study is defined as the
averaged kinetic energy over all solvent molecules.

[42] H. Hasimoto, J. Fluid Mech. 5, 317 (1959).
[43] F. Orts, G. Ortega, E. M. Garzón, and A. M. Puertas, Comput.

Phys. Commun. 236, 8 (2019).
[44] M. Greenspan and C. E. Tschiegg, J. Res. Natl. Bur. Stand. 59,

249 (1957).

062608-8

https://doi.org/10.1103/PhysRevA.43.4254
https://doi.org/10.1103/PhysRevA.43.4254
https://doi.org/10.1103/PhysRevA.43.4254
https://doi.org/10.1103/PhysRevA.43.4254
https://doi.org/10.1103/PhysRevE.68.021203
https://doi.org/10.1103/PhysRevE.68.021203
https://doi.org/10.1103/PhysRevE.68.021203
https://doi.org/10.1103/PhysRevE.68.021203
https://doi.org/10.1021/jp0477147
https://doi.org/10.1021/jp0477147
https://doi.org/10.1021/jp0477147
https://doi.org/10.1021/jp0477147
https://doi.org/10.1063/1.2397074
https://doi.org/10.1063/1.2397074
https://doi.org/10.1063/1.2397074
https://doi.org/10.1063/1.2397074
https://doi.org/10.1103/PhysRevE.93.050104
https://doi.org/10.1103/PhysRevE.93.050104
https://doi.org/10.1103/PhysRevE.93.050104
https://doi.org/10.1103/PhysRevE.93.050104
https://doi.org/10.2477/jccj.2018-0004
https://doi.org/10.2477/jccj.2018-0004
https://doi.org/10.2477/jccj.2018-0004
https://doi.org/10.2477/jccj.2018-0004
https://doi.org/10.1143/JPSJS.81SA.SA026
https://doi.org/10.1143/JPSJS.81SA.SA026
https://doi.org/10.1143/JPSJS.81SA.SA026
https://doi.org/10.1143/JPSJS.81SA.SA026
https://doi.org/10.1016/j.molliq.2014.06.021
https://doi.org/10.1016/j.molliq.2014.06.021
https://doi.org/10.1016/j.molliq.2014.06.021
https://doi.org/10.1016/j.molliq.2014.06.021
https://doi.org/10.7566/JPSJ.83.064601
https://doi.org/10.7566/JPSJ.83.064601
https://doi.org/10.7566/JPSJ.83.064601
https://doi.org/10.7566/JPSJ.83.064601
https://doi.org/10.1143/JPSJS.81SA.SA019
https://doi.org/10.1143/JPSJS.81SA.SA019
https://doi.org/10.1143/JPSJS.81SA.SA019
https://doi.org/10.1143/JPSJS.81SA.SA019
https://doi.org/10.1039/C4SM02857K
https://doi.org/10.1039/C4SM02857K
https://doi.org/10.1039/C4SM02857K
https://doi.org/10.1039/C4SM02857K
https://doi.org/10.1103/PhysRevLett.105.090604
https://doi.org/10.1103/PhysRevLett.105.090604
https://doi.org/10.1103/PhysRevLett.105.090604
https://doi.org/10.1103/PhysRevLett.105.090604
https://doi.org/10.1039/c0sm00854k
https://doi.org/10.1039/c0sm00854k
https://doi.org/10.1039/c0sm00854k
https://doi.org/10.1039/c0sm00854k
https://doi.org/10.1143/JPSJ.6.289
https://doi.org/10.1143/JPSJ.6.289
https://doi.org/10.1143/JPSJ.6.289
https://doi.org/10.1143/JPSJ.6.289
https://doi.org/10.1063/1.465158
https://doi.org/10.1063/1.465158
https://doi.org/10.1063/1.465158
https://doi.org/10.1063/1.465158
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/ja00191a043
https://doi.org/10.1021/ja00191a043
https://doi.org/10.1021/ja00191a043
https://doi.org/10.1021/ja00191a043
https://doi.org/10.1021/bi952882y
https://doi.org/10.1021/bi952882y
https://doi.org/10.1021/bi952882y
https://doi.org/10.1021/bi952882y
https://doi.org/10.1023/A:1005977901937
https://doi.org/10.1023/A:1005977901937
https://doi.org/10.1023/A:1005977901937
https://doi.org/10.1023/A:1005977901937
https://doi.org/10.1021/bi992591f
https://doi.org/10.1021/bi992591f
https://doi.org/10.1021/bi992591f
https://doi.org/10.1021/bi992591f
https://doi.org/10.1021/jp9939118
https://doi.org/10.1021/jp9939118
https://doi.org/10.1021/jp9939118
https://doi.org/10.1021/jp9939118
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.442716
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1529/biophysj.104.042531
https://doi.org/10.1529/biophysj.104.042531
https://doi.org/10.1529/biophysj.104.042531
https://doi.org/10.1529/biophysj.104.042531
https://doi.org/10.1529/biophysj.104.056762
https://doi.org/10.1529/biophysj.104.056762
https://doi.org/10.1529/biophysj.104.056762
https://doi.org/10.1529/biophysj.104.056762
https://doi.org/10.1529/biophysj.105.078196
https://doi.org/10.1529/biophysj.105.078196
https://doi.org/10.1529/biophysj.105.078196
https://doi.org/10.1529/biophysj.105.078196
https://doi.org/10.1017/S0022112059000222
https://doi.org/10.1017/S0022112059000222
https://doi.org/10.1017/S0022112059000222
https://doi.org/10.1017/S0022112059000222
https://doi.org/10.1016/j.cpc.2018.10.003
https://doi.org/10.1016/j.cpc.2018.10.003
https://doi.org/10.1016/j.cpc.2018.10.003
https://doi.org/10.1016/j.cpc.2018.10.003
https://doi.org/10.6028/jres.059.028
https://doi.org/10.6028/jres.059.028
https://doi.org/10.6028/jres.059.028
https://doi.org/10.6028/jres.059.028

