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Influence of dielectric layers on estimates of diffusion coefficients
and concentrations of ions from impedance spectroscopy
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We present the analysis of the impedance spectra for a binary electrolyte confined between blocking electrodes
with dielectric layers. An expression for the impedance is derived from Poisson-Nernst-Planck equations in
the linear approximation taking into account the voltage drop on the dielectric layer. The analysis shows that
characteristic features of the frequency dependence of the impedance are determined by the ratio of the Debye
length and the effective thickness of the dielectric layer. The impact of the dielectric layer is especially strong in
the case of high concentrated electrolytes, where the Debye length is small and thus comparable to the effective
thickness of the dielectric layer. To verify the model, measurements of the impedance spectra and transient
currents in a liquid crystal 4-n-pentyl-4′-cyanobiphenyl (5CB) confined between polymer-coated electrodes in
cells of different thicknesses are performed. The estimates for the diffusion coefficient and ion concentration in
5CB obtained from the analysis of the impedance spectra and the transient currents are consistent and agree with
previously reported data. We demonstrate that calculations of the ion parameters from the impedance spectra
without taking into account the dielectric layer contribution lead in most cases to incorrect results. Application
of the model to analyze violations of the low-frequency impedance scaling and contradictions in the estimates
of the ion parameters recently found in some ionic electrolytes are discussed.
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I. INTRODUCTION

Ionic conductors are materials in which the electric charge
is mainly transported by ions. An ionic conductivity is ob-
served in a wide class of materials: ionic glasses and ionic liq-
uids, polymers and polymer electrolytes, hydrogels, and elec-
trolyte solutions [1–4]. These materials are of considerable
technological interest [5,6] due to the peculiarities of electrical
properties and are subject to active research. Nevertheless, a
deep understanding of charge transport in ionic conductors is
far from being complete [1,7–9].

In a continuum description of the ionic conductivity, charge
carriers are characterized by a set of parameters—valency,
equilibrium concentration, and diffusion coefficient [2,3]. To
determine ion parameters an impedance or broad-band dielec-
tric spectroscopy in the frequency range (10−6–107) Hz is
widely used [10,11]. The method is based on measuring of the
electrical current flowing in a sample under a small ac voltage,
and results representing in the form of frequency dependent
complex quantities, which characterize the electrical response
of a medium [10], such as an impedance, a complex dielectric
constant, a complex conductivity, etc. These quantities are
related to each other by simple relationships, and in the
following discussion we will concentrate on the impedance
Z = Z ′ − iZ ′′.

The impedance spectra of various ionic conductors demon-
strate universal behavior and obey scaling low in a certain
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frequency range under variation of temperature, charge carrier
concentration, sample geometry, etc. [1,8,12,13]. Decreasing
the frequency f of the ac voltage applied to the sample, real
part Z ′ and imaginary part Z ′′ of the impedance increase
as f −2 and f −1, respectively. In the low-frequency range
Z ′ goes to a plateau, Z ′′ has two local extrema, and the
impedance argument arg{Z} has a well-defined maximum. At
further decrease in frequency the impedance behavior lost
the scaling feature and depends on the additional factors,
such as electrode material, ion adsorption at electrodes, ion
association/dissociation, etc. [7,13,14].

To describe the frequency dependence of the impedance
of ionic conductors various theoretical approaches have
been proposed [15–19], one being based on solutions
of the Poisson-Nernst-Planck (PNP) equations (see, e.g.,
Refs. [3,20,21]). In this approach, it is assumed that under
an external electric field ions movement is due to migration
and diffusion and is described by the continuity equation. The
spatial distribution of the charges and the local electric field
are determined in a self-consistent manner from the Poisson
equation. Although the PNP equations are nonlinear, the
frequency dependence of the impedance can be obtained from
the solutions of linearized equations in the approximation
of small applied voltages (the Debye-Huckel approximation)
[3,21–23].

In the PNP approach the model for a binary electrolyte
with blocking electrodes is often used. It is assumed that
the electrolyte is globally neutral, contains only one type
of positive and negative charges, and there is no electric
current across the boundaries due to the ion movement or
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electrochemical reactions. Macdonald [21] has solved the
linearized PNP equations and derived the expression for the
impedance in general case taking into account different mo-
bilities, generation and recombination of the charge carries.
Further, the expressions for the impedance and the dielectric
constants were obtained for simplified versions of the model
[22–25], where fully dissociated charge carries with the same
mobility and valence (symmetrical electrolyte) were assumed.

As is shown in Refs. [21–25], the frequency dependence
of the impedance is determined by polarization resulting
from the charge separation in the bulk and at the bound-
aries of the ionic conductor. The high-frequency behavior
of the impedance is dictated by the polarization of the bulk
charges due to the ions oscillations relatively to equilibrium
positions. At low frequencies so called electrode polarization
phenomena may occur. A competition between migration and
diffusion of ions induces accumulation of the charges near the
electrodes (a diffuse charge) with exponential decay of the
concentration into the bulk. Simplifying the picture, it can
be considered as a formation of adjacent to the electrodes
diffuse layers with the thickness of the order of the Debye
screening length λD. The oppositely charged diffuse layers
provide the macroscopic polarization of the sample [24],
dominating in the low-frequency range of the impedance
spectra. Note that adsorption and electrochemical processes
may affect the properties of diffuse layers, which is reflected
in experimental impedance spectra [26,27]. These phenomena
can be described on the basis of models with partially blocked
electrodes and are out of scope of this work.

Experimental impedance spectra of different ionic con-
ductors in a certain frequency range are well described by
the model of a binary electrolyte with blocking electrodes. It
allows to estimate the diffusion coefficient and concentration
of the ions by a direct modeling or analysis of extrema of the
experimental spectra. In the latter case, the method is called
the electrode polarization analysis, because the extrema are
observed at the frequencies where the diffuse layer dynamics
determines the frequency dependence of the impedance. Such
approach was based on works [21–23,28,29] and developed
in Refs. [30,31]. In particular, it was shown [30] that the
diffusion coefficient can be directly calculated using the value
and position of the dielectric loss tangent maximum. The
method was successfully applied to different kind of ionic
conductors—polymer films [23], polymer electrolyte [30,31],
and ionic liquids [12]. However, in some cases, the estimates
of the ion parameters essentially deviate from those obtained
by stoichiometric calculations of the total ion concentration
or determined by other experimental methods. In particular,
in some Li-containing polymer electrolytes, ionic liquids,
and nonaqueous salt solutions, the ion concentration obtained
from the dielectric spectra analysis and using a pulsed-field
gradient nuclear magnetic resonance method can differ by up
to 4 orders of magnitude [32]. Moreover, the results lead to
physically contradictory conclusions, such as reduction of free
charge carriers with an increasing in the concentration of salts
in the electrolyte.

Liquid crystals (LC) are another example of ionic elec-
trolytes, where inconsistent estimates of the ion parameters
based on the impedance or dielectric measurements have
been reported. LC are organic liquids with molecules oriented

along a given direction characterized by a unit vector (so-
called director). The conductivity of liquid crystals originates
mostly from impurity ions with usually unknown compo-
sition and concentration. For different liquid crystals with
approximately the same viscosity, the diffusion coefficient
of the ions differs by three orders of magnitude, which is
interpreted as an existence of free ions with the Stokes ra-
dius Rg ∼ 0.1 nm [33], solvated ions with Rg ∼ 1 nm [34],
and colloidal ions with Rg ∼ (5–7) nm [35]. For example,
for the liquid crystal 4-n-pentyl-4′-cyanobiphenyl (5CB) the
diffusion coefficient of the ions differs within one order of
magnitude, as reported in Refs. [14,36–38]. Note that despite
the low conductivity values, typically ∼10 nS/m, anisotropy
of physical properties of liquid crystals results in numerous
peculiar electro-optical and electro-kinetic effects absent in
isotropic electrolytes [39,40]. To understand these phenomena
quantitative characteristics of the ionic conductivity of liquid
crystals are necessary.

Omission of the contribution of the dielectric layers at
the electrodes in the analysis of the frequency dependence
of the impedance can be one possible reason for the dif-
ference in the estimates of ion parameters. The impedance
measurements of isotropic electrolytes are usually carried
out in cells with metal electrodes and the Stern layer or
so-called compact layer of adsorbed ions can be formed on
the electrode surfaces [41–45]. However, typical experimental
studies of liquid crystals involve cells with the electrodes,
covered by a thin, ∼(5–50) nm, insulating polymer film. To
take into account the effect of the polymer films or com-
pact layers in the framework of the binary electrolyte model
with blocking electrodes, a nonconducting dielectric layers
between the electrodes and electrolyte are often introduced
[3,23,28,46,47]. In 1963 Trukhan [28] has derived the ex-
pression for the complex dielectric constant on the basis of
the solutions of the linearized PNP equations and has shown
that the position of dielectric loss maximum depends on the
properties of the dielectric layers. However, in the modern
analysis of the electrode polarization the dielectric layers
were neither considered [21,22,24] nor neglected [23] in the
derivation of the frequency dependence of the impedance.

In this paper the impact of the dielectric layers on the
impedance spectra and the estimations of the ion parameters
is analyzed. The paper is organized as follows. In Sec. II the
binary symmetric electrolyte model with blocking electrodes
is used to derive an expression for the impedance from the
solution of the linearized PNP equations with mixed boundary
conditions for the electrical potential taking into account a
voltage drop across the dielectric layer. Frequency analysis of
the impedance expression in the limit of thin diffuse layer is
performed and the relations between the impedance extrema,
the characteristic times and the ion parameters are found. In
Sec. III the measurements and the analysis of the impedance
spectra of the liquid crystal 5CB in cells with the electrodes
coated by the polymer film are reported. Using the model
considered in Sec. II, the diffusion coefficient and the concen-
tration of the ions are obtained for the fresh made cells of three
different thicknesses and during the cell aging over 3000 h.
For consistency the ion parameters are determined based on
transient current analysis in the low and high voltage limits.
Finally, in Sec. IV the obtained results are discussed and
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compared with previous reported data with the conclusions
drawn in Sec. V.

II. THEORETICAL ANALYSIS

A. Exact expression for the impedance

The frequency dependence of the electrical impedance of
the binary electrolyte with the blocking electrodes can be
obtained on the basis of solutions of the linearized PNP equa-
tions. We focus on the simplest version of the model, assum-
ing the electrolyte contains completely dissociated negative
and positive ions with the same diffusion coefficient D− =
D+ = D, valence ẑ− = ẑ+ = ẑ, and initial concentration c−

0 =
c+

0 = c0. Considering the electrolyte with thickness d = 2 L
limited by two plane electrodes with adjacent dielectric layers
of thickness h, the two length scales can be defined [3]: the
Debye screening length λD and the effective thickness of the
dielectric layer λp,

λD =
√

ε0ε kBT

2c0ẑ2e2
, λp = h

ε

εp
, (1)

where ε0 is vacuum permittivity, ε is dielectric constant of
the electrolyte, kB is the Boltzmann’s constant, and T is the
temperature. Correspondingly, the important dimensionless
parameters can be introduced,

δ = λp

λD
, ε = λD

L
. (2)

Response of the system on the time-varying electric field is
characterized by the relaxation time of the bulk charges and
charging time of the diffuse layers [3],

τq = λ2
D

D
, τc = L λD

D
. (3)

Relevant to the model, the PNP equations have to be
solved with taking into account the two boundary conditions:
vanishing ionic flux and mixed boundary conditions for the
electrical potential [3], which describes an additional voltage
drop at the boundaries due to dielectric layers. Then, using the
solutions, the electrical impedance can be calculated assuming
the current in an external circuit is equal to the displacement
current at the electrodes. According to the calculations given
in the Appendices, the exact expression for the dimensionless
impedance z = Z/R (R is resistance) can be written as an
explicit function of frequency,

z = 1

1 + iωτq
+ 1

iωτc

tanh[
√

1 + iωτq(τc/τq)]

(1 + iωτq)3/2
+ 1

iωτp
,

(4)
where the following relations hold:

τc ≡ τq

ε
= τq

L

λD
, τp ≡ τq

ε δ
= τc

δ
= τq

L

λp
. (5)

The first term in Eq. (4) describes the bulk charge contribution
to the total impedance and is a well-known expression for
the dimensionless impedance of a parallel RC-circuit with
characteristic time τq = RC. The second and the third terms
represent the contributions of the two diffuse layers and the
two dielectric layers, respectively. Introducing capacitance

Cd = ε0εS/λD and Cp = ε0εpS/h, and using Eqs. (1), (3), and
(B3), one finds τc = RCd/2 and τp = RCp/2 representing
the charging times of two diffuse and two dielectric layers,
respectively.

Using the results of Refs. [23,28] and setting the same
mobility of positive and negative ions the expression for the
impedance Eq. (4) can be recovered. However, Eqs. (4) and (5)
directly show that assumption h � L used in Ref. [23] to ne-
glect the dielectric layers contribution to the total impedance,
is not valid. In the case λp ∼ λD, the parameter δ ∼ 1 and the
characteristic times τc and τp are comparable. Consequently,
the frequency dependence of the total impedance has to be
analyzed keeping the last term in Eq. (4).

B. Approximate expression for the impedance

The impedance of the binary electrolyte bounded by the
electrodes with the dielectric layers given by Eq. (4) includes
three contributions with different frequency dependence. To
understand a role of each contribution to the overall behavior
of the impedance, we consider the limit of thin diffuse layer,
ε = λD/L � 1. Note that this limit covers the broad class of
the experimental devices with the Debye length λD = (1 −
100) nm and the sample thickness L > 1 μm.

Equation (4) can be rewritten as a sum of the bulk contri-
bution zv (the first term) and the surface one zs (the sum of the
second and the third terms). In the limiting case ε � 1 one has
tanh[

√
1 + iωτq(τc/τq)] ≈ 1 and zv and zs can be expanded in

a series of ω. Taking into account Eq. (5), the expansion for
the high-frequency range ωτq � 1 will take the form

zv = 1

(ωτq)2
+ 1

iωτq
+ O(ω−3), (6)

zs = δ ε

iωτq
+ ε

(iωτq)5/2
+ O(ω−3), (7)

and for the low frequencies, ωτq � 1,

zv = 1 − iωτq + O(ω2), (8)

zs = ε

(
−3

2
+ 15

8
iωτq

)
+ ε

1 + δ

iωτq
+ O(ω2). (9)

From Eqs. (6) and (7) it follows that the high-frequency
behavior of the impedance in the leading order in ε is only
determined by the bulk charge dynamics with the characteris-
tic time τq represented by the first term in Eq. (4). Equation
(6) shows that the real and imaginary parts of the impedance
depend on frequency as (ωτq)−2 and (ωτq)−1, respectively.
According to Eqs. (8) and (9), at low frequencies the real
part of the impedance is constant [z = 1 + O(ε)] and the
frequency dependence of the imaginary part for ω → 0 will
be determined by the surface contribution zs = 1/(iωτs) with
the characteristic time

τs ≡ τq

ε (1 + δ)
= τq

L

λs
, (10)

where

λs = λD + λp. (11)
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Equations (10) and (5) show that τs is the combination of the
charging times of the diffuse and dielectric layers

1

τs
= 1

τc
+ 1

τp
. (12)

Comparing the imaginary parts of Eqs. (7) and (9), it can be
seen that the surface contribution to the impedance dominates
over the bulk one in the low frequency range ω < ωqs, where

ωqs =
√

1

τqτs
= 1

τq

√
λD + λp

L
. (13)

Thus, the impedance behavior in the high-frequency range
ω � ωqs is solely determined by the bulk contribution zv =
1/(1 + iωτq) and zs is negligible. On the contrary, at low
frequencies ω � ωqs the surface contribution zs = 1/(iωτs) is
predominant. An approximate expression for the impedance
can be written as a sum of these contributions:

z = 1

1 + iωτq
+ 1

iωτs
. (14)

This expression can be interpreted as the dimensionless
impedance of the parallel RC-circuit connected in series with
capacitor, whose capacitance is Cs = 2 τs/R = ε0εS/λs. Mul-
tiplying Eq. (12) by R, it follows that the capacitance Cs =
(1/Cd + 1/Cp)−1 is represented by the diffuse and dielectric
layer capacitances connected in series (see, e.g., Refs. [3,47]).
It is important to note that λs is the sum of the Debye length
and the effective thickness of the polymer layer, as it follows
from Eq. (11). Hence, the diffuse and the dielectric layers act
as a single capacitive layer that determines the behavior of the
impedance in the low frequency range.

Finally, we would point out that in the most common
practical case of the thin diffuse layers, λD � L, in the leading
order in ε the frequency dependence of the exact expression
for the impedance Eq. (4) is equivalent to the frequency de-
pendence of the approximate expression Eq. (14). Apart from
the simplicity of Eq. (14), it clearly shows that the impedance
behavior is determined by the two different mechanisms—
dynamics of the bulk charge and the simultaneous charging
of the diffuse and the dielectric layers with the corresponding
characteristic times τq and τs. Each mechanism dominates in
distinct frequency domains separated by the frequency ωqs, in
the vicinity of which the contributions are competing, which
can be discovered in the impedance spectra peculiarities.

C. Analysis of the impedance frequency dependence

The approximate expression for the impedance Eq. (14)
makes it easy to analyze frequency peculiarities of
the impedance spectra. Representing the dimensionless
impedance Eq. (14) in the form z = z′ − iz′′, the real part can
be written as

z′ = 1

1 + ω2τ 2
q

. (15)

This is a monotonic function of the frequency with z′ ∼
(ωτq)−2 for ωτq � 1. In the limiting cases one has z′ → 0
for ω → ∞ and z′ → 1 for ω → 0. The real part of the

impedance reaches a plateau below the frequency

ωq = 1

τq
, (16)

at which it has the value z′(ω = ωq) = 1/2.
The imaginary part,

z′′ = 1

ωτs
+ ωτq

1 + (ωτq)2
, (17)

may have two local extrema at frequencies

ω1,2 = 1

τq

√
1

2

(1 ± √
1 − 8 τq/τs) − 2 τq/τs

1 + τq/τs
. (18)

As follows from Eq. (18), the local extrema in the imaginary
part of the impedance appear only if the condition τs > 8 τq

is satisfied. Otherwise, the imaginary part of the impedance
Eq. (17) will be a monotonic function of frequency.

For τq/τs = ε(1 + δ) � 1 the maximum and the minimum
of z′′ are located at

ωmax =
√

1

τ 2
q

− 4

τqτs
≈ ωq, ωmin = ωqs, (19)

with corresponding values

z′′
max ≈ 1

2
+ τq

τs
, z′′

min ≈
√

τq

τs
. (20)

Increase in the concentration of the charge carriers (the de-
crease of λD and, hence, τq) shifts the extrema positions of z′′
to the high-frequency range and makes deeper a local mini-
mum, such that (z′′

max − z′′
min) → 1/2 for τs � τq. Increase of

the distance between electrodes L or decrease of the effective
thickness of the dielectric layer λp move the minimum z′′
to the lower frequencies without changing the maximum
position, as it follows from Eqs. (10), (13), (16), and (19).

The impedance argument,

arg{z} = − arctan

[
1

ωτs
+

(
1 + τq

τs

)
ωτq

]
, (21)

has a local maximum at the frequency

ωm =
√

1

τqτs(1 + τq/τs)
, (22)

where its value

am ≡ − tan(arg{z})max = 2

√
τq

τs

(
1 + τq

τs

)
. (23)

This allows us to express the characteristic times in terms of
ωm and am:

τq = am

ωm
(√

1 + a2
m − 1

) , τs = 2

amωm
. (24)

For τs � τq the frequency ωm ≈ ωqs and the value am ≈
2
√

τq/τs, hence, the characteristic times can be found from
the simple relations

τq = am

2ωqs
, τs = 2

amωqs
. (25)
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As it can be seen, in the case of τs � τq the frequency
of the arg{z} maximum coincides with the frequency of z′′
minimum and is defined by ωqs [Eq. (13)], at which the bulk
and the surface contributions are nearly equal. The maximum
value arg{z}max ≈ arctan(−2

√
τq/τs) will be larger for the

larger values of the concentration of the charge carriers and
the distance between electrodes, and smaller for the smaller
effective thickness of the dielectric layer [see Eq. (10)].

Thus, in the thin diffuse layer limit, the positions and
extrema values of the imaginary part and the impedance argu-
ment are uniquely determined by characteristic times τq and
τs. The relaxation time of the bulk charge τq determines the
frequency of the imaginary part maximum. The charging time
of the diffuse and dielectric layers, τs, defines the positions of
the minimum of z′′ and the maximum of − tan(arg{z}), which
coincide for τs � τq. Note that according to Eqs. (10) and (11)
the dielectric layer may strongly influence these positions in
the case of λp � λD.

D. Calculations of ion parameters

The diffusion coefficient D and the concentration of the
charge carriers c0 can be found using the positions and values
of the extrema of the impedance spectra. However, accurate
localization of the extrema in the experimental data requires
a high-frequency resolution of the impedance spectra, which
may result in time-consuming measurements. Another ap-
proach is a fitting of experimental impedance spectra with an
appropriate model [14,23,30,38].

Consider the exact, Eq. (4), and the approximate, Eq. (14),
expressions for the impedance written in physical units,

Zex = R

(
1

1 + iωτq
+ 1

iωτp

+ 1

iωτc

tanh[
√

1 + iωτq(τc/τq)]

(1 + iωτq)3/2

)
, (26)

Zap = R

(
1

1 + iωτq
+ 1

iωτs

)
. (27)

Equation (26) contains four parameters, R, τq, τc, and τp,
which can be determined by the nonlinear least-squares fit-
ting of experimental spectra. Using the fitted parameters, the
Debye length and the effective thickness of the dielectric layer
can be found [see Eq. (5)]:

λD = τq

τc
L, λp = τq

τp
L. (28)

In the case of λD � L the frequency dependence of
the impedance is described by the approximate expression
Eq. (27). Here the fitting provide only three parameters, R,
τq, and τs, and if the effective thickness of the dielectric layer
λp is known, the Debye length can be calculated from

λD = τq

τs
L − λp, (29)

as it follows from Eqs. (10) and (11).
Finally, using λD and τq, the values of the diffusion coeffi-

cient D, the concentration c0, and the hydrodynamic radius of

ions Rg can be found from

D = λ2
D

τq
, c0 = ε0ε kBT

2 λ2
D(ẑ e)2

, Rg = kBT

6πηD
, (30)

according to the definition Eqs. (1) and (3), and using the well-
known Stocks formula [48]; here η is a medium viscosity.
Unlike similar relationships obtained in Refs. [30,31], in this
approach it is not necessary to know the value of R (or dc-
conductivity) to determine c0 and D. However, for known R,
τq, and the capacitance of the empty cell C0 = ε0S/2L, the
conductivity and the dielectric constant of the electrolyte can
be easily calculated from

σ = ε0

RC0
, ε = τq

RC0
. (31)

III. EXPERIMENT

A. Cells preparation and impedance measurements

Impedance spectra of the liquid crystal 5CB were mea-
sured in cells assembled of two plane parallel glass substrates
with a transparent conductive layer coated by a thin polymer
film. The substrate conductive layers of the indium-tin oxide
(ITO) were chemically etched to make square electrode areas
(S = 10 × 10 mm2). The polyimide solution JALS-204 (JSR,
Japan) was spin-coated on the top of electrodes according to a
procedure described by the manufacturer. The thickness of the
polymer film measured by a interferometer MII-4 (LOMO,
Russia) and an atomic-force microscope Agilent 5500 AFM
(Agilent, USA) was h = (30 ± 2) nm for all substrates.

A gap between the substrates was fixed by mylar spacers
or thin layer of the UV-glue around the cell in the case of thin
samples (below 10 μm). Gap thickness d was measured in
empty cells at several points inside of the electrode area using
a spectrometer Red Tide USB-650 (Ocean Optics, USA); in
all cells the thickness heterogeneity was less than 0.5 μm/cm.
The empty cell capacitance C0 = ε0S/d was measured by a
RLC meter. The values for the gap thickness d calculated
capacitance and spectra data were in agreement within the
accuracy of both methods.

The nematic liquid crystal 5CB (TCI, Europe) was filled
into the cells in an isotropic phase at T = 45◦C, slowly
cooled down and kept at room temperature for 2 h before
impedance spectra measurements. Observations in a polar-
izing microscope demonstrated homogeneous homeotropic
orientation (the director is oriented everywhere perpendicular
to the substrates). Thus the dielectric permittivity of the 5CB
was spatially homogeneous and equal to ε‖ (parallel to the
director).

All measurements were performed at the temperature T =
25◦C. The impedance spectra of the liquid crystal cells were
measured by a potentiostat AutoLab (Metrohm Autolab B.V.,
Netherlands) with a FRA32 module by a two-electrode cell
setup applying an ac voltage with the amplitude 25 mV and
frequency in the range (10−4–105) Hz. Note that the dielectric
anisotropy εa = ε‖ − ε⊥ of the liquid crystal 5CB is positive
and the applied voltage stabilizes the initial homeotropic
orientation of the LC layer. Hence, all obtained parameters
relate to the parallel components of corresponding tensors;
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in the following the indices ‖ in the notation of physical
quantities will be omitted.

B. Impedance spectra

Figure 1 shows the real Z ′ and imaginary Z ′′ parts of the
impedance Z = Z ′ − iZ ′′, and its argument arg{Z} for the cells
of different thickness. The corresponding frequency depen-
dence of the real and imaginary parts of the complex dielectric
constant ε′ − iε′′ = 1/(iωZC0) and the dielectric loss tangent
tan δ = ε′′/ε′ are given in insets of Fig. 1 for comparison with
previous reported data on 5CB [33,36,49]. It can be seen that
the impedance (dielectric) spectra of the liquid crystal 5CB are
typical for materials with ionic conductivity [12,13,30–32].

At the high frequencies, (104–105) Hz, the real part of
the impedance, Z ′, has a plateau [Fig. 1(a)] with the level
defined by the resistance of cell contacts with an external
circuit [Rc ≈ (100–200) �]. With decreasing frequency Z ′
increases as f −2 and goes to another plateau corresponding
to the resistance of the liquid crystal layer (R ≈ (1–10) M�

depending on the LC layer thickness). The imaginary part
of the impedance, Z ′′, monotonically increasing as f −1 up
to f ≈ 100 Hz with decreasing frequency [Fig. 1(b)]. Below
f ≈ 100 Hz there are two local extrema for the cells with the
thickness d = 17.4 μm and d = 10.3 μm; they are missing
in the spectrum of the thinnest cell with d = 3.3 μm. The
argument arg{Z} has a pronounced maximum around 10 Hz
[Figs. 1(c)]. For the cells with larger thickness the maximum
value of the argument is larger and the position is shifted to
the lower frequencies.

In the frequency range f � 1 Hz the impedance spectra in
all cells are qualitatively well described by the blocking elec-
trode model [Eq. (26)]. However, for f � 1 Hz the impedance
behavior deviate from that given by Eq. (26). In particular,
Z ′ increases and Z ′′ deviates from the f −1-dependence with
decreasing frequency, which is also reflected in a low fre-
quency behavior of the real part of the dielectric constant ε′,
which is increasing instead of being a constant in the limit
f → 0. To explain such behavior of the impedance spectra,
different physical mechanisms have been proposed, ranging
from a fractal nature of electrode surfaces [50] or double
layers [51] to the adsorption processes with an anomalous
diffusion [38]. Our PNP model does not take into account any
of those contributions, consequently, experimental data will
be analyzed only in the frequency range f � 1 Hz.

C. Fitting of the impedance spectra

The absence of the extrema in the imaginary part of the
impedance, Z ′′, for the cell with the thickness d = 3.3 μm in-
dicates possible violation of the condition λD � L used in the
derivation of the approximate expression for the impedance.
Therefore, the spectra have been fitted by means of the exact
expression Eq. (26) and the approximate one Eq. (27) for
comparison. Initial values of the model parameters τq, τs, and
R were determined from the position and the maximum value
of the argument arg{Z} using Eq. (25) and the plateau level
of the real part Z ′. Initial values of τc and τp required for the
exact expression were calculated from Eqs. (5) and (12) for

FIG. 1. Impedance spectra of the cells with different thickness
(dielectric spectra in insets) (a–c). The symbols indicate experi-
mental data, the solid and dashed lines denotes the fitted curves
Zex by Eq. (26) and Zap by Eq. (27), respectively. (d) Argument of
the impedance arg{Z} in the region of its maximum: polynomial
interpolation shown by the dotted lines with the maximums marked
by the stars.

the parameters of the polymer layer:

h = 30 nm, εp = 3.5. (32)
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TABLE I. Fitted parameters for different LC cells (R, τq, τc,
τp) and calculated values (ε, σ ). For each LC cell, the parameters
obtained from Zex (upper row) and Zap (low row) are listed.

d , μm R, M� τq, ms τc, ms τs, ms ε σ , nC/m

3.3 0.96 4.95 42.7 23.3 18.5 33.1
0.81 4.70 37.1 20.0 20.9 39.4

10.3 2.81 4.60 99.6 61.2 17.4 33.4
2.65 4.55 98.5 59.4 18.2 35.4

17.4 3.98 3.83 163 95.6 16.9 39.3
3.84 3.78 158 92.1 17.4 40.6

To determine a frequency range, where the experimental
spectra are best described by the proposed model, first, the
position of the argument maximum fmax has been localized
by a polynomial interpolation [starts symbols on Fig. 1(d)].
Then the spectra were fitted using Eqs. (26) and (27) in the
frequency range f > f0 with f0 varying from 0.1 Hz to 10 Hz
and the frequency f fit

max corresponding to the argument max-
imum was calculated for each f0 chosen. A frequency range
with the value of f fit

max closest to the interpolated experimental
value fmax was accepted as the best choice and the model
parameters obtained by fitting over this frequency range were
used for further calculations.

An attempt to fit all four parameters (R, τq, τc, and τp),
using the exact expression Eq. (26), revealed the linear depen-
dence between parameters τc and τp, which was manifested in
large scatter of their values for different cells. To avoid this,
we decreased the number of varied parameters to three (R, τq,
and τc) substituting τp = RCp/2 into Eq. (26), where Cp =
C0εpd/h was calculated for each cell using the parameters of
the polymer layer Eq. (32).

Fitted curves, shown in Fig. 1 by solid lines, demonstrate
a good agreement with experimental data for all cells in the
frequency range f � 1 Hz. The curves, corresponding to the
exact and the approximate expressions, practically coincide;
small deviations are only observed in the vicinity of the
maximum of arg{Z} for the thin cells with d = 3.3 μm and
d = 10.3 μm [see Fig. 1(d)].

Table I contains the fitted parameters R, τq, τc, obtained
by use of the exact Eq. (26) and the approximate Eq. (27)
expressions for the impedance, and the values of the dielectric
constant ε and conductivity σ of the liquid crystal calculated
from Eq. (31). For each LC cell characteristic time τs in the
upper part and τc in the low part of the row were found using
Eq. (12) with τp calculated from Eq. (5). Note that the conduc-
tivity σ is noticeably scattered (from 33.1 nS/m to 40.6 nS/m)
for different cells as well as obtained from the exact and the
approximate expressions for the impedance. This can result
from weak variations in the LC cell preparation, e.g., quality
of the substrate cleaning or amount of UV-glue contacted with
the liquid crystal at the cell edges, which influence the ion
concentration [52]. Obtained values of the dielectric constant
ε tend to decrease with increasing cell thickness, nevertheless,
they agree quite well with the previously reported data on
ε‖ for 5CB ranging from 17.6 to 20.2 [53]. Small difference
between the values of ε obtained by using the exact and the
approximate expressions for the impedance decreases with

TABLE II. The calculated ion parameters for different LC cells.

d , μm λD, nm c0, μm−3 D, μm2/s Rg, nm D∗, μm2/s

3.3 209 339 9.3 0.43 32.1
10.3 237 230 12.4 0.32 34.0
17.4 208 284 11.5 0.35 33.7

increasing the cell thickness. For the thickest cell with d =
17.4 μm both expressions give almost the same value ε ≈ 17.

To conclude, the exact expression for the impedance fits the
experimental spectra for thin cells better. Nearly equal values
of ε, σ , obtained for the cell with the thickness d = 17.4 μm
confirm that Eq. (27) is indeed a good approximation for the
exact expression for the impedance Eq. (26), if the condition
λD � L is fulfilled. Note that the decrease in the dielectric
constant with increasing cell thickness is probably due to
an incompleteness of the considered PNP model, which is
applicable only in a limited frequency range.

Using the results from Table I the ion parameters are
calculated from Eqs. (29) and (30) (see Table II). The effective
thickness of the polymer layer for all three cells was found
around λp = hε/εp = 150 nm; small variations (<10 nm)
came out due to the variation of ε for the different cells. To
calculate the hydrodynamic radius of the ions, the average
effective viscosity of the Stokes drag in the liquid crystal 5CB
η = 0.06 Pa s was taken [54].

The results in Table II show that the values of the Debye
length are about λD ≈ 200 nm and vary within 30 nm for the
cells of different thickness, which is, respectively, reflected
in the variations of the concentration of the ions c0 and the
diffusion coefficient D. The values of D are nearly the same
for all cells and D ≈ 12 μm2/s can be taken as a typical
value of the diffusion coefficient of ions in the liquid crystal
5CB. This value of the diffusion coefficient corresponds to the
hydrodynamic radius of the ion Rg ≈ 0.3 nm, which is close
to a typical size of free inorganic ions [55]. For comparison,
the last column in Table II contains the values of the diffusion
coefficient D∗ obtained when neglecting the dielectric layer
contribution (λp = 0), resulted to an overestimation of D by
more than three times.

D. Transient currents

To verify the consistency of the model and the fitted param-
eters, the ion parameters were determined from measurements
of transient currents I (t ) in a cell under the voltage being
suddenly applied to the electrodes. Transient currents in liquid
crystals have been actively studied in the past [56–58], and
the generalization of the developed methods for estimating the
mobility and the concentration of charges from the measure-
ments of the transient currents was reviewed in Ref. [59]. Re-
cently, it was shown in experiments and justified theoretically
[60,61] that in a system with a low concentration of charges,
the correct estimates of ion mobility can be obtained from the
analysis of the transient currents over the short time intervals
right after switching on the electric voltage. The characteristic
times of the processes, such as charge relaxation, double layer
formation, and ion adsorption, are rather large, therefore, im-
mediately after switching on the voltage the charge transport
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FIG. 2. Time dependence of the transient currents for the cell
with thickness d = 10.3 μm at several applied voltages (symbols,
experimental data; solid lines, fitted curves) (a). The mean-square
deviation of experimental data on a linear dependence calculated for
different fitting intervals (b).

is determined solely by the migration of ions in the electric
field and the dependence I (t ) is linear. This makes it possible
to find the migration time and, hence, estimate ions mobility.

In the Debye-Huckel approximation [3,60], small voltage
U0 applied to the electrolyte layer bounded by blocking elec-
trodes with dielectric layers will lead to the initial current
jump I0 = U0/R with a subsequent exponential relaxation

I = I0e−t/τs , (33)

where the characteristic time τs is the same as appeared above
in the frequency analysis of the impedance behavior, and is
defined by Eq. (10).

The transient currents were measured in the cell with
thickness d = 10.3 μm for several applied voltages U0 and
then fitted using Eq. (33). Figure 2 shows that for the voltages
U0 = 0.025 V and U0 = 0.25 V the relative transient currents
I (t )/I0 are practically the same and well described by Eq. (33)
in the time interval t < 0.2 s. For higher voltages, U0 = 2.5 V
and U0 = 5.0 V, the currents also relax exponentially, but with
smaller characteristic times. Note that the deviation between
the fitted curves and the experimental data at larger times
t > 0.2 s can be attributed to the mechanisms responsible for
the low-frequency behavior of the impedance, which was not
taken into account in derivation of Eq. (33) [3,60].

For each applied voltage U0 the parameters R and τs

were determined by the least-square method and the charge
relaxation time was calculated from τq = RC, were the cell
capacitance C was separately measured by the RLC-meter.

TABLE III. Fitted parameters of transient currents for the cell
with the thickness d = 10.3 μm.

U0, V R, M� τs, ms τq, ms

0.025 2.84 55.4 4.82
0.250 2.92 52.8 4.97
2.500 2.94 36.4 4.99
5.000 3.20 24.2 5.44

Comparison of Tables I and III shows that for the voltages
U0 = 0.025 V and U0 = 0.25 V the characteristic times τs and
τq are very close to the values obtained from the analysis of
the impedance spectra. Hence, using Eqs. (29) and (30) will
result in the ion parameters similar to those listed in Table II
for the cell with d = 10.3 μm.

The values of τs obtained for the high applied voltages
U0 = 2.5 V and U0 = 5.0 V are noticeably smaller than for the
lower voltages that indicates a violation of the Debye-Huckel
approximation. In the limiting case of high applied voltage
and small concentration of the ions an alternative approach
considered in Ref. [61] can be used. This approximation
assumes the ion migration as only relevant mechanism of the
charge transport under the electric field, as a consequence,
the electrical current should depend linearly on the time after
the initial current jump,

I = I0(1 − t/τtr ). (34)

Here the initial current I0 and the characteristic time of the
electrodiffusion τtr are given as

I0 = U0

R
= 2 c0ẑ e D S

d

U0

UT
, τtr = d2

D

U0

UT
. (35)

Extracting I0 and τtr from the fit of the experimental data, the
diffusion coefficient and the concentration of the ions can be
calculated from

D = d2

τtr

UT

U0
, c0 = I0

2ẑeD

d

S

UT

U0
= I0

2ẑeSd
τtr. (36)

In the course of time the ion movement under applied dc
electric field will lead to gradual accumulation of the electric
charges at the blocking electrodes and screening of the local
electric field, which will result in the raising of the diffusion
current. Therefore, the linear regime given by Eq. (34) can
only be observed for a certain initial time interval �t after the
switching on the voltage, and its duration will depend on the
ion concentration and voltage magnitude.

To determine the time interval �t , where the linear regime
holds, the data for U0 = 2.5 V and U0 = 5 V were fitted
using Eq. (34) and mean-square deviations of the experi-
mental data from the fitted curves � were calculated over
the different initial time intervals �t in the range between
2 ms and 15 ms [Fig. 2(b)]. For U0 = 2.5 V the values of
mean-square deviations � are continuously changed over the
whole range of �t , in contrast to the case U0 = 5 V, where �

remains almost constant within time �t < 7 ms that implies a
linearity of the current over this time interval. Using the fitted
parameters τtr = 28 ms and I0 = 1.55 μA corresponding to
�t = 7 ms, the diffusion coefficient D = 19 μm2/s and the

062601-8



INFLUENCE OF DIELECTRIC LAYERS ON ESTIMATES … PHYSICAL REVIEW E 100, 062601 (2019)

ions concentration c0 = 119 μm−3 have been obtained from
Eq. (36). These values of D and c0 are close to the values
obtained from the analysis of the impedance spectra (see
Table II).

Thus, the analysis of the transient currents in cases of low
and high applied voltages confirms the validity of the results
obtained from the analysis of the impedance spectra based on
the model of the blocking electrodes with the dielectric layers.

E. Impedance behavior with LC cell aging

Earlier studies showed that the conductivity of LC cells
filled with the liquid crystal 5CB exponentially increased with
time with two characteristic time scales ∼400 h and ∼4000 h
[36,52,62]. To investigate this phenomenon the impedance
spectra in the cell with the thickness d = 10.3 μm were
measured after a while over three months (Fig. 3). The cell
was not completely sealed and was stored in a dark place at the
temperature T = 25◦C and the relative humidity (70 ± 10)%
between measurements.

Figure 3 demonstrates that the plateau level in the real
part of the impedance Z ′ decreases with aging time reflect-
ing an increase in the conductivity of the LC cell. At high
frequencies the values of the imaginary part Z ′′ remain prac-
tically unchanged, but the extrema values are decreased and
their positions are shifted towards higher frequencies. The
maximum of the argument arg{Z} increases and shifts to the
high-frequency range. The insets in Figs. 3(a) and 3(b) show
the dependence of the dimensionless impedance z = Z/R on
dimensionless frequency ωτq and demonstrate a frequency
scaling with respect to the conductivity increase with aging
time. The frequency scaling is also held near the maximum
of the impedance argument [Fig. 3(c)], if τs is chosen as a
relevant time scale.

An existence of the scaling in the experimental data with
respect to the conductivity change indicates that the fre-
quency dependence of the impedance can be described by
the proposed model. The unchanged imaginary part of the
impedance Z ′′ at high frequencies, simultaneously with the
decrease in the plateau level of the real part Z ′ and shifting
of Z ′′ maximum to the higher frequencies, point out that the
charge relaxation time τq decreases with aging time only due
to the conductivity increase, which depends on the concen-
tration and the diffusion coefficient of the ions. However, the
shifting of the minimum of Z ′′ and the maximum of arg{Z}
to the high-frequency range can also be caused by a change
in the effective thickness of the dielectric layers. The time
dependence of the conductivity σ , the dielectric constant ε,
the concentration of the ions c0 and the diffusion coefficient D
calculated from the fitted parameters of the impedance spectra
for the fixed value of the effective thickness of the polymer
layer λp = 150 nm are shown in Figs. 4(a) and 4(b).

One finds the dielectric constant is almost unchanged over
the aging time [Fig. 4(a)]. The conductivity changes with time
over the two different ranges: in the interval t < 1200 h the
values of σ increase about twice (from 50 to 100 nS/m),
whereas for t > 1200 h σ increases by six times (from 100
up to 600 nS/m). The concentration of the ions c0 practically
linear increases with aging time [Fig. 4(b)]. The diffusion
coefficient remains approximately constant for t < 1200 h

FIG. 3. Impedance spectra of the LC cell with the thickness
of d = 10.3 μm measured over long time intervals. Symbols are
experimental data and solid lines are fitting curves. Insets in parts
(a) and (b) show the dimensionless impedance dependence on ωτq

and in part (c) the argument arg{Z} normalized by its maximum value
as a function of ωτs.

and is equal to D = (12.4 ± 2.8) μm2/s as calculated by
averaging over this time interval. For t > 1200 h the value
of D increases by about three times, which can be interpreted
as an appearance in the liquid crystal significant fraction of
the “fast” ions with small Stokes radius.

However, assuming that the ions remain of the same type,
therefore, the diffusion coefficient is unchanged, one can find
the Debye length from λD = √

τqD and calculate the effective
thickness of the polymer layer λp from Eq. (29) using the
values of τq and τs obtained from the fitting of the impedance
spectra. Figure 4(c) shows corresponding time dependence of
the concentration of the ions c0 and the effective thickness
of the dielectric layer λp calculated for the fixed value of
the diffusion coefficient D = 12 μm2/s. In this case, the
behavior of c0(t ) becomes similar to the dependence of σ (t ) in
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FIG. 4. Time dependence of the conductivity σ and the dielectric
constant ε (a), the concentration of the ions c0 and the diffusion
coefficient D (b), the concentration of the ions c0 and the effective
thickness of the dielectric layer λp (c). The values in (b) were
calculated for the fixed value of λp = 150 nm, and in (c) for the fixed
value of the diffusion coefficient D = 12 μm2/s.

Fig. 4(a), and the value of c0 at t = 3000 h is three times larger
than that obtained for the case of the fixed effective thickness
of the dielectric layer λp = 150 nm. According to Fig. 4(c), λp

remains constant for t < 1200 h and for t > 1200 h increases
by about 45 nm. The temporal change of λp obtained under
an assumption of the unchanged diffusion coefficient can be
interpreted either as a formation of adsorbed ionic layers at
the boundaries between the polymer film and the LC layer, or
a swelling of the polymer film caused by the diffusion of the
LC molecules into the polymer. In the latter case an increase
in λp from 150 to 195 nm corresponds to the growth of the
thickness of the polymer film from 30 to 39 nm (h = εpλp/ε).

Thus, the measurements of the impedance spectra shows
that during the aging of the liquid crystal cell the dielectric
constant is not changed over 3000 h after the cell filling.
For the same time interval, the conductivity was increased

by one order of magnitude. Based on the proposed model
we can conclude that the conductivity growth over 1200 h
after the cell filling is originated from the increase of the
concentration of the same type of ions as in the fresh made
cell. It is proved by the constant value of the diffusion coeffi-
cient and effective thickness of the polymer layer found over
this time interval. However, for longer time of cell aging the
model leads to ambiguous estimates of the ion parameters.
Therefore, to identify physical processes at longer time, more
complicated theoretical models considering such effects as
polymer swelling or long-term ion adsorption have to be
developed.

IV. DISCUSSION

The values of the diffusion coefficient of the ions in the liq-
uid crystal 5CB in the range D = (6–10) μm2/s were reported
in studies of transient currents under polarity reversal of the
applied dc voltage [58] and currents induced by UV-light in
LC cells with photosensitive semiconducting electrodes [36].

The diffusion coefficients of the ions in 5CB were also
estimated from the analysis of the dielectric spectra in the
framework of the so-called constant electric field model. Con-
sidering dielectric behavior of binary electrolyte under the ap-
plied dc bias it has been shown that ions concentration and dif-
fusion coefficient can be determined from the high-frequency
part of the dielectric spectra [63]. Based on this model, the
temperature dependence of the diffusion coefficient of the ions
in 5CB was determined from the dielectric spectra of the LC
cells with and without polyimide layers on top of the ITO
electrodes [36,62]. For both samples the diffusion coefficients
were found nearly the same D ≈ 16 μm2/sec at T = 23◦C.

In another version of the constant electric field model [64]
a presence of different kinds of ions was considered and an
additional parallel RC-circuit to the expression for the total
complex dielectric constant was included to take into account
possible surface effects, such as electric double layers on the
electrodes. The best fit of the experimental dielectric spectra
of 5CB in the wide frequency range (10−3–103) was obtained
using 5 kinds of ions with the diffusion coefficient of the
average kind of ions D = 4.9 μm2/s at T = 23◦C [33].

Note that all results mentioned above were obtained for
LC cells with homogeneous planar orientation of the liquid
crystal and the estimates of the diffusion coefficient are re-
lated to the perpendicular component D⊥. In present work
the homeotropic layers of 5CB were studied and the par-
allel component D|| = (12.4 ± 2.8) μm2/s was determined.
Taking into account the anisotropy of the conductivity of
5CB σ||/σ⊥ = 1.65 [33], the perpendicular component D⊥ =
(7.5 ± 1.7) μm2/s can be calculated, which is in a good
agreement with the diffusion coefficients estimated from the
transient and photo-induced currents and dielectric spectra
analysis based on the constant electric field model.

The constant electric field model is able to describe the
impedance (dielectric) spectra over a wider frequency range
than one based on the self-consistent PNP equations. How-
ever, justifications for the constant electric field model are the
subject of lengthy debates [65–68]. To understand possible
reasons for closed values obtained within the constant electric
field approach and this work, we used Eqs. (A12) and (A13) to
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FIG. 5. The distribution of the electric potential for different
frequencies for the cell with the thickness d = 17.4 μm.

calculate the distribution of the electric potential ψ (x) for dif-
ferent frequencies using the ion parameters of the LC cell with
the thickness d = 17.4 μm (Fig. 5). Figure 1 shows that for
this cell the maximum of the impedance argument is observed
at f ≈ 10 Hz. As it follows from Fig. 5, at this frequency the
distribution of the electric potential across the cell is almost
linear (electric field is a constant). Therefore, in this case the
constant electric field approximation is held and should lead
to the similar value of the diffusion coefficient as obtained
here. Strong deviations of ψ (x) from the linear dependence
for the frequencies f < 10 Hz on Fig. 5 indicate violation of
the constant electric field assumption at low frequencies. This
makes uncertain the estimates of the parameters of different
kinds of ions from the fitting of the low frequency part of
the impedance (dielectric) spectra in the framework of the
constant field approach (see also discussion in Ref. [65]).

Unfortunately, in the framework of the PNP approach,
there are no estimates of the diffusion coefficient of the ions
in the liquid crystal 5CB from the analysis of the impedance
or dielectric spectra. More sophisticated models for the binary
electrolyte with nonblocking electrodes where the currents are
generated by the ion adsorption/desorption processes have
been considered in Refs. [14,38]. The expressions for the
impedance derived there were used to fit the experimental
spectra of 5CB in the cells with polymer or silicone oxide
coated electrodes choosing values of the diffusion coefficients
D = 1.9 μm2/s [14] and D = 2.5 μm2/s [38]. An agreement
between theory and experiment was found to be good in the
limited range of frequencies, but the influence of the chosen
values of D on the resulting values of the ions concentration
and parameters of adsorbing currents was not discussed.

Note that the behavior of the impedance spectra in the
high-frequency range is similar to that obtained theoreti-
cally within the framework of the PNP approach for the
binary electrolyte model taking into account the effects of
generation-recombination of ions and different diffusion co-
efficients of positive and negative charges. The effects of
generation-recombination of ions is quantitatively charac-
terized by a dimensionless ratio κ = kd/(kaN ), where kd

and ka are constants of association and dissociation of ions,
and N is a concentration of neutral particles (see, e.g.,
Ref. [69]). Using for the liquid crystals the experimen-
tal estimates of kd = 10−6 s−1, ka = 3.6 × 10−17 m3/s, and

FIG. 6. Imaginary part of the dimensionless impedance calcu-
lated in the framework of the binary electrolyte model with differ-
ent diffusion coefficients (Dn = 13 μm2/s and Dp = 0.13 μm2/s)
for different values of δ = λp/λD. Stars show the positions of the
minimum.

N = 2.1 × 1019 m3 obtained in Ref. [70] one can find the
value of κ ∼ 10−9. Thus, such small values of κ allows to
neglect the generation-recombination effect when analyzing
the impedance spectra of the liquid crystals. We also note
that there are no experimental studies where the influence of
the generation-recombination of the ions on the impedance
spectra of the liquid crystal 5CB has been reported.

The influence of various mobilities of positive and nega-
tive ions on the impedance behavior has been theoretically
investigated in Refs. [71,72]. It was demonstrated that the
high-frequency behavior of the spectra is equivalent to the
model of identical mobilities, and the characteristic time τq

is determined by the effective diffusion coefficient. However,
even in this case, the dielectric layers will be strongly influ-
ence on the spectra behavior for the frequencies ω < ωqs [see.
Eq. (13)].

To confirm primary effect of the dielectric layers we have
simulated the impedance spectra in the framework of the
binary electrolyte model with different diffusion coefficients
of the positive and the negative charge carriers based on the
results of Ref. [71]. The expression for the impedance was
derived and supplemented with the capacitive contribution
of dielectric layers. In Fig. 6 we show the imaginary part
of the impedance spectra calculated using the values of the
diffusion coefficients Dn = 13 μm2/s for the negative and
Dp = 0.13 μm2/s for the positive charges and different ratios
δ = λp/λD that characterize the thickness of the dielectric
layers. As it follows from Fig. 6, the change of the effec-
tive thickness of the dielectric layers strongly influence the
impedance spectra behavior even if the diffusion coefficients
Dp and Dn differ by two orders of magnitude.

We would like to note that there is no convincing exper-
imental evidence that in the liquid crystal 5CB the charges
are carried out by ions with significantly different diffusion
coefficients. Nevertheless, if it would be estimated, the value
of D obtained in our work could be considered as the correct
estimate of the effective diffusion coefficient calculated taking
into account the effective thickness of polymer layers.

We have demonstrated (see Table II) that neglecting the
dielectric layer in the estimate of the Debye length results
in about threefold increase in the value of the diffusion
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coefficient. Similar reason may explain the contradictory val-
ues of the ion parameters obtained in isotropic systems by
means of the pulsed-field gradient NMR method and on the
basis of the impedance spectra analysis [32]. According to
Eq. (30), using λs instead of λD in systems with λp ∼ λD will
lead to overestimated diffusion coefficient and underestimated
charge carrier concentration, which corresponds to the results
in Ref. [32]. This is especially true for highly concentrated
electrolytes, where the Debye length λD is known to be small
and thus comparable to the effective thickness λp of compact
layers formed by the adsorbed ions on metallic electrodes.

The universal behavior of the impedance spectra is inherent
for ionic conductors of different nature, such as ion glasses,
polymer electrolytes, ionic liquids or aqueous solutions of
salts [1,12,13]. In the high-frequency range the impedance
spectra can be scaled relative to the ion concentration,
temperature and sample thickness, but at low frequencies the
scaling fails when the samples thickness or the electrode
materials are changed. The dimensionless expressions for
the impedance Eqs. (4) and (14) clearly show that no single
characteristic time (or frequency) can be selected to scale
the spectra in the whole frequency range. As it follows from
the analysis of the approximate expression Eq. (14), at high
frequencies, ωτq � 1, the behavior of the impedance spectra
is determined by the dynamics of the bulk charges with the
characteristic time τq. The value of τq depends only on the
charge carrier properties – the concentration of the ions and
the diffusion coefficient, resulting in the observed scaling
of the impedance spectra z = f (ωτq) in the high-frequency
range when changing the ion concentration, temperature and
sample thickness [1,12,13]. Our results also confirm the high-
frequency scaling with respect to the thickness of the liquid
crystal layer and its conductivity [Figs. 3(a) and 3(b)]. At
low frequencies, ωτq � 1, the behavior of the impedance is
dominated by the surface effects: the diffuse layer dynamics
and the dielectric layer charging, which in the case of λD � L
act together as a single nonconducting dielectric layer with
characteristic charging time τs. In the case studied, the scaling
of the impedance also holds in the low-frequency range, if
ωτs is chosen as the dimensionless frequency [Fig. 3(c)]. The
characteristic time τs is determined by the distance between
the electrodes, the properties of the charge carriers and the
dielectric layers [Eq. (10)]. It can be assumed that the scaling
z = f (ωτs) can also hold in the low-frequency range when the
electrode materials are changed [12,13] due to existence of the
compact layers, whose properties are defined by the electrode
adsorption ability determining the effective thickness and,
hence, the value of τs.

V. CONCLUSION

In this work, the impact of the dielectric layers on the
frequency dependence of the impedance of ionic conductors
have been investigated. In the framework of the PNP approach
the expression for the impedance of the symmetric binary
electrolyte with blocking electrodes and dielectric layers has
been derived and the frequency dependence has been ex-
pressed in terms of contributions with three characteristic
times in the system—relaxation of the bulk charge τq and
charging times of the diffuse τc and dielectric τp layers. The

frequency dependence of each contribution is different, which
suggests the values of all characteristic times can be deter-
mined from the analysis of the impedance spectra and then
the ion parameters and the effective thickness of the dielectric
layer can be calculated. However, the analysis demonstrates
that in most common cases of thin diffuse layer, λD � L, only
the sum of the Debye length and the effective thickness of
the dielectric layer, λs = λD + λp, can be obtained from the
impedance spectra. The established relations between the ion
parameters and the characteristic times show that in the case
of comparable thickness λp ∼ λD, the correct estimates of the
ion parameters from the impedance spectra is only possible
if the properties of the dielectric layers are known. Note that
the properties of the ions and of the dielectric layers can be
simultaneously determined from the impedance spectra using
the exact expression for the impedance, but only in systems
with λD ∼ L, such as nanochannels or porous media.

To verify considered model the system with comparable
values of the Debye length and the effective thickness of the
dielectric layers was experimentally studied. The impedance
spectra of the liquid crystal 5CB in the cells with different
thickness containing electrodes coated by thin polymer films
with known properties were measured. It was shown that exact
and approximate expressions for the impedance fit data almost
equally well and give close values for the ion parameters for
thick cells, whereas for thin cells the exact expression fits
experimental data better.

For all cells used with the thickness in the range (3–17) μm
the Debye length λD ≈ 200 nm and the diffusion coefficient
D ≈ 12 μm2/s have been determined. which remains un-
changed over 1200 h of the cell aging. Similar value of the
diffusion coefficient was obtained from the measurements of
the transient currents in low and high limits of the applied
dc voltage. Corresponding hydrodynamic radius of the ions
Rg ≈ 0.3 nm is close to the radius of free inorganic ions [55].
This supports an assumption that the conductivity of liquid
crystals is caused by free inorganic impurity ions left after
a synthesis or emerging from materials used to assemble LC
cells.

However, correct estimations of the ion parameters were
only possible for known dielectric constant and thickness
of the polymer layers at the electrodes and for relatively
fresh samples. For long time of cell aging above 1200 h,
the estimates of the ion parameters become ambiguous that
allows different interpretations. In this case, it cannot be
unequivocally concluded how an ionic composition of the
liquid crystal and/or the properties of the polymer film are
changing with time. In the systems, where an electrolyte is
in contact with metallic electrodes, the situation can be much
worse, since the properties of the compact layers formed at
the electrode surfaces are quite difficult to characterize. Thus,
the analysis of the impedance spectra in such systems based
on the considered model should be carried out with caution,
especially in the case of highly concentrated electrolytes.
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APPENDIX A: MODEL WITH BLOCKING
ELECTRODES AND THE SOLUTION OF THE

LINEARIZED PNP EQUATIONS

Let us consider an electrolyte layer bounded by parallel
planar electrodes at a distance x̃ = ±L. Assuming the elec-
trolyte contains completely dissociated negative and posi-
tive ions with the same mobility μ− = μ+ = μ, diffusion
coefficient D− = D+ = D, valence ẑ− = ẑ+ = ẑ, and initial
concentration c−

0 = c+
0 = c0, the PNP equations in the 1D

case (see, e.g., Ref. [3]) are

∂c+

∂t
= − ∂

∂ x̃

(
−D

∂c+

∂ x̃
− μẑ e c+ ∂�

∂ x̃

)
, (A1)

∂c−

∂t
= − ∂

∂ x̃

(
−D

∂c−

∂ x̃
+ μẑ e c− ∂�

∂ x̃

)
, (A2)

−ε0ε
∂2�̃

∂x2
= ẑ e(c+ − c−), (A3)

where c+ = c+(x̃, t ), c− = c−(x̃, t ) are the concentrations of
positive and negative ions, respectively, � = �(x̃, t ) is the
electrostatic potential, ε is the dielectric constant, ε0 is the
vacuum permittivity and e is the elementary charge.

It is convenient to introduce dimensionless electrostatic
potential ψ , relative difference in the concentrations between
positive and negative ions ρ and dimensionless coordinate x,

ψ = �

UT
, ρ = c+ − c−

2 c0
, x = x̃

λD
, (A4)

where UT = kB T/(ẑ e) is the thermal voltage. Note that at
T = 25◦C for the ion valency ẑ = 1 one has UT ≈ 25 mV,
and typical values of the Debye length are within the range
λD = (1–100) nm for aqueous electrolytes.

At low applied voltages, � � UT (ψ � 1), variations in
the ion concentration are small, ρ � 1, and (c+ + c−) ≈ 2 c0.
Then, taking into account Eqs. (A3) and (A4), and Einstein’s
relation μ = D/kB T , Eqs. (A1) and (A2) reduce to

τq
∂ρ

∂t
= ∂2ρ

∂x2
− ρ, (A5)

where τq is the charge relaxation time in the bulk given by
Eq. (3).

For the applied ac voltage U = U0 exp(iωt ) (ω = 2π f is
an angular frequency) one has a linear response (ρ,ψ ) ∼
exp(iωt ) with spatially dependent amplitudes of the relative
difference in the concentrations between positive and negative
ions ρ(x) and the electrostatic potential ψ (x) that can be found
from

∂2ρ

∂x2
− k2ρ = 0, (A6)

−∂2ψ

∂x2
= ρ, (A7)

where

k = √
1 + iωτq. (A8)

To model the effect of compact layers or polymer films at
the electrodes we consider the case when the electrolyte and
the electrodes are separated by two identical nonconducting
dielectric layers of thickness h and the dielectric constant εp.
We define an effective thickness of the dielectric layer λp and
the ratios of length scales δ and ε as follows. For the blocking
electrodes the boundary conditions can be formulated as
follows [3,46,47]: (

∂ρ

∂x
+ ∂ψ

∂x

)
x=±1/ε

= 0, (A9)

∓v0 − ψ0 = ±δ
∂ψ

∂x

∣∣∣
x=±1/ε

, (A10)

where v0 = U0/UT and ψ0 are the values of the potential
at the electrodes and at the boundary between the dielectric
layer and the electrolyte, respectively. The condition Eq. (A9)
represents impermeability of the boundary for the ions and the
absence of any physical or chemical processes at the boundary
that may result to the ionic current. The right hand side of
Eq. (A10) describes a voltage drop on the dielectric layer.

Taking into account the boundary conditions Eqs. (A9) and
(A10), the solutions of Eqs. (A6) and (A7) can be written as

ρ(x) = ρ0
sinh(k x)

sinh(k /ε)
, (A11)

ψ (x) = − ψ0

k2ze

[
ε x + zw

sinh(k x)

sinh(k /ε)

]
, (A12)

where

ρ0 = ψ0
zw

ze
, ψ0 = v0

ze

ze + δε/(k2 − 1)
, (A13)

ze = 1

k2
+ zw

k2
, zw = ε

tanh(k /ε)

k (k2 − 1)
. (A14)

Here ze represents the dimensionless impedance of the binary
electrolyte with blocking electrodes without dielectric layers
that contains contributions from the bulk charge (1/k2) and
diffuse layer (zw/k2) [24,25]

Solution Eqs. (A11) and (A12) describe the spatial distri-
bution of the electrical potential and the ionic charge density
across the layer (the total charge density is proportional to ρ).
According to Eq. (A11) the charge density has a maximum
at the boundary between the dielectric layer and the elec-
trolyte, |ρ(x = ±1/ε)| = ρ0, and decays exponentially with
the distance from the boundary with the characteristic decay
length λ = �[λD/

√
1 + iωτq] in physical units. The decay

length λ can be considered as a diffuse layer thickness, and is
negligible at high frequencies, ωτq � 1, grows as frequency
decreases and approaches the Debye length λD in the limit of
a dc voltage, ωτq → 0. Note that apart from simple frequency
dependence the diffuse layer thickness is solely determined
by the properties of the charge carriers—diffusion coefficient
and concentration.

The diffuse charge, ρ0, in addition, is influenced by the
properties of the dielectric layer. Equations (A13) show that
ρ0 is determined by the contribution of the diffuse layer zw to
the total impedance ze and depends on the surface potential
ψ0 which is different from the electrode potential v0 when the
effective thickness of the dielectric layer is nonzero, δ �= 0.
It can be seen by considering the limiting cases of high and
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low frequencies. Taking into account Eqs. (A8) and (A14)
from Eq. (A13) it follows that ψ0 → v0/(1 + εδ) at high
frequencies and approaches the value ψ0 → v0/(1 + δ) in the
limit of a dc voltage, ωτq → 0. Hence, a voltage drop on the
dielectric layer |v0 − ψ0| grows with decreasing frequency
and its value depends on δ. Substituting Eqs. (A8) and (A14)
into Eq. (A13), one finds ρ0 → 0 at ωτq → ∞, and ρ0 →
v0/(1 + δ) at ωτq → 0. Thus, the voltage drop across the
dielectric layer reduces the diffuse charge and, hence, de-
creases the electrode polarization. The ratio δ = λp/λD does
not depend on the distance between electrodes L (compare
with [23]) and in the case of λp � λD the influence of the
dielectric layer on the impedance behavior can be essential,
especially, at low frequencies.

APPENDIX B: IMPEDANCE IN THE MODEL WITH
BLOCKING ELECTRODES

An impedance is defined as a ratio of the applied volt-
age to the electrical current arising in the system. In the
case of blocking electrodes a current density in the exter-
nal circuit is equal to a displacement current density JD =
−ε0ε(∂2�/∂t ∂ x̃) at the electrode surface. Denoting the den-
sity of the Nernst’s diffusion-limited current JN = ẑec0D/L
[73], the normalized displacement current density can be

written as

jD = JD

JN
= −iω

τq

ε

∂ψ

∂x

∣∣∣∣
x=−1/ε

. (B1)

Then the dimensionless impedance has the form

z ≡ Z

R
= v0

jD
, (B2)

where Z = U0/(S JD) is the impedance of a plane sample with
the area S and the resistance

R ≡ UT

S JN
= kBT L

c0(z e)2DS
. (B3)

Introducing the electrolyte capacitance C = ε0εS/(2L), the
well-known expression for the charge relaxation time in the
bulk (RC-time) can be recovered τq = RC = λ2

D/D.
Calculating the displacement current in Eq. (B1) from the

solution ψ (x) [Eqs. (A12) and (A13)] and substituting jD into
the definition of the dimensionless impedance Eq. (B2), we
arrive at the final expression

z = ze + δ ε

k2 − 1
. (B4)

Here the last term represents a capacitive contribution of the
dielectric layer. This expression can be written as an explicit
function of frequency using Eqs. (A8) and (A14).
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