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Mesoscopic theory for self-assembling systems near a planar confining surface is developed. Euler-Lagrange
equations and the boundary conditions (BCs) for the local volume fraction and the correlation function are
derived from the density functional theory expression for the grand thermodynamic potential. Various levels
of approximation can be considered for the obtained equations. The lowest-order nontrivial approximation
[generic model (GM)] resembles the Landau-Brazovskii-type theory for a semi-infinite system. Unlike in the
original phenomenological theory, however, all coefficients in our equations and BCs are expressed in terms
of the interaction potential and the thermodynamic state. Analytical solutions of the linearized equations in
the GM are presented and discussed on a general level and for a particular example of the double-Yukawa
potential. We show exponentially damped oscillations of the volume fraction and the correlation function in the
direction perpendicular to the confining surface. The correlations show oscillatory decay in directions parallel
to this surface too, with the decay length increasing significantly when the system boundary is approached. The
framework of our theory allows for a systematic improvement of the accuracy of the results.
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I. INTRODUCTION

Competing interactions may lead to a self-assembly into
different aggregates that at sufficiently low temperature T
form periodic patterns on a mesoscopic length scale [1–15].
The sequence of the ordered phases at low T is the same
in block copolymer systems [16] and in systems containing
particles interacting with the effective short-range attraction
and long-range repulsion (SALR) potential that is attrac-
tive at short ranges and repulsive at large separations [4,8–
10]. This universal behavior follows from the fact that on
a qualitative level both systems can be described by the
Landau-Brazovskii (LB) functional [4,6]. A typical example
of the SALR potential is the effective interaction between
charged spherical particles (colloidal particles, nanoparticles,
or globular proteins) in a solvent inducing strong short-range
effective attraction between them [3,17–20]. One should men-
tion, however, that in the SALR systems the ordered phases
have not been observed experimentally yet [19]. On the other
hand, the cubic phases that are not stable in the LB theory,
turned out to be stable in multicomponent mixtures containing
surfactant or lipids [21–25]. Because of this universality, one
can be guided by the properties of one system in studies of
the properties of another system with inhomogeneities on a
well-defined length scale, even though some deviations from
the universal properties of self-assembling systems may exist.
Here we focus on the SALR model that is particularly simple,
because the solvent is treated as a structureless medium, and
only one kind of particles with isotropic interactions needs to
be considered.

Because of the periodic structure on the mesoscopic length
scale (a few or a few tens of particle diameter), confine-
ment by solid surfaces or by interfaces may lead to signif-
icant structural changes. The structural transformations de-
pend on the properties of the system boundaries and on the

compatibility between the symmetry and period of the ordered
structure and the shape and size of the confinement. The
effect of confinement on the structure, mechanical and thermal
properties of the ordered phases in amphiphilic and SALR
systems was studied by theory, simulations, and experiment
[23,25–41]. In particular, structures absent in the bulk can be
induced by appropriate boundaries [35,36,42].

Less attention was paid to effects of a single planar wall
on the disordered phase in the soft-matter systems [43–46].
In the disordered phase the density is position-independent,
and the correlation function exhibits either a monotonic or an
oscillatory decay, just as in the case of simple fluids, but the
wavelength of the oscillatory decay is set by the ranges of the
attractive and repulsive parts of the interactions in the SALR
systems, not by the size of the particles. The snapshots, how-
ever, show that the structure of the disordered phase in simple
fluids and in the SALR systems can be completely different.
At low volume fractions ζ and/or high T , the particles are
more or less homogeneously distributed in both cases. When a
so-called critical cluster concentration line in the (ζ , T ) phase
diagram is crossed in the SALR system, however, clusters
with a well-defined size appear [30,47]. The isolated particles
(“monomers”) still dominate until another structural crossover
at a higher ζ is reached. At this crossover, the probability
of finding a monomer is equal to the probability of finding
a particle belonging to a cluster of the optimal size, and the
specific heat takes a maximum [44]. Further increase of the
volume fraction leads to another structural crossover to a
percolating network of particles [11].

The nontrivial structure of the disordered phase, in par-
ticular the strong inhomogeneities on a well-defined length
scale, suggest nontrivial effects of an attractive or repulsive
surface on the disordered phase in the SALR system. Indeed,
simulations show (1) formation of inhomogeneous layer of
particles adsorbed at the surface, followed by strong depletion
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of particles in the subsequent layer, (2) anomalous decrease
of adsorption for increasing chemical potential, and (3) much
larger correlation length near the confining wall than in the
bulk. All these anomalies occur when clusters dominate over
the monomers [44,45].

Due to the broken translational and rotational symmetries,
the average volume fraction depends on the distance from
the wall, z, and the correlation function between the points
r1 and r2 depends on z1, z2 and the distance r‖ between the
projections of the two points on the surface z = 0. In addition,
formation of a structure with periodic order in the lateral
direction in the near-surface region cannot be ruled out [46].
Thus, the problem is very complex. Because of this com-
plexity, there is a need for an approximate theory that could
give at least qualitative predictions with a reasonable effort.
The LB theory developed for the unconfined SALR system
in Refs. [4,6,7,48] correctly predicts the sequence of phases.
The results can be obtained much more easily than in the
standard density functional theory (DFT) or liquid theories.
Importantly, in the original phenomenological LB theory there
is a number of free phenomenological parameters, but in the
theory developed in Refs. [4,6], all parameters are expressed
in terms of the interaction potential, ζ and T . In addition,
the high-T part of the phase diagram obtained in mean-field
(MF) theories is qualitatively different from the simulation
results, whereas in this theory it agrees with simulations on
a semiquantitative level when the fluctuation contribution is
added to the grand potential [48].

In this work we generalize the LB theory developed in
Refs. [4,6] to the case of a semi-infinite system. Broken
translational and rotational invariance, however, makes the
derivation of the theory more difficult. The theory is devel-
oped in Sec. II. We limit ourselves to the MF approximation.
In MF, the internal energy of a disordered phase in bulk is
approximated by U = 1

2ρ2
∫

V (r) dr, where ρ is the average
density and V (r) is the interaction potential. This kind of MF
approximation is typically made in standard DFT theories.
The above expression for U gives the same internal energy
for homogeneous and inhomogeneous systems with the same
average density. However, when clusters of a size determined
by the range of attraction, separated by a distance determined
by the range of repulsion, are formed, the energy is much
lower. This is because many more pairs of particles corre-
sponding to a minimum of V (r) and many fewer pairs of
particles corresponding to the maximum of V (r) are present
than in the case of homogeneously distributed particles. As a
result, the internal energy obtained by averaging the energy
of microstates with the proper probability distribution differs
from the energy calculated for the average density. This lower
internal energy is associated with mesoscopic fluctuations of
density or volume fraction in the disordered phase, where the
clusters are not localized and move almost freely. Let us imag-
ine a fixed mesoscopic part of a system containing clusters or
other aggregates. The mesoscopic size means in this context
the size comparable with the length scale of inhomogeneities
(size of the clusters). The local volume fraction (or the number
of particles in the mesoscopic window) is significantly larger
or smaller than the average volume fraction when a cluster
enters or leaves the window, respectively. In the case of a
homogeneous system, the mesoscopic fluctuations are much

smaller. What distinguishes the homogeneous and inhomoge-
neous systems with the same volume fraction is the variance
of the local volume fraction, associated with larger density
inside the clusters than between them. The MF theories,
including the standard DFT, correctly predict the low- and the
high-temperature properties, where either the periodic phases
are formed or the clusters are not yet well developed, and
fluctuations of the local volume fraction described above do
not play a primary role. The fluctuation contribution to the
grand potential will be considered in a forthcoming article
by combining the DFT and the statistical field theories, as in
Ref. [48].

We start in Sec. II A from the standard DFT expression
for the grand potential and transform it to an equivalent form
that is more suitable for making approximations. In Secs. II B
and II C we derive Euler-Lagrange (EL) equations and the
boundary conditions (BCs) from our expression for the grand
potential. In Sec. II D we derive equations for the average
volume fraction and for the periodic modulations of ζ in
the planes parallel to the wall. The latter is not considered
in the following sections. We focus on the short-range or-
der as described by the correlation function. In Sec. II E
we present and discuss linearized EL equations. Finally, in
Sec. II F the EL for the correlation function is developed, and
various approximate versions are discussed. The solutions of
the obtained EL equations are in principle equivalent to the
results of minimization of the functional that was a starting
point of our derivation. However, these equations can be
greatly simplified by following the steps leading to the LB
theory in the bulk [4,6,7]. In Sec. III such a generic model
is developed for a semi-infinite system. The EL equation for
the volume fraction (Sec. III A) and the correlation function
(Sec. III B) as well as the BCs take a particularly simple form.
The linearized equations can be easily solved analytically,
and we discuss properties of these solutions on a general
level. In Sec. IV our theory is applied to a double-Yukawa
interaction potential. The shapes of the excess volume fraction
and the correlation function are presented and discussed. We
summarize in Sec. V.

II. DEVELOPMENT OF THE THEORY

In this work we consider the effect of the wall on the
local structure when the disordered phase is stable in the bulk,
and far away from the confining surface, the volume fraction
ζb of the particles is position-independent. We assume that
the confining (x, y) plane is at z = 0, and the particles’ zth
coordinate is z � 0. We develop a MF theory and assume that
the grand potential can be written in the form

β� = βU + βUext +
∫

dr‖
∫ ∞

0
dzβ fh[ζ (r‖, z)]

−βμ

∫
dr‖

∫ ∞

0
dzζ (r‖, z), (1)

where μ is the chemical potential, β = 1/(kBT ), and kB is
the Boltzmann factor. The third term in Eq. (1) is the en-
tropic contribution. In a popular approach, fh is the hard-core
reference-system free energy in the local-density approxima-
tion. The first two terms in (1) are the contributions to the
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internal energy associated with interparticle interactions and
an external potential, respectively, and are given by

U [ζ ] =
∫

dr‖
∫ ∞

0
dz

∫
d�r‖

∫ ∞

0
d�zζ (r‖, z)

×V (�r‖,�z)ζ (r‖ + �r‖, z + �z) (2)

and

Uext =
∫

dr‖
∫ ∞

0
dzVext (r‖, z)ζ (r‖, z). (3)

In (2) and (3), V and Vext denote the interparticle interactions
and the interactions between the particles and the wall, respec-
tively. In the case of the structureless wall to which we will
restrict our attention later, Vext depends only on z. We assume
that the interparticle interactions are spherically symmetric

and depend only on r =
√

r2
‖ + z2, but for convenience we

will consider the directions parallel and perpendicular to the
confining surface separately.

We introduce the excess grand potential

�β�[ζ ] = β�[ζ ] − β�b[ζb], (4)

where �b[ζb] is the grand potential of the considered system
with the same volume in the bulk. The volume fraction in the
bulk, ζb, satisfies the equation

ζb

∫
d�r‖

∫ ∞

−∞
d�zβV (�r‖,�z) + β f ′

h = βμ, (5)

which follows from the minimization of the grand potential of
the unconfined system with the position-independent volume
fraction. Here and below, f ′(ζ ) = df /dζ is used for any
function f . In the next subsection we transform �β�[ζ ] to
a form more convenient for approximations and analytical
solutions.

A. Transformations of the functional (4)

The local volume fraction can be split into the bulk and the
excess terms,

ζ (r‖, z) = ζb + �ζ (r‖, z), (6)

where r‖ is a two-dimensional vector in a plane parallel to the
confining wall. In general, we do not exclude the possibility
of the wall-induced long-range order in the directions parallel
to the wall. By the long-range order in the directions parallel
to the wall we mean a periodic structure in the (x, y) plane.
If the surface induces only short-range ordering reflected in
the oscillatory decay of the correlation function in the (x, y)
plane, but not on the level of the one-point volume fraction or
density, then �ζ (r‖, z) is independent of r‖. In the directions
parallel to the surface, either translational invariance or peri-
odic structure can be expected, and it is convenient to consider
the volume fraction and the interaction potential in the mixed
Fourier- and real-space representation,

ζ̃ (k‖, z) = (2π )2δ(k‖)ζb + �ζ̃ (k‖, z), (7)

�ζ̃ (k‖, z) =
∫

dr‖eik‖·r‖�ζ (r‖, z), (8)

and

Ṽ (k‖,�z) =
∫

dr‖eik‖·r‖V (r‖,�z). (9)

Here and below, the tilde denotes a two-dimensional Fourier
transform in the plane parallel to the confining surface, and δ

denotes the Dirac delta function.
In the mixed representation, the excess grand potential is

given by

�β�[ζ ] =
∫

dk‖
(2π )2

∫ ∞

0
dz

∫ ∞

−∞
d�z�ζ̃ (−k‖, z)

×βṼ (k‖,�z)θ (�z)�ζ̃ (k‖, z + �z)

+
∫

dr‖
∫ ∞

0
dzg(ζb,�ζ ) + βUext, (10)

where θ (�z) is the Heaviside unit step function,

g(ζb,�ζ ) = β fh(ζb + �ζ ) − β fh(ζb) − β f ′
h(ζb)�ζ, (11)

Uext =
∫

dr‖
∫ ∞

0
dzVext (r‖, z)ζ (r‖, z)

=
∫

dk‖
(2π )2

∫ ∞

0
dzṼext (−k‖, z)ζ̃ (k‖, z), (12)

and Eq. (5) was used. In the case of a homogeneous confining
surface, with no lateral pattern, the wall-particle interactions
are independent of r‖, Vext (r‖, z) = Vext (z), and we get from
(12) Uext = ∫ ∞

0 dzVext (z)ζ̃ (0, z). If, in addition the external
potential is of very short range, Uext can be approximated by

Usurf = hζ̃ (0, 0). (13)

In the rest of this section we will transform the functional
(10) to a form that is suitable for making approximations
based on physical properties of the system. Our procedure
is similar to the one developed in Refs. [4,6] for the bulk
inhomogeneous system.

In the first step we consider the internal energy contri-
bution in Eq. (10). The Fourier transform of Ṽs(k‖,�z) =
Ṽ (k‖,�z)θ (�z) in the perpendicular direction contains both
the real and the imaginary part:

V̂s(k‖, k⊥) =
∫ ∞

−∞
d�zṼ (k‖,�z)θ (�z)eik⊥�z

= V̂R(k‖, k⊥) + iV̂I (k‖, k⊥). (14)

In Eq. (14) and below, a three-dimensional Fourier trans-
form is indicated by a hat, to distinguish it from the two-
dimensional Fourier transform indicated by a tilde.

Let us first focus on the real part of V̂s(k‖, k⊥),

V̂R(k‖, k⊥) =
∫ ∞

0
d�zṼ (k‖,�z) cos(k⊥�z)

= 1

2

∫ ∞

−∞
d�zṼ (k‖,�z)eik⊥�z, (15)

where we used the property Ṽ (k‖,�z) = Ṽ (k‖,−�z). From
the above and Eq. (9), we obtain

V̂R(k‖, k⊥) = 1

2

∫
drV (r)eir·k = 1

2
Û (k2), (16)
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where r = (r‖, z), k = (k‖, k⊥), and we introduced the func-
tion Û of k2 = k2

‖ + k2
⊥, based on the fact that the Fourier

transform of the interaction potential is an even function of
k. We Taylor expand Û (k2

‖ + k2
⊥) in terms of k2

⊥,

V̂R(k‖, k⊥) = 1

2

∞∑
n=0

U2n(k‖)k2n
⊥ . (17)

In the next step we Fourier-transform V̂R(k‖, k⊥) given in
Eq. (17) back to the real space in the direction perpendicular to
the surface z = 0, introduce the operator βÛ (k2

‖ − ∂2

∂z2 ) acting
on �ζ̃ according to the equation

Û

(
k2
‖ − ∂2

∂z2

)
�ζ̃ (k‖, z) =

∞∑
n=0

(−1)nU2n(k‖)
∂2n�ζ̃ (k‖, z)

∂z2n

(18)

and obtain the corresponding contribution to the internal
energy

�βUR = 1

2

∫
dk‖

(2π )2

∫ ∞

0
dz�ζ̃ (−k‖, z)

×βÛ

(
k2
‖ − ∂2

∂z2

)
�ζ̃ (k‖, z). (19)

Let us now focus on the imaginary part VI that is an odd
function of k⊥,

V̂I (k‖, k⊥) =
∫ ∞

0
d�zṼ (k‖,�z) sin(k⊥�z)

=
∞∑

n=0

I2n+1(k‖)k2n+1
⊥ , (20)

where

I2n+1(k‖) =
∫ ∞

0
d�zṼ (k‖,�z)

(−1)n�z2n+1

(2n + 1)!
. (21)

We Fourier-transform V̂I (k‖, k⊥) given by (20) back to the
real space in the direction perpendicular to the surface z = 0,
introduce the operator V̂I (k‖, i ∂

∂z ) by

V̂I

(
k‖, i

∂

∂z

)
�ζ̃ (k‖, z)=

∞∑
n=0

(−1)nI2n+1(k‖)
∂2n+1�ζ̃ (k‖, z)

∂z2n+1
,

(22)

and obtain the following expression for the corresponding
contribution to the internal energy

βUI =
∫

dk‖
(2π )2

∫ ∞

0
dz�ζ̃ (−k‖, z)V̂I

(
k‖, i

∂

∂z

)
�ζ̃ (k‖, z).

(23)

As seen from (22), βUI is real as it should be. Because
of the odd derivatives in Eq. (22), however, Eq. (23)
reduces after integration by parts to a surface term of

the form

βUI = −1

2

∫
dk‖

(2π )2

∞∑
n=0

(−1)nβI2n+1(k‖)

×
2n∑

m=0

(−1)m�ζ̃ (m)(−k‖, 0)�ζ̃ (2n−m)(k‖, 0), (24)

where �ζ̃ (m)(k‖, 0) denotes the mth derivative of �ζ̃ with
respect to its second argument z at z = 0.

The above mathematical transformations lead to the ex-
pression for the excess grand potential

�β�[ζ ] = 1

2

∫
dk‖

(2π )2

∫ ∞

0
dz�ζ̃ (−k‖, z)

×βÛ

(
k2
‖ − ∂2

∂z2

)
�ζ̃ (k‖, z)

+
∫

dr‖
∫ ∞

0
dzg[ζb,�ζ (r‖, z)] + βUext + βUI ,

(25)

where Û is defined in (18), Uext is given in (12) or (13), g is
defined in (11), and βUI is given in (24). The above form is
convenient for derivation of the EL equations.

B. EL equations

Minimization of �β�[ζ ] given by (25) leads to the equi-
librium volume fraction in our MF theory. We follow the
standard procedure and require that the part of �β�[ζ +
δζ ] − �β�[ζ ] linear in δζ̃ (k‖, z) vanishes. The EL equation
obtained in this way has the form

βÛ

(
k2
‖ − ∂2

∂z2

)
�ζ̃ (k‖, z) +

∫
dr‖eik‖·r‖g(1)[ζb,�ζ (r‖, z)]

+βṼext (k‖, z) = 0, (26)

where we have introduced the notation g(n)(ζb,�ζ ) =
∂ng(ζb,�ζ )/∂�ζ n, with the derivative taken at the indicated
value of the second argument. We expand g(1)(ζb,�ζ ) about
�ζ = 0, take into account that g(1)(ζb, 0) = 0 [see (11)], and
after truncating the expansion at the second-order term, obtain
the linearized EL equation

βÛ

(
k2
‖ − ∂2

∂z2

)
�ζ̃ (k‖, z) + A2(ζb)�ζ̃ (k‖, z)

+βṼext (k‖, z) = 0, (27)

where we have introduced An(ζb) = g(n)(ζb, 0) =
dnβ fh(ζb)/dζ n

b for n � 2 to simplify the notation. In order
to be able to calculate �ζ̃ (k‖, z), it remains to determine
the BCs.

C. Boundary conditions

In derivation of (26), we have performed integration by
parts to get rid of the derivatives of δζ̃ that appear because
of the presence of the differential operator in (25). However,
in this way additional boundary terms that are proportional
to δζ̃ (k‖, 0) and its derivatives are generated. In the case of
the semi-infinite system, the BCs follow from the requirement
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that the surface contribution to �β�[ζ + δζ ] − �β�[ζ ],

δβ�surf =
∞∑

n=1

(−1)n

[
βI2n−1(k‖)

2n−2∑
m=0

(−1)m

× �ζ̃ (2n−m−2)(k‖, 0)δζ̃ (m)(k‖, 0)

+ 1

2
βU2n(k‖)

2n−1∑
m=0

(−1)m

× �ζ̃ (2n−m−1)(k‖, 0)δζ̃ (m)(k‖, 0)

]
, (28)

coming from βUI as well as from the integration by parts
mentioned above, vanishes. The first two BC (the terms
proportional to δζ̃ (k‖, 0) and δζ̃ ′[k‖, 0)], are

∞∑
n=1

(−1)n

[
1

2
βU2n(k‖)�ζ̃ (2n−1)(k‖, 0)

+βI2n−1(k‖)�ζ̃ (2n−2)(k‖, 0)

]
= 0 (29)

and

∞∑
n=1

(−1)n

[
βI2n+1(k‖)�ζ̃ (2n−1)(k‖, 0)

− 1

2
βU2n(k‖)�ζ̃ (2n−2)(k‖, 0)

]
= 0. (30)

If (13) instead of (12) is assumed for Uext, then the last
term in (26) or (27) should be removed, and (2π )2δ(k‖)βh
should be added to the LHS of (29). Additional BCs are
limz→∞ �ζ̃ (m)(k‖, z) = 0.

D. Transverse and lateral structure

The local excess volume fraction in the real space or in the
Fourier representation can be written in the form

�ζ (r‖, z) = �ζ0(z) + φ(r‖, z) (31)

or

�ζ̃ (k‖, z) = (2π )2δ(k‖)�ζ0(z) + φ̃(k‖, z). (32)

By �ζ0(z) we denote the excess volume fraction at the
distance z from the surface, averaged over the (x, y) plane.
The functions φ(r‖, z) and φ̃(k‖, z) in turn are associated
with the long-range lateral order, i.e., with periodic density
oscillations in the plane parallel to the confining wall and
separated by the distance z from it. With the above definition,
we have

∫
dr‖φ(r‖, z) = 0 and φ̃(0, z) = 0. In a similar way

we separate the external potential into the homogeneous and
the oscillatory parts

Ṽext (k‖, z) = (2π )2δ(k‖)Vext (z) + Ṽ‖(k‖, z) (33)

with Ṽ‖(0, z) = 0.

Inserting (32) in (26) and separating terms proportional to
δ(k‖) gives us for k‖ = 0

βÛ

(
− ∂2

∂z2

)
�ζ0(z) +

∞∑
n=0

g(n+1)[ζb,�ζ0(z)]

n!Au

×
∫

Au

dr‖φn(r‖, z) + βVext (z) = 0, (34)

and for k‖ �= 0

βÛ

(
k2

‖ − ∂2

∂z2

)
φ̃(k‖, z) +

∫
dr‖e−ik‖·r‖g(1)[ζb,�ζ0(z)

+φ(r‖, z)] + βṼ‖(k‖, z) = 0. (35)

The integral in (34) is over the area of the unit cell of the
periodic structure, Au. As seen from (34) and (35), the near-
surface long-range lateral order and the average density in the
planes parallel to the surface are coupled.

Depending on a thermodynamic state, the long-range order
near the confining wall, i.e., a structure periodic in the lateral
direction, may or may not be present. We shall focus on the
latter case, where only short-range lateral order is present near
the surface. In fact, for temperature and density considered
in Ref. [44], only short-range lateral order at the surface was
observed in MD simulations.

For φ = 0, Eq. (34) takes the simple form

βÛ

(
− ∂2

∂z2

)
�ζ0(z) + g(1)[ζb,�ζ0(z)] + βVext (z) = 0.

(36)

Equations (25) and (36) can be a starting point for various
approximate theories, based on truncated expansions of βÛ ,
g(1), and/or βUI .

E. Linearized EL equation in the absence of long-range
lateral order

g(1)(ζb,�ζ0(z)) in Eq. (36) can be Taylor expanded, and
for small values of �ζ0(z), the expansion can be truncated
at the first-order term. The linearized Eq. (36) then takes the
simple form

βÛ

(
− ∂2

∂z2

)
�ζ0(z) + A2(ζb)�ζ0(z) + βVext (z) = 0. (37)

If Vext (z) = hδ(z), Eq. (37) becomes even simpler, and the
solution is a sum of terms proportional to exp(iαz), where α

is a solution of the equation

βÛ (α2) + A2(ζb) = 0. (38)

In the disordered phase this equation has no solutions for real
α, because the disordered phase is stable when βÛ (k2

0 ) +
A2(ζb) > 0, where Û takes a minimum at k2 = k2

0 . As the
linearized equation can be valid for small �ζ0(z), i.e., for large
z, the asymptotic decay is given by the solution α = iα0 ± α1

with the imaginary part α0 > 0 with the smallest magnitude.
The correlation function in the bulk, G(�r) = 〈ζ (r)ζ (r +

�r)〉 − ζ 2
b , is inversely proportional to the second functional

derivative of the grand potential with respect to local devia-
tions of the volume fraction from the average value. In Fourier
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representation Ĝ(k) is inversely proportional to the LHS of
Eq. (38) with α = k. Poles of Ĝ(k), i.e., zeros of the LHS of
Eq. (38), determine the decay of correlations in the real space
representation. This result shows that the decay length and the
period of damped oscillations are the same in the correlation
function in the bulk and in the density profile near a flat wall.
This observation was confirmed by simulations of a particular
version of the SALR model in Ref. [44].

There exist two possible cases: (1) α1 = 0 and �ζ0(z)
decays monotonically or (2) α1 �= 0 and an oscillatory decay
of �ζ0(z) takes place for large z. The first case concerns
Û (k2) that takes the global minimum for k = 0, and has the
expansion Û (0) + U2k2 + · · · with Û (0) < 0, U2 > 0. The
second case concerns Û (k2) that takes the global minimum
for k = k0 > 0, and has the expansion about the minimum
Û (k2

0 ) + v(k2 − k2
0 )2 + · · · . In the first case, when the expan-

sion of Û (k2) is truncated at the term proportional to k2, our
theory reduces to the standard Landau theory. In the second
case, when Û (k2) is approximated by

Û (k2) = Û
(
k2

0

) + v
(
k2 − k2

0

)2 + · · · , (39)

our theory reduces to the LB theory.
In the rest of the work we limit ourselves to the Brazovskii-

type theory.

F. Correlation function

Let us focus on the correlation function in the case of no
long-range lateral order (φ = 0). In the mixed representation,
G̃(k‖|z1, z2) is the correlation function between the volume-
fraction waves with the wave number k‖ in the longitudinal
direction in the planes at the separations z1 and z2 from the
wall. G̃(k‖|z1, z2) describes also the response in the plane at
z = z1 to an oscillatory perturbation with the wave number k‖
in the plane at z = z2. It is convenient to calculate this function
from the relation

G̃(k‖|z1, z2) = δ�ζ̃ (k‖, z1)

δ[−βṼext (k‖, z2)]
. (40)

In order to obtain an equation for G̃(k‖|z1, z2), we proceed
as in the case of the Landau theory for simple fluids (see for
example Ref. [49]), and perform functional differentiation of
Eq. (26) with respect to −βṼext. As a result we obtain the
equation for the correlation function in the absence of the
long-range lateral order and near a homogeneous wall{

βÛ

(
k2
‖ − ∂2

∂z2
1

)
+ g(2)[ζb,�ζ0(z1)]

}
G̃(k‖|z1, z2)

= δ(z1 − z2), (41)

where we took into account that the correlation function
depends only on k‖ = |k‖|.

BC for G can be obtained by functional differentiation of
the BC for �ζ̃ (k‖, z), and from (29) we obtain

∞∑
n=1

(−1)n

[
1

2
βU2n(k‖)G̃(2n−1)(k‖|0, z2)

+βI2n−1(k‖)G̃(2n−2)(k‖|0, z2)

]
= 0, (42)

where G̃(m)(k‖|0, z2) denotes the mth derivative with respect to
z1 at z1 = 0. The BC for z1 → ∞ is limz1→∞ G̃(k‖|z1, z2) = 0.

Functional differentiation of the linearized equation for �ζ̃

[Eq. (27)] with respect to −βṼext gives the equation for the
correlation function in the Gaussian approximation,[

βÛ

(
k2
‖ − ∂2

∂z2
1

)
+ A2(ζb)

]
G̃(k‖|z1, z2) = δ(z1 − z2), (43)

where Û and An are defined in Eq. (18) and below Eq. (27),
respectively. Alternatively, Eq. (43) can be obtained from (25)
and the analog of the Ornstein-Zernike equation∫

dz′C̃(k‖, z1, z′)G̃(k‖, z′, z2) = δ(z1 − z2), (44)

where

C̃(k‖, z1, z′) = δ2�β�

δ�ζ̃ (−k‖, z1)δ�ζ̃ (k‖, z′)
. (45)

Note that Eq. (41) shows that the effect of the volume-
fraction profile on the local structure is significant. However,
this effect cannot be determined on the level of the Gaussian
approximation (43). In this approximation, G̃(k‖|z1, z2) is
independent of the excess volume fraction profile and hence
on the wall-particle interactions. Thus, the solution of Eq. (43)
cannot accurately describe the close vicinity of the wall.
Particularly large inaccuracy of G̃(k‖|z1, z2) obtained from
Eq. (43) is expected for large wall-particle interactions leading
to large �ζ0.

We assume small �ζ0 in (41), i.e., small wall-fluid poten-
tial and/or large z, truncate the expansion of g(2)(ζb,�ζ0(z1)),
and obtain the equation{

βÛ

(
k2
‖ − ∂2

∂z2
1

)
+ A2(ζb) + A3(ζb)�ζ0(z1)

+ O[�ζ0(z1)2]

}
G̃(k‖|z1, z2) = δ(z1 − z2). (46)

If A3(ζb)�ζ0(z1) is small, the term A3(ζb)�ζ0(z1)G̃(k‖|z1, z2)
can be treated as a perturbation. A3(ζb) takes large values for
small and large ζb but vanishes for the critical volume fraction
ζb ≈ 0.129. Thus, the approximation (43) is more accurate
for ζb ≈ 0.129, where lamellar structure is expected at low
T , than for very dilute systems, where clusters are formed.
We will limit ourselves to the approximate equation (43) that
gives the asymptotic decay of correlations at large distances z
from the wall and can be easily solved analytically.

III. THE GENERIC MODEL
FOR INHOMOGENEOUS SYSTEMS

Density waves with the wave number k0 corresponding
to the minimum of V̂ (k) lead to the lowest internal energy.
The waves associated with significantly larger energy occur
with significantly smaller probability. We assume, following
Refs. [4,6], that the density waves with the wave numbers
significantly different from k0 are much less probable. If
such density waves can be disregarded, then Û (k2) can be
approximated by (39). The operator Û (k2

‖ − ∂2

∂z2 ) defined in
Eq. (18) in this lowest-order nontrivial approximation takes
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the form

Û

(
k2
‖ − ∂2

∂z2

)
= v

∂4

∂z4
− 2v(k2

‖ − k2
0 )

∂2

∂z2

+ v(k2
‖ − k2

0 )2 + Û
(
k2

0

)
. (47)

In the consistent approximation, we truncate the expansion of
V̂I (k‖, k⊥) [see (20)] at the lowest-order term and obtain

V̂I (k‖, k⊥) = I1(k‖)k⊥, (48)

where I1(k‖) = ∫ ∞
0 dzzṼ (k‖, z) [see (21)]. Equations (47) and

(48) define the generic model (GM) for a semi-infinite system
with inhomogeneities at the length scale 2π/k0. Note that
apart from the external field term, there is only one surface
term in this approximation [see (24)],

βUI = −β

2

∫
dk‖I1(k‖)�ζ̃ (k‖, 0)2. (49)

Moreover, the bulk interactions are characterized by just three
numbers, Û (k2

0 ), k0, and v [see (39)]. As in the standard Lan-
dau theory, βUI describes the missing-neighbors contribution
at the surface. There is an important difference between the
simple fluids and the systems with the SALR interactions,
however, namely, −I1(0) > 0 for the attractive interactions,
but in the SALR systems −I1(0) < 0 is expected when the
repulsion is strong enough. In the first case the attraction by
the particles in the bulk is not compensated by the particles
missing for z < 0, while in the second case the repulsion
is not compensated. These unbalanced interactions lead to
effective repulsion by the confining wall in simple fluids and
to effective attraction in the SALR systems. This effective
attraction to a hard wall, due to the missing neighbors, was
indeed observed in simulations [35]. In the following, we
present the EL equations and the solutions of these equations
for the GM.

A. The volume-fraction profile in the GM

When the external potential is localized at the surface, the
EL equation for the excess density and the BC, Eqs. (36), (29),
and (30), simplify to

β

[
v

∂4

∂z4
+ 2vk2

0
∂2

∂z2
+ vk4

0 + Û
(
k2

0

)]
�ζ0(z)

+ g(1)[ζb,�ζ0(z)] = 0, (50)[
v

2

∂3

∂z3
+ vk2

0
∂

∂z
− I1(0)

]
�ζ0(z)|z=0 + h = 0, (51)

and [
v

2

∂2

∂z2
+ 2k2

0

]
�ζ0(z)|z=0 = 0. (52)

The linearized equation (50) is simply(
∂4

∂z4
+ 2k2

0
∂2

∂z2
+ D0

)
�ζ0(z) = 0, (53)

where

D0 = τ 2 + k4
0 (54)

with

τ 2 = [
Û

(
k2

0

) + kBTA2(ζb)
]
/v. (55)

Here we limit ourselves to the linearized EL equation (53).
The stability condition of the disordered phase, βÛ (k2

0 ) +
A2(ζb) > 0, implies that D0 > 0. Since D0 > 0 in the disor-
dered phase, the solution of (53) in this phase is

�ζ0(z) = Ae−α0z cos(α1z + ϑ ), (56)

where

α0,1 =
[

1
2

(√
D0 ∓ k2

0

)]1/2
, (57)

A = − 2βh
√

D0

α1[vD0 − 4α0I1(0)]
, (58)

and

tan(ϑ ) = −k2
0

τ
. (59)

The oscillatory decay (56) at sufficiently large separations
is quite universal for systems with inhomogeneities at the
well-defined length scale (here 2π/k0). The formula (56)
fits quite well the simulation results for a particular version
of the SALR interactions already for z > 2π/α1 [44]. The
same behavior was predicted for the asymptotic decay of the
charge density near a charged wall in ionic systems [50]. In
this case, Eq. (56) already fits very well simulation results
for z > 2π/α1 too [51]. The values of the parameters in
(56), however, agree with simulations performed in Ref [44].
only semiquantitatively. A better agreement with simulations
was obtained when α was calculated from Eq. (38), and the
effect of clustering on the entropy was taken into account
[44]. Quantitative agreement, however, cannot be expected,
because (1) the gradient expansion restricts the results to long-
ranged features, (2) the presented theory is of the MF type, and
(3) the entropic contribution is based on the reference system
of hard spheres in the local density approximation.

B. Correlation function in the GM

In the GM the EL equation and the BC for G̃ are [see
Eqs. (41) and (42)]

β

[
v

∂4

∂z4
1

+ 2v
(
k2

0 − k2
‖
) ∂2

∂z2
1

+ d (z1, k‖)

]
G̃(k‖|z1, z2)

= δ(z1 − z2), (60)

where d (z1, k‖) = Û (k2
0 )+v(k2

‖ − k2
0 )2 + kBT g(2)[ζb,�ζ0(z1)]

and[
v

2

∂3

∂z3
− v

(
k2
‖ − k2

0

) ∂

∂z
− I1(k‖)

]
G̃(k‖|z, z′)|z=0 = 0. (61)

In the Gaussian approximation, Eq. (60) simplifies to [see
Eq. (43)]

βv

[
∂4

∂z4
1

+ 2
(
k2

0 − k2
‖
) ∂2

∂z2
1

+ D(k2
‖ )

]
G̃(k‖|z1, z2)

= δ(z1 − z2), (62)

where

D(k2
‖ ) = τ 2 + (

k2
‖ − k2

0

)2
, (63)
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and τ is defined in (55). Because in the disordered phase
D(k2

‖ ) > 0, the solution of (62) should have the form

G̃(k‖|z1, z2) = a−(k‖)e−α(k‖ )|z1−z2| + a∗
−(k‖)e−α∗(k‖ )|z1−z2|

+ a+(k‖)e−α(k‖ )(z1+z2 ) + a∗
+(k‖)e−α∗(k‖ )(z1+z2 ),

(64)

where α(k‖) = α0(k‖) + iα1(k‖), with

α0,1(k‖) =
{

1
2

[√
D(k2

‖ ) ± (
k2
‖ − k2

0

)]}1/2
. (65)

The function (64) with (65) satisfies Eq. (62) provided that

a−(k‖) = − kBT

2v[α2(k‖) − α∗2(k‖)]α(k‖)
. (66)

The BC determines the amplitude a+,

a+(k‖) =
v
√

D
(
k2
‖
)
α∗(k‖) + 2I1(k‖)

v
√

D
(
k2
‖
)
α∗(k‖) − 2I1(k‖)

a−(k‖). (67)

G̃(k‖|z1, z2) exhibits an oscillatory decay as a function of |z1 −
z2| and z1 + z2 with the same characteristic lengths in both
cases, and Eq. (64) can be written in the equivalent form

G̃(k‖|z1, z2) = A−(k‖)e−α0(k‖ )|z1−z2|

× cos[α1(k‖)|z1 − z2| + θ−(k‖)],

+A+(k‖)e−α0(k‖ )(z1+z2 )

× cos[α1(k‖)(z1 + z2) + θ+(k‖)]. (68)

The involved dependence of the parameters A−,A+, θ−, θ+
on k‖ will not be given here.

The inverse decay length α0(k‖) is an increasing function of
k‖ and takes the smallest value α0 for k‖ = 0. Thus, in the z di-
rection the correlations between the k‖ = 0 modes decay most
slowly and in the same way as �ζ0(z). In contrast, the wave-
length of oscillations in the z direction, 2π/α1(k‖), increases
with increasing k‖. For k‖ < k0, we have α0(k‖) < α1(k‖),
i.e., pronounced oscillations of the correlation function in
the transverse direction, while α0(k‖) > α1(k‖) for k‖ > k0

(strongly damped oscillations in the transverse direction).
The first term in (68) depends only on the separation

between the two parallel planes and is independent of the
distance from the wall. The Fourier transform of this term in
the z direction gives the bulk correlation function in Fourier
representation. For z1 = z2 � 1, i.e., in a single plane away
from the wall, Eq. (68) takes a maximum for k2

‖ = k2
0 − τ/

√
3.

For finite z1, z2 the second term in Eq. (68), describing the
effect of the confining wall, becomes important. The depen-
dence of the amplitude and the phase on k‖ is quite complex
and depends on I1(k‖), which in turn depends on the shape of
the interaction potential. We shall discuss G̃(k‖|z1, z2) in more
detail for a particular form of V (r) in the next section.

IV. GENERIC MODEL RESULTS FOR
DOUBLE-YUKAWA POTENTIAL

As an example we consider the popular double-Yukawa
potential,

V (r) = −K1

r
e−κ1r + K2

r
e−κ2r . (69)

For the reference-system free-energy density we choose the
Percus-Yevick (PY) approximation

β fh(ζ ) = ρ ln(ρ) − ρ + ρ

[
3ζ (2 − ζ )

2(1 − ζ )2
− ln(1 − ζ )

]
, (70)

where ρ = 6ζ/π .
In order to calculate the excess volume fraction and the cor-

relation function, we need to express k0, Û (k0), v, and I1(k‖)
in terms of K1, K2, κ1, and κ2. For the chosen potential, we can
easily obtain analytical expressions (see the Appendix).

We choose the parameters K1 = 1, K2 = 0.2, κ1 = 1, κ2 =
0.5 as in earlier works focused on the bulk properties [4,7].
K1 sets the energy unit, and we introduce dimensionless tem-
perature T ∗ = kBT/K1. For this potential, large clusters are
formed, since π/k0 ≈ 5. In this lowest-order approximation,
the dependence on the thermodynamic state is only through
the single parameter τ , which in turn depends on kBTA2(ζb)
[see (55)]. In MF, the instability with respect to periodic
ordering occurs below the λ line given by τ = 0. Beyond MF,
however, such an instability is not present, therefore we cal-
culate the excess volume-fraction profile and the correlation
function mainly for τ = 0.23, which is well above the λ line.

As discussed in Sec. II F, the effect of �ζ0 on the cor-
relation function, neglected in (62), should be smaller for
ζb ≈ 0.129 than for different volume fractions. Our choice
of τ for ζb = 0.129 corresponds to T ∗ ≈ 0.134 (at the λ line
T ∗ ≈ 0.126 for ζb = 0.129). For the chosen interactions and
τ , the inverse decay length in the GM, α0 ≈ 0.184, is very
close to α0 ≈ 0.187 obtained from Eq. (38). The accuracy of
α1 is not as good, α1 ≈ 0.626 and α1 ≈ 0.576 in the GM and
in Eq. (38), respectively. When τ increases from τ = 0, α0

in the GM and given by Eq. (38) both increase, but α1 in the
GM increases, whereas α1 obtained from Eq. (38) decreases.
The GM becomes less accurate when the system becomes less
inhomogeneous. Still, given all the approximations, the GM
works quite well compared to the linearized exact EL equation
in the phase space region corresponding to inhomogeneities at
a well-defined length scale. The excess volume fraction in the
GM is shown for τ = 0.23 in Fig. 1.

In Fig. 2 the inverse lengths characterizing the decay
of the correlation between the longitudinal k modes in the
planes at the distance z = z1 and z = z2 from the confining
wall are shown. Note that the longitudinal density waves
with the wavelengths larger than 2π/k0 excited in one plane
decay much more slowly in the transverse direction than
the short-wavelength longitudinal density oscillations. The
short-wavelength longitudinal fluctuations in one plane prac-
tically do not propagate to different layers of particles. While
long-wavelength density oscillations correspond merely to
displacements, reorientation or reshaping of clusters or layers,
the density waves with the wavelengths shorter than π/k0

correspond merely to disintegration of the aggregates.
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FIG. 1. The excess volume fraction (56) for the PY reference
system (70) and the interaction potential (69) with K1 = 1, K2 =
0.2, κ1 = 1, κ2 = 0.5. The thermodynamic state is given by τ = 0.23
with τ defined in Eq. (55). �ζ0 is in units of the dimensionless
wall-particle attraction, βh, and z is in units of particle diameter.

In order to describe the short-range order in the planes
parallel to the wall, we present the structure factor for z1 =
z2 = z, i.e., within planes parallel to the wall. In Fig. 3 we
present G̃(k‖|z, z) for z = 0 and z = ∞, far from and close

FIG. 2. The inverse decay length α0(k) (solid line) and the wave
number of the oscillatory decay α1(k) (dashed line) in the di-
rection perpendicular to the wall, of the correlations between the
longitudinal k modes [Eq. (65) and (68)]. The interaction potential
is given in Eq. (69) with K1 = 1, K2 = 0.2, κ1 = 1, κ2 = 0.5. The
thermodynamic state is given by τ = 0.23 with τ defined in Eq. (55).
For this potential, k0 ≈ 0.59 and the wavelength of the most probable
density wave in the bulk is 2π/k0 ≈ 10. Volume-fraction waves in
the longitudinal direction with k � 2k0 correspond to disintegration
of the aggregates. The decay length in the transverse direction of such
fluctuations, 1/α0(k), is smaller than the particle diameter, i.e., they
do not propagate to another layer of particles.

to the λ line. The shape of G̃(k‖|z, z) follows from the fact
that each term in (68) has a maximum for a different value of
k‖. The maximum of the first term is much broader than the
maximum of the second term in (68). Since the second term
in (68) vanishes for z → ∞, this means significantly larger
correlation length near the wall than in the bulk. Both peaks
are broader for larger τ , indicating shorter correlation length
away from the λ line, both in the bulk and near the wall, as
expected. The position of the maximum for z → ∞, k‖ =
(k2

0 − τ/
√

3)1/2, depends on τ much more strongly than the
position of the maximum for z = 0. For large τ , the maxima of
G̃(k‖|0, 0) and G̃(k‖|∞,∞) occur for similar k‖. This means
that in the case of weak inhomogeneities, the wavelength of
the volume-fraction oscillations near the wall is similar to the
wavelength of the oscillatory decay of correlations in the bulk.
The stronger the inhomogeneities in the bulk, i.e., the smaller
is the value of τ , the larger the difference between the period
of oscillations near the surface and in the bulk.

In Figs. 4 and 5 we present G̃(k‖|z, z) for τ = 0.23, and for
z = 1, 2, 4 and ∞. For this intermediate value of τ , the maxi-
mum for z → ∞ is much broader and occurs at a significantly
larger value of k‖ than the maximum for z ∼ 1. The range of
the lateral periodic order is significantly larger near the wall,
and the period of oscillations is larger too (Figs. 6 and 7).

As already discussed, we cannot expect accurate results for
small z in the Gaussian approximation that neglects the effect
of the excess volume fraction. The best accuracy is expected
for volume fractions corresponding to formation of layers
(lamellar phase) at low T ∗. Due to the missing-neighbors at-
traction to the wall, we may expect that the isotropic labyrinth
of particle-rich region in the bulk becomes anisotropic near
the wall, with a tendency of the layers of particles to assume
the parallel orientation. Competition of this effect with the
entropy leads to a larger wavelength of the oscillatory decay
of density correlations in the longitudinal direction near the
wall than in the bulk.

V. SUMMARY AND DISCUSSION

We have developed a mesoscopic theory for self-
assembling systems near a confining surface. We focused on
the effects of the wall on a disordered inhomogeneous phase
and limited ourselves to the MF approximation. In the first
step, the standard DFT expression for the excess grand poten-
tial has been transformed to an equivalent form [Eq. (25)] that
consists of the bulk and the surface contributions. The surface
contribution representing the missing neighbors beyond the
confining surface [Eq. (24)] is expressed in terms of moments
of the interaction potential [Eq. (21)]. Equation (25) allowed
for a derivation of the EL equations for the volume-fraction
profile and the correlation function in the near-surface region
[Eqs. (26) and (41)], with the BC following from Eq. (28).
Solutions of these equations should be the same as the results
of minimization of the postulated excess grand potential.

In principle, ordered periodic structure in the lateral di-
rection could be induced in the vicinity of the confining
surface, and we obtained equations for the excess volume
fraction at the distance z from the surface, �ζ0(z), and for
the modulations of the volume fraction in the planes parallel
to the wall. In the rest of the paper we limited ourselves to the

062607-9



A. CIACH PHYSICAL REVIEW E 100, 062607 (2019)

FIG. 3. The correlation function (68) in 2D Fourier representation in the planes parallel to the wall at z = 0 (upper line), and z = ∞ (lower
line) for the PY reference system and the interaction potential (69) with K1 = 1, K2 = 0.2, κ1 = 1, κ2 = 0.5. The thermodynamic state is given
by τ = 0.316 (a) and τ = 0.076 (b) with τ defined in Eq. (55). The wave number is in units of inverse particle diameter.

absence of the long-range order, however. In simulations, only
short-range periodic structure was found for the considered
thermodynamic states [44].

We next considered various approximate versions of the
theory, especially the linearized equation for �ζ0(z) [Eq. (37)]
that can be solved analytically. The analytical solution gives
the asymptotic decay of the excess volume fraction at large
distances.

The lowest-order nontrivial approximation, GM, has been
introduced in Sec. III. It is based on the same approx-
imation for the interaction potential in Fourier represen-
tation [Eq. (39)] as in the theory for bulk systems with

FIG. 4. The correlation function (68) in 2D Fourier representa-
tion in the planes parallel to the wall at z = 1 (upper solid line), z = 2
(dashed line), and z = ∞ (lower solid line) for the PY reference sys-
tem and the interaction potential (69) with K1 = 1, K2 = 0.2, κ1 =
1, κ2 = 0.5. The thermodynamic state is given by τ = 0.23 with τ

defined in Eq. (55). The wave number is in units of inverse particle
diameter.

mesoscopic inhomogeneities [4,48]. In addition, the series
representing the missing-neighbors contribution to the excess
grand potential associated with the presence of the confining
surface [Eq. (24)] is truncated at the first order term. In
this approximation, the missing-neighbors contribution to the
grand potential is proportional to �ζ0(0)2. If in addition the
wall-particle interaction is of very short range and we can
assume a contact potential, the mathematical form of the
GM resembles strongly Landau-type theory for a semi-infinite
system, with the bulk part of the Brazovskii form. However,
in our theory there are no free phenomenological parameters.
All coefficients depend on the interaction potential and on the
thermodynamic state.

FIG. 5. The correlation function (68) in 2D Fourier representa-
tion in the planes parallel to the wall at z = 1 (upper solid line), z = 4
(dashed line), and z = ∞ (lower solid line) for the PY reference sys-
tem and the interaction potential (69) with K1 = 1, K2 = 0.2, κ1 =
1, κ2 = 0.5. The thermodynamic state is given by τ = 0.23 with τ

defined in Eq. (55).
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FIG. 6. The correlation function in real-space representation in
the planes parallel to the wall at z = 1(solid line) and z = 4 (dashed
line) for the PY reference system and the interaction potential (69)
with K1 = 1, K2 = 0.2, κ1 = 1, κ2 = 0.5. The thermodynamic state
is given by τ = 0.23 with τ defined in Eq. (55).

Solutions of the linearized equations in GM are presented
and discussed on a general level in Sec. III A and III B,
and for a particular case of the double-Yukawa potential in
Sec. IV. The volume fraction profile has a form of exponen-
tially damped oscillations, that very well reproduces results
of simulations except from z < 2π/α1. The decay length and
the wave number agree with simulation on a semiquantitative
level. The GM quite well reproduces the solution of the more
general equation (38) for the decay length. However, the wave
number of oscillations deviates from the solution of (38) in

FIG. 7. The correlation function in real-space representation in
the planes parallel to the wall at z → ∞ for the PY reference sys-
tem and the interaction potential (69) with K1 = 1, K2 = 0.2, κ1 =
1, κ2 = 0.5. The thermodynamic state is given by τ = 0.23 with τ

defined in Eq. (55).

the case of weak inhomogeneities (high T ∗). The stronger the
inhomogeneities, the better the agreement between GM and
Eq. (37).

We have solved the equation for the correlation function
only in GM and only in the Gaussian approximation. The
correlation between volume fraction waves with the wave
number k‖ in the planes at the distance z1 and z2 from the wall
[Eq. (68)] consists of two terms. The first one is a function
of |z1 − z2| and is independent of the surface properties. This
is a kind of “background” bulk correlations, present for any
distance from the wall. The second term is a function of
z1 + z2 and depends on the missing-neighbors contribution.
This term is significant only close to the wall. Since the
missing-neighbors contribution depends on

∫ ∞
0 dzzṼ (k‖, z),

the effect of the wall on the correlations depends on the
shape of the interaction potential. Both terms in Eq. (68)
exhibit oscillatory decay with the same characteristic lengths
that strongly depend on k‖. The volume fraction fluctuations
in longitudinal direction with the wavelength shorter than
the size of aggregates, ∼π/k0, practically do not propagate
to different layers. The largest range in the transverse di-
rection [the same as the decay length of �ζ0(z)] have the
volume fraction fluctuations in the longitudinal direction with
k‖ = 0.

The short-range order in the planes parallel to the wall,
described by G̃(k‖|z, z), has been investigated for the double-
Yukawa potential, where we could obtain analytical results in
the Gaussian approximation. Each term in G̃(k‖|z, z) has a
maximum for a different value of k‖. The maximum of the
bulk term is much broader, indicting shorter decay length.
Larger decay length in the longitudinal direction near the
surface than far from it was observed in simulations [44,45]
in agreement with our predictions.

We presented analytical results for the simplest version
of the theory. The analytical expressions allow us to inves-
tigate asymptotic behavior and to draw general conclusions.
We hope that the solutions discussed above show the key
properties of the near-surface structure of the disordered phase
in self-assembling systems. Due to the systematic derivation
of various approximate versions of the theory, it is possible
to obtain more accurate results for various model systems.
The theory developed in this work can be a convenient tool
for studies of the ordering effects of external surfaces on
systems with spontaneous inhomogeneities on the mesoscopic
length scale. First, it will be interesting to solve the nonlinear
equations in GM. It is also of interest to extend the theory
beyond MF, by taking into account the fluctuation contribution
to the excess grand potential. To do so we shall generalize the
theory developed in Ref. [48] to the semi-infinite system along
the lines described in this work.
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APPENDIX: PARAMETERS k0, Û (k2
0 ), v, AND I1(k‖) FOR

THE DOUBLE-YUKAWA POTENTIAL

In Fourier representation the potential (69) takes the
form

Û (k2) = 4π

[
K2

κ2
2 + k2

− K1

κ2
1 + k2

]
. (A1)

The parameters in the LB-type theory with Û approximated
by Eq. (39) are

k2
0 = κ2

1

√
K2 − κ2

2

√
K1√

K1 − √
K2

, (A2)

Û
(
k2

0

) = −4π
(
√

K1 − √
K2)2

κ2
1 − κ2

2

, (A3)

v = 4π
(
√

K1 − √
K2)4(

κ2
1 − κ2

2

)3√
K1K2

. (A4)

The missing-neighbors interaction term [see (21)] can be
easily calculated analytically, and the result is

I1(k‖) = 2π

[
K2(

κ2
2 + k2

‖
)3/2 − K1(

κ2
1 + k2

‖
)3/2

]
. (A5)
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[45] E. Bildanau, J. Pękalski, V. Vikhrenko, and A. Ciach,
arXiv:1909.09374 [Phys. Rev. E (to be published)].

[46] A. J. Archer and A. Malijevsky, J. Phys.: Condens. Matter 28,
244017 (2016).
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