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Biological and synthetic amphiphilic systems exhibit a wide range of morphologies. A density functional
model for amphiphilic polymer phase mixtures is utilized to quantify localized equilibria and their stability,
and ultimately predict and explain morphological preference. This is done by utilizing matched asymptotic
expansions, which produces explicit connections between model parameters and macroscopic properties of
equilibrium structures. Bilayers, cylindrical, and spherical micelle and vesicle configurations are found, and
formulas which connect their geometry to ambient chemical potential are derived. Dynamics are studied in
the context of a free boundary problem which describes the evolution of the hydrophobic-solvent domain
interface. Linearization of this problem is used to explicitly determine growth rates and parameter regions of
stability. All equilibria are found to have two branches of solutions terminating at a fold in the bifurcation
diagram which signals the crossover from competitive stability to instability leading to ripening behavior.
Ideally flat bilayers are determined to always possess a long wavelength buckling instability, suggesting that
curved structures should be generically preferred. Spherical micelles exhibit morphological instabilities which
are suppressed by large enough surface tension. Cylindrical micelles may have short-wavelength pearling and
long-wavelength Rayleigh-Plateau-type instabilities. In addition, ideally infinite cylinders have an undulatory
instability, suggesting that only finite length structures should be observed. A morphological phase diagram
can be assembled which takes into account both existence and stability of different geometries. Consistent with
experimental evidence, a bifurcation sequence from spheres to cylinders to vesicles is found as either surface
tension or polymer composition increases. Coexistence of different stable morphologies is also observed.
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I. INTRODUCTION

Amphiphilic molecules are ubiquitous in cellular biology,
where they form membranes and other intracellular structures.
Synthetic amphiphiles, commonly made from block copoly-
mers, are becoming increasingly important in the engineer-
ing of self-assembled materials [1–5]. In both the biological
and polymer contexts, amphiphiles are characterized by their
mixed affinity with a solvent. The hydrophilic part of an
amphiphile has an energetic preference (quantified by a neg-
ative Flory-Huggins parameter [6]) to mix with the solvent,
whereas the hydrophobic part has the opposite affinity. The
resulting compromise between these two effects is the creation
of a wide array of nanoscale structures.

Experiments with synthetic amphiphiles reveal a variety
of possible morphologies [7–9], including cylindrical (“rods”)
and spherical micelles, and vesicles comprising bilayer sheets.
In addition, the presence of defects such as end caps and
junctions promotes formation of complex networks. Pref-
erence toward different geometries is influenced by sev-
eral factors, including the strength of intermolecular interac-
tions, polymer composition, and polymer or solvent volume
fraction [7,8].

A wide variety of mesoscale models have been used to
explore amphiphilic systems. This includes coarse-grained
approaches [10–12] and phenomenological continuum equa-
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tions [13,14]. While capturing some of the desired mechanical
properties of amphiphilic bilayers and pore configurations, it
is not straightforward in these approaches to connect model
parameters to the underlying chemical details.

A widely adopted framework which accounts for molecu-
lar characteristics of polymer systems is self-consistent field
theory (SCFT) [15–17]. This was originally developed to
predict heterogeneous equilibrium configurations utilizing the
Gaussian random walk model for polymer chains [18], but
has also been formulated for time-dependent systems as
dynamic SCFT [19] and external potential dynamics [20].
While it has been used successfully in simulation of com-
plex micelles [21,22], dynamic versions (especially in three
dimensions) involve huge numerical costs. In addition, there
is remarkably little understanding of these models from an
analytical point of view, undoubtedly due to the complexity
of the nonlocal mapping from density to field variables. This
fact places strong limitations on both numerical and analytical
study and limits a full accounting of the model’s predictions
over a wide range of parameters.

A complementary approach to SCFT is density
functional theory, which has a common root [23] but makes
approximations of nonlocal interactions [24–26]. Like SCFT,
it was originally formulated for investigating equilibria, but
also readily extends to dynamic circumstances [27]. Both
paradigms have successfully reproduced various aspects of
polymer systems [28], including phase diagrams for diblock
mixtures [26,29], nanoparticle formation in copolymer-
solvent mixtures [30,31], and amphiphilic structure
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FIG. 1. Schematic representation of the families of amphiphilic
structures considered in this paper. The A, B, S regions are where
there is a preponderance of hydrophobic, hydrophilic, and solvent
species, respectively.

formation [32,33]. These models are derivatives of phase
field models such as the Cahn-Hilliard theory of phase
separation [34], which have proven to yield considerable
mathematical understanding, including good quantitative
approximations. This tractability motivates the present work,
wherein analytical expressions are derived that make explicit
connections between physical parameters and predictions of
morphology.

It is reasonable to inquire if continuum models may be
used for nearly molecular sized structures. Typical core widths
of amphiphilic bilayers range from 3 to 5 nm for biological
lipids to 8 to 21 nm in experiments with block copolymers [7].
Although the molecular size (measured, for example, by the
unperturbed radius of gyration) is only slightly smaller, it
should be noted that SCFT (and by extension DFT) describe
composition variations not at the molecular level, but at the
considerably smaller monomer scale. Evidence of the appli-
cability of continuum modeling of block copolymer architec-
tures has a very long history [17].

This paper studies various families of symmetric equilibria
in a generalized density functional model of amphiphilic
mixtures (Fig. 1). Localized equilibria are characterized as
fixed points of an evolution equation, which may alternately
be viewed as critical points of a suitably constrained free
energy. It should be emphasized that these do not represent a
global energy minimum (which in the present model would be
a homogeneous mixture of polymer and solvent). In addition,
since the configurations under consideration do not represent
homogeneous mixtures, basic notions of thermodynamic sta-
bility do not apply. The realization of localized structures
therefore depends both on the way the system is prepared as
well as whether critical points represent local energy minimiz-
ers (i.e., metastable states). This paper is focused on the latter
condition and is studied by considering the effect of small
perturbations.

It is useful to subdivide the roles played by perturbations
induced by neighboring structures and those which arise as
localized, mass-preserving fluctuations. We will refer to the
former as competitive stability and the latter as morphological
stability. Competition of localized equilibria in diffusion-
driven systems arises from mass exchange resulting from
imbalances of the local chemical potential(s). In classical Ost-
wald ripening [35,36], this leads to larger particles growing
at the expense of smaller ones, a situation of competitive
instability. In contrast, localized domains in polymer systems
may or may not coexist with their neighbors [31]. One way to

characterize competitive stability is through the relationship
between a structure’s equilibrium chemical potential (given
here by ν∞) and its volume V . If dν∞/dV > 0 among a family
(or families) of equilibria, then mass exchange will be from
larger domains to smaller ones, a situation of competitive
stability. On the other hand, morphological instabilities may
result in widespread changes in domain geometry. Here we
explicitly quantify both mechanisms of instability and explore
the consequences for morphological preference.

Section II introduces the model framework which we uti-
lize to study the evolution of amphiphilic mixtures. The an-
alytic construction of symmetric equilibria using the method
of matched asymptotic expansions is summarized in Sec. III.
Linearized stability is computed in Sec. IV, which gives
predictions of both competitive and morphological instabil-
ities. Finally, the theoretical predictions of the analysis are
discussed in the context of the morphological phase diagram
(Sec. V). Details of the asymptotic expansion calculations are
deliberately deferred to Appendices A and B.

II. DENSITY FUNCTIONAL MODEL

A variety of formulations of density functional models for
heterogeneous polymer systems exist. The formulation used
here is a simplification of three-phase models [26,37] which
have been employed for mixtures of solvent and diblock
copolymers. Volume fractions of the hydrophobic phase A
and hydrophilic phase B are given by φA, φB, respectively, so
that under a typical incompressibility assumption the solvent
volume fraction is 1 − φA − φB. A convenient choice of order
parameters is [37]

� = (1 − f )φA − f φB, � = f φA + (1 − f )φB, (1)

where f is volume fraction of the hydrophobic phase.
The simplest form for free energy (in units of the

Boltzmann energy kT ) of the system under consideration may
be written [37,38]

F =
∫
Rd

W (�,�) + G11|∇�|2 + G12|∇� · ∇�|2

+ G22|∇�|2 dx + α

2

∫
Rd

∫
Rd

K (x, x′)�(x)�(x′) dx dx′.

(2)

The scaled bulk free energy W is specified below and can
alternately be written as a function of (φA, φB) by virtue
of (1). The coefficients Gi j and α may be derived from
molecular considerations using the random phase approxi-
mation [23,28,39]. For simplicity, we take G11 = G = G22

and G12 = 0. Note this choice affects only the phase in-
terface structure, which has no consequence in the present
context other than to determine the surface energy parameter
[see, e.g., (13)]. The last term in (2) penalizes separation
of hydrophobic and hydrophilic components, which would
be expected of molecularly bonded phases. The nonlocal
interaction kernel K () is taken to be the Laplacian Green’s
function.
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FIG. 2. Contours of modified potential with χAB = 4 = χAS ,
χBS = −1, μA = 0, and μB = 5. The minima are roughly at
(φA, φB ) = (0, 0) and (1,0), corresponding to pure solvent and hy-
drophobic phases, respectively.

A completely dimensionless formulation can be obtained
by scaling lengths by α−1/5, which results in

F =
∫
Rd

W (�,�) + ε2

2
|∇�|2 + ε2

2
|∇�|2 dx

+ 1

2

∫
Rd

∫
Rd

K (x, x′)�(x)�(x′) dx dx′. (3)

Here the dimensionless interface width ε = √
2G1/2α−1/10,

which will be assumed small.
A common expression for the bulk free energy W (φA, φB)

is given by [26]

W =
∑

p=A,B,S

Cpφp ln φp +
∑

pq=AB,BS,AS

χpq

2
φpφq. (4)

The amphiphilic nature of the system requires χAS > 0 and
χBS < 0. In addition, if the polymer is in the phase-separated
regime, then χAB > 0. Since the underlying variational prob-
lem has a constraint which conserves volume of the phases,
the potential may be altered by addition of any linear function
W → W + μAφA + μBφB, which is equivalent to setting a
gauge for the chemical potentials. For typical values of in-
teraction parameters, the modified potential can be arranged
so that it has minima close to (φA, φB) = (0, 0) and (1,0),
corresponding to solvent and hydrophobic phases (Fig. 2). In
addition, the minimum of W (φA, ·) for fixed φA is roughly
where φB ∼ 0. In light of this observation, rather than special-
izing to (4), this paper considers a broad class of potentials
W (φA, φB) satisfying the following conditions:

(1) There are two minima at (0,0) and (1,0), representing
pure solvent and pure hydrophobic phase

(2) For sufficiently small φB, the potential is convex in φB.

Notice that the composition parameter f is still retained in
the model via (1). For purposes of illustration and numerical
experiments, we will take f = 1/2 and use a convenient
choice for the potential:

W (φA, φB) = χASφ
2
A(1 − φA)2 + φ2

B. (5)

We emphasize, however, the analytical derivations which fol-
low are not specialized to this choice, and the potential must
satisfy only the modest requirements listed above. In addition,
the analysis provides a way to map physical parameters such
as those in (4) to the surface energy energy [see, e.g., (13) and
the related discussion].

Generalized chemical potential fields ν, μ may be defined
in terms of variations of the free energy μ = δF/δ�, ν =
δF/δ�, and these drive diffusive dynamics via(

�t

�t

)
= ∇ ·

[
M∇

(
δF/δ�

δF/δ�

)]
. (6)

The mobility tensor M describes the rates of diffusion and
cross-diffusion and for simplicity of presentation will be taken
to be the identity.

III. SYMMETRIC EQUILIBRIA

Amphiphilic structures which are at thermodynamic equi-
librium with their surroundings may be studied by regarding
them as constrained equilibria of (3). The corresponding
Euler-Lagrange system is


(−ε2
� + W�) = �, (7)

−ε2
� + W� = ν∞ ≡ W� (0, �∞). (8)

The Lagrange multiplier ν∞ can be associated with a con-
straint that conserves polymer volume; alternatively, it can
be viewed as the ambient chemical potential for the polymer
species. In general, for each class under consideration there
is a family of equilibria parameterized by size (width, radius,
etc.) which determines the value of ν∞; it is this relationship
that will be calculated explicitly below. Finally, it is supposed
that the mixture is spatially homogeneous far away from the
structure, leading to the conditions

lim
r→∞ � = 0, lim

r→∞ � = �∞. (9)

While the structures of interest are all three-dimensional,
symmetry considerations allow for the study of equilibria in
lower dimension d . For ideally flat bilayer sheets, d = 1; for
cylindrical micelles and vesicles, d = 2; spherical micelles
and vesicles have d = 3. In each case the Laplacian is re-
stricted to radially symmetric fields,


u = 
ru ≡ 1

rd−1
(rd−1ur )r .

Solutions of (7) and (8) may be found by exploiting the
smallness of ε by using multiscale expansions for internal lay-
ers (e.g., Refs. [27,40]). This section summarizes the principal
results of these computations, which are described in complete
detail in Sec. III A. A mathematically rigorous study of this
problem will be reported elsewhere [41].
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FIG. 3. Regions for matched asymptotic expansion of symmetric bilayer-type equilibrium. Region I is the hydrophobic core, region II is
the interface, and region III contains the hydrophilic tail. Micelle-type equilibria use the same setup, with x replaced by the radial variable r
and core width εw replaced by core radius R. The amplitudes of the � and � profiles are roughly one.

A. Bilayer equilibria

Solutions to (7) and (8) are constructed using expansions
over three regions (see Fig. 3). The hydrophobic phase region
I has width εw(ν∞), where it is supposed that w 	 1, and
to leading order (�,�) ≈ (1 − f , f ), corresponding to phase
A. Region III comprises both the solvent and the hydrophilic
phases, whose density decays as exp(−x/

√
β ). In the dimen-

sionless formulation,
√

β measures the hydrophilic domain
width and depends only on the bulk potential by

β ≡ det H0/H0
��, H0 ≡ ∇2W (0, 0) =

(
H0

�� H0
��

H0
�� H0

��

)
.

(10)

The two phase regions are separated by a diffuse interface
(region II), whose role here is to merely connect the behavior
of the expansion on either side.

Matching of the chemical potentials ν, μ across all three
regions leads to a relationship between the bilayer width and

chemical potential

ν∞ = 1

γ

[
(1 − f )

√
βεw + 4λ2

1 − f
exp(−2λw)

]
,

γ ≡ f

1 − f
+ H0

��

H0
��

. (11)

Here λ is the eigenvalue of H0, taken to be of multiplicity two
for simplicity.

The analytical result (11) was compared to numerical
computations of solutions of (7) and (8). The latter were found
by evolving the dynamic equations toward a steady state,
using a periodic domain much larger than the bilayer width.
Other details of the algorithm can be found elsewhere [42].
The numerical comparison uses the specific potential (5) with
χAS = 1, from which one finds that β = 4 and eigenvalues of
H0 are both equal to λ = 2.

Figure 4 shows the comparison between analytical and nu-
merical results for ε = 2.5 × 10−2 and ε = 6.25 × 10−3. Sig-
nificantly, both the analysis and numerics show the existence
of a minimum value for ν∞ within the family of equilibria.

FIG. 4. Comparisons of the analytical prediction (11) (solid/black) and numerical computations (dotted/blue) of the family of bilayer-type
solutions. (a) ε = 2.5 × 10−2; (b) ε = 6.25 × 10−3.
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FIG. 5. Comparisons of the analytical prediction (12) [solid (black)] and numerical computations [dotted (blue)] of radial equilibria for
dimension d = 2. (a) ε = 1.25 × 10−2; (b) ε = 3.125 × 10−3.

For large bilayer widths, the ν∞(w) relation becomes linear
in both cases, whereas when the width becomes small enough,
the bilayer structures become competitively unstable and col-
lapses. Unsurprisingly, the predictions of the analysis cease to
agree with numerical findings when either w 	 ln ε or w =
O(1). The former case includes the unphysical circumstance
of bilayers much larger than the constituent molecules. The
latter case is simply reflects a breakdown of the sharp interface
(strong segregation) assumption underlying the analysis.

B. Micelle equilibria

Radially symmetric solutions of (7) and (8) may be approx-
imated using an expansion scheme similar to the bilayer case.
The interface region is assumed to exist at radius r ≈ R, where
the core and solvent or hydrophilic domains are given by
r < R and r > R, respectively. The results of the asymptotic
calculations (Sec. III A 2) again yield relationships between

structure size and chemical potential:

ν∞ = 1

γ

⎧⎨
⎩

εσ
(1− f )R(ε) − R(ε)2

2 ln[R(ε)/2
√

β], d = 2

2εσ
(1− f )R(ε) + R(ε)2

3 , d = 3
. (12)

Here σ represents dimensionless surface energy density and
arises as in other phase field problems from the interface
profile (�h, �h)(ζ ) as

σ =
∫ ∞

−∞
(�′

h)2 + (� ′
h)2 dζ . (13)

Computations of radially symmetric micelle-type equilib-
ria were compared to the approximations (12). Using (5) with
χAS = 1, it is found that �h = �h = (tanh ζ + 1)/4 and σ =
1/6. Figures 5 and 6 compare the analytical and numerical
results for ε = 1.25 × 10−2 and ε = 3.125 × 10−3. The pre-
dictions of the analysis appear to be in close agreement with

FIG. 6. Comparisons of the analytical prediction (12) [solid (black)] and numerical computations [dotted (blue)] of radial equilibria for
dimension d = 3. (a) ε = 1.25 × 10−2; (b) ε = 3.125 × 10−3.
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FIG. 7. Regions used in asymptotic expansion of vesicle-type solutions.

numerical findings but of course become worse as R becomes
large where the scaling assumptions are not respected.

As in the case of bilayers, there is a critical size R∗ corre-
sponding to the minimum of ν∞(R). For R > R∗, ν ′

∞(R) > 0,
which implies competitive stability, as will be discussed in
Sec. IV. In contrast, the branch for R < R∗ (not shown in
Figs. 5 and 6) is competitively unstable. In the absence of
other instabilities or competition from other morphologies, a
collection of micelles is in general driven to a radius close to
the threshold R∗ [31].

C. Vesicle equilibria

For radially symmetric vesicle domains, there are two
length scales, the bilayer width and the radius. Consistency
of the matched asymptotic calculation requires that the width
and ν∞ have the same scaling in ε and that the width scales as
ε1/2. To this end, the hydrophilic or solvent domain regions are
assumed to exist where r > R + ε1/2w and r < R − ε1/2w,
where R is the effective radius. These regions are separated
by a curved bilayer, whose half-width is ε1/2w (Fig. 7). The
calculation detailed in Sec. III A 3 determines relationships
between both w and R and the equilibrium chemical potential:

ν∞ =
√

σ (d − 1)

(1 − f )RA(R)w(R)
, (14)

where

w(R) = γ

2(1 − f )
√

β

{
I ′
0(R/

√
β )/I0(R/

√
β ) − K ′

0(R/
√

β )/K0(R/
√

β ), d = 2

1 + coth(R/
√

β ), d = 3
(15)

and

A(R) = − γ

2
√

β

{
I ′
0(R/

√
β )/I0(R/

√
β ) + K ′

0(R/
√

β )/K0(R/
√

β ), d = 2

−1 − 2
√

β/R + coth(R/
√

β ), d = 3
. (16)

Comparisons of numerical and analytic expressions are
shown in Fig. 8, using the same potential and parameters as
the previous cases. Convergence of the numerical solutions to
the analytic approximations are seen as the small parameter ε

is decreased.
The dependence of vesicle width on radius is reported in

Fig. 9 (left). In the case of both large cylindrical and spherical
vesicles, the width approaches a constant. This fact is con-
sistent with experiments with synthetic amphiphiles [7] and
some theories of membrane energy [43]. Curiously, however,
cylinders exhibit a nonmonotonic dependence in width at
smaller radii.

Competitive stability can be ascertained from the depen-
dence of ν∞ on core size, defined as 4πRw for cylinders and

8πwR2 for spheres. Figure 9 (right) shows these relationships
for both cylinders and spheres. Cylindrical vesicles follow
a pattern similar to the micelle cases, wherein competitive
stability is seen only for structures larger than a certain size.
This indicates that narrow cylinders should be out-competed
by larger neighboring structures.

The results for spherical vesicles show some marked dif-
ferences from the configurations previously considered. Solu-
tions cease to exist for small enough radius, which might be
expected if the inner radius is comparable to the bilayer width.
More surprisingly, competitive instability is encountered for
radii which are greater than a critical value (here R∗ ≈ 2.5).
This appears to suggest that large vesicles would be subject
to Ostwald ripening behavior. On the other hand, a more
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FIG. 8. Comparisons of the analytical prediction [solid (black)] and numerical computations of vesicle equilibria for dimension d = 2
(left) and d = 3 (right). The [dashed (red)] curves were computed using ε = 5 × 10−2 and the [dash-dotted (blue)] curves were computed
using ε = 1.25 × 10−3.

expansive view of the relationship between ν∞ and volume
reveals that competitive instability is very weak for large radii
(Fig. 9). In fact, one can show that ν∞ ∼ ν0 + exp(−CR)
as R → ∞. Ripening induced by the exponentially small
correction to the large-radius chemical potential ν0 is likely
irrelevant over experimental timescales.

Small spherical vesicles may be either stable or unstable to
competition. This is an unexpected prediction of the theory
and highlights the significant role that finite width of the
curved bilayer plays. Competitive stability of small structures
is not typically expected when surface energy alone is taken
into account, but the energy of polymer stretching might be a
dominant factor when the bilayer width becomes comparable
to the radius.

IV. STABILITY OF EQUILIBRIA

Physical realization of various amphiphilic morphologies
relies in part on robustness to both localized shape fluctuations
as well as the ability to coexist with neighboring structures.
One way of characterizing insensitivity to perturbations is

through linearized stability of equilibria arising from the
dynamics (6). Note that the (somewhat arbitrarily) prescribed
kinetics is used simply as a convenient means to compute
linear growth rates, and the qualitative aspects of stability
are solely determined by the variational structure of the free
energy (3).

It is straightforward to study stability in the context of
the approximation scheme used to construct equilibria. This
amounts to deriving a free boundary problem for the inter-
faces, denoted collectively as ∂�, enclosing the hydrophobic
region �. Details of this approximation are given in Ap-
pendix B. It is found that the interface motion is governed
by a nonlocal free boundary problem having the form


V = (1 − f )χ�, X /∈ ∂�, (17)

V = −σκ, X ∈ ∂�, (18)

vn = [∂V/∂n]. (19)

Here κ is the mean interface curvature, χ� is the characteristic
function of the set �, and [] refers to the jump across the

FIG. 9. Left: dependence of the core width as a function of radius for two-dimensional cylindrical vesicles [red (solid)] and spherical
vesicles [blue (dashed)]. Right: Behavior of the ambient chemical potential as a function of structure volume for two-dimensional cylindrical
vesicles [red (solid)] and spherical vesicles [blue (dashed)].
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interface oriented in the prescribed normal direction. The
curvature is defined so that it is negative when � is convex,
and the interface velocity vn is positive when motion is in
the direction of the outward normal to ∂�. This formulation
combines the chemical potentials ν and μ into a single field
V , which depends on a mesoscale coordinate X = (X,Y, Z ) =
x/ε1/3. In addition to (17)–(19), there are far-field conditions
appropriate to the geometry under consideration.

This section considers the linearized stability of (17)–(19)
for some of the configurations in Sec. III. Remarkably closed-
form expressions for linearized growth rates and modes of
instability can be derived. Implications for morphological
preference are discussed later in Sec. V.

A. Bilayers

Here transverse perturbations to a flat bilayer sheet are
considered, by regarding interfaces as graphs X = ±w0 +
w±(Y, Z, t ) with w± 
 1, where w0 is the equilibrium thick-
ness in scaled variables. The linearized evolution for w±
satisfies


V = 0, |X | �= w0, (20)

V (±w0) = −σκ − (1 − f )2w0w±, (21)

lim
|X |→∞

VX = 0, (22)

∂w±
∂t

= ±[VX ] − (1 − f )2w±, (23)

where the linearized curvatures are κ = ∂2w±/∂Y 2 +
∂2w±/∂Z2.

It suffices to consider solutions to the linear system of the
form (

w+
w−

)
= eλt+ikyY +kzZ a, a ≡

(
a1

a2

)
. (24)

The corresponding perturbed field is

V = eλt+ikyY +kzZ [σk2 − (1 − f )2w0]

×

⎧⎪⎨
⎪⎩

a1 exp[−k(X − w0)], X > w0

a2 exp[k(X + w0)], X < −w0

a1
sinh[k(X+w0 )]

sinh(2kw0 ) + a2
sinh[k(X−w0 )]
sinh(−2kw0 ) , |X | < w0

. (25)

where k = |k|. Inserting this into the interface dynamics equa-
tion (23) yields an eigenvalue problem

Ma = λa, M = [σk2 − (1 − f )2w0]

×
(−k[1 + coth(2w0k)] k csc(2w0k)

k csc(2w0k) −k[1 + k coth(2w0k)]

)

− (1 − f )2I. (26)

The two scaled eigenvalues λ± = λ/(1 − f ) may be found
explicitly in terms of the dimensionless wave number q =
kw0, giving

λ± = −q(�q2 − 1)

[
1 + cosh(2q) ± 1

sinh(2q)

]
− 1,

×� ≡ σ

w3
0 (1 − f )2

, (27)

FIG. 10. Linearized growth rates of the bilayer evolution as a
function of dimensionless wave number q [λ+ are solid (black)
curves, corresponding to sinuous modes; λ− are dashed (blue),
corresponding to varicose modes]. Inset: Dependence of the neutrally
stable wave number as a function of dimensionless surface tension.

where the corresponding eigenvectors are

a+ =
(

1
−1

)
, a− =

(
1
1

)
. (28)

The mode given by a+ represents a sinuous perturbation,
with interfaces moving in the same direction, whereas a−
represents a varicose perturbation, with the interfaces mov-
ing in opposite directions. Note that λ+(q = 0) = 0 and
dλ+/dq(q = 0) > 0; therefore a bilayer is always unstable for
large wavelength perturbations.

It can be shown that the sinuous instability is always
dominant. For �q2 − 1 < 0, it is easy to see that λ+ > λ−. On
the other hand, if �q2 − 1 > 0, both dλ+/dq and dλ−/dq are
negative. Therefore maxq λ+(q) > maxq λ−(q). This suggests
that bending is the primary dynamic phenomenon associated
with bilayers sheets.

Figure 10 illustrates the dependence of eigenvalues on
wave number, as well as the wave number of the neutral mode
as a function of dimensionless surface energy. The propensity
to bend decreases with either increasing surface tension or
decreasing bilayer width.

The foregoing calculation must be viewed with caution.
The bilayer width w0 is measured on a scale relative to ε1/3,
whereas competitively stable bilayers may have widths down
to a scale ∼ε ln ε. Narrow bilayers correspond to large �, and
in this case the wavelength for instability is pushed off to in-
finity. Therefore the sinuous instability reported has relevance
only for relatively thick bilayers. There is a simple physical
interpretation: a flat bilayer which is hypothetically stretched
in the normal direction can relieve strain by buckling, which
has the effect of reducing the cross-sectional width.

B. Cylindrical micelles

Radially symmetric equilibria for dimension d = 2 cor-
respond to cylindrical micelles of infinite length. Stability
may be studied in a fashion similar to the previous section,
by deriving the linearized dynamics of a perturbed cylindri-
cal interface described by a graph ρ = R0 + R(Y, θ, t ). Here
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FIG. 11. Regions of instability of cylindrical micelles. Here � is the dimensionless surface tension, q the reduced wave number, and n is
the azimuthal mode. Two types of axisymmetric instabilities are identified (a), a small wavelength pearling instability and a large wavelength
Rayleigh-Plateau instability. The n = 1 mode (b) reveals an undulational long wavelength instability. For small �, there is also a flattening
instability (c).

(ρ, θ,Y ) are scaled cylindrical coordinates, and R0 is the
scaled equilibrium radius.

The linearized dynamics for R 
 1 obeys


V = 0, ρ �= R0, (29)

V = −σ
(
R/R2

0 + Rρρ + Rθθ /R2
0

)
− (1 − f )2R0R/2,

ρ = R0, (30)

lim
ρ→∞(V − ρVρ ln ρ) = − ln(2

√
β )ρVρ, (31)

∂R

∂t
= [Vρ] − (1 − f )2R. (32)

With R = exp(λt + ikY + inθ ), where n = 1, 2, 3, . . . the
field solution is

V = eλt+ikY +inθ
[
σ
(
k2 + n2/R2

0 − 1/R2
0

) − (1 − f )2R0/2
]

×
{

Kn(kρ)/Kn(kR0), ρ > R0

In(kρ)/In(kR0), ρ < R0
. (33)

Here Kn, In are Bessel functions of order n. Condition (31)
is specialized to the geometry under consideration; see
Eq. (B18). Equation (32) implies the scaled growth rate in
terms of the nondimensional wave number q = kR0 is

λ = q[�(q2 + n2 − 1) − 1/2]

[
K ′

n(q)

Kn(q)
− I ′

n(q)

In(q)

]
− 1,

� ≡ σ

R3
0(1 − f )2

. (34)

Figure 11 displays regions of instability in the �, q plane.
For axisymmetric disturbances, there are two types, asso-
ciated with short and long wavelengths. When � is small
enough, there is a pearling-type instability (e.g., Ref. [44]).
For large �, there is another unstable region, which is sim-
ply the extension of the Rayleigh-Plateau instability, which
would be expected when surface tension dominates (i.e. � →
∞). Note that there is an intermediate range 0.15 < � < 0.46
where no axisymmetric instability is found. The azimuthal
n = 1 mode corresponds to undulations which preserve the

cylindrical cross section. As in the case of bilayers, instabil-
ity at long wavelengths is always present. Finally, unstable
modes which represent flattening of the cylinder (n = 2) may
be present for small �, but these are always subdominant
compared to the undulation modes.

The case where k = 0 = n merits special consideration.
The field solution is

V = −eλt
(
σ/R2

0

){1 ρ > R0

A ln(ρ/R0) + 1 ρ < R0
, (35)

where by (31), one has A = −1/ ln(R0/2
√

β ). Then

λ = −σA/R3
0 − (1 − f )2. (36)

The value of R0 corresponding to λ = 0 is the threshold
for competitive stability and is precisely the same (up to
asymptotic corrections) as predicted by the minimum in (12).

The above results should be carefully interpreted in the
context of cylindrical micelles of finite extent, which have
end caps that have not been accounted for. Nevertheless, it
can be expected that finite cylinder length could suppress long
wavelength instabilities. On the other hand, it is reasonable
that short wavelength pearling-type instabilities can persist for
long but finite length structures.

C. Spherical micelles

Perturbation of a spherical equilibrium interface of ra-
dius R0 can be described by a graph ρ = R0 + R(θ, φ, t ),
where (θ, φ) are azimuthal coordinates. The corresponding
linearized evolution is resulting in


V = 0, ρ �= R0, (37)

V = −σ (
sR + 2)/R2
0 − (1 − f )2R0R/3, ρ = R0, (38)

lim
ρ→∞V = 0, (39)

∂R

∂t
= [Vρ] − (1 − f )2R. (40)

Here 
s is the spherical surface (Laplace-Beltrami) operator.
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FIG. 12. Region of instability for spherical micelles in terms
of the spherical harmonic index l and the dimensionless surface
tension �.

It suffices to consider perturbations of the form R =
exp(λt )Y m

l (θ, φ), where Y m
l is a spherical harmonic. The

resulting field solution is

V = eλtY m
l (θ, φ){σ [l (l + 1) − 2]/R2

0 − (1 − f )2R0/3}

×
{

ρ l/Rl
0, ρ < R0

ρ−l−1/R−l−1
0 , ρ > R0

, (41)

leading to a scaled growth rate

λ = −(2l + 1){�[l (l + 1) − 2] − 1/3} − 1, (42)

where the dimensionless surface tension � is the same as
in (34).

The region for instability as a function of dimensionless
surface tension is shown in Fig. 12. The modes l > 2 exhibit
instability for small enough surface tension, whereas for � >

1/30, they are all stable. The mode l = 1 corresponds to
translation and is therefore neutral. Competitive stability is
determined by the l = 0 mode, which occurs when � > 1/3,
coinciding with the minima of ν∞(R) in Fig. 12.

V. MORPHOLOGICAL PREFERENCE

Localized structures may form spontaneously under the
dynamics given by (6) [26,33]. Many phenomenon influence
the subsequent relaxation toward global equilibrium, includ-
ing mass exchange, nonlocal interactions that drive rigid-
body motion, and coalescence events [31]. The dominant
mechanism for well-separated structures is diffusion of ma-
terial driven by differences in polymer chemical potential
ν (whereas μ is associated with compositional differences
within the polymer phase). Thus equilibrium requires that the
ambient chemical potential ν∞ associated to each structure
should be the same. This does not, however, preclude the
possibility of coexistence of different geometries classes.

FIG. 13. Regions of stability for spherical and cylindrical mi-
celles, and spherical vesicles. These regions overlap, indicating the
possibility of coexistence.

Experimental observations [9] in fact note the persistence of
multiple morphological populations over very long times. On
the other hand, both competitive and morphological stability
is required for individual elements to remain intact.

Both composition and molecular interaction strength have
been shown to influence the preference toward either spher-
ical, cylindrical, or vesicle phases in synthetic amphiphilic
systems. Solvent or hydrophobic interactions are measured by
χAS , which ultimately controls the surface tension parameter
σ . For potential (5), for example, one finds that σ = χ

1/2
AS /6.

The equilibrium composition of polymer in the bulk solvent
�∞ is related to the ambient chemical potential ν∞ via (8).
For potential (5) and small compositions, one finds ν∞ ≈
2χAS�∞.

For given values of χAS and �∞, a particular type of
equilibrium may or may not exist, depending on whether ν∞
sits below the ν∞(R) curve (see, for example, Fig. 5). In
addition, even in the case of existence, both morphological
and competitive instabilities might drive a localized domain
structure toward extinction or changes in topology. Note that
the threshold for competitive stability coincides with the fold
bifurcation, so it is sufficient to characterize viability of any
morphology in terms of stability alone. As either χAS or �∞
is increased, the threshold for morphological instability is
then crossed. The window between the two curves that define
stability thresholds produces a region of parameter space
where a particular morphology may be observed.

Regions of stability in the (χAS , �∞) parameter space were
computed for spherical and cylindrical micelles, as well as
spherical vesicles, using potential (5). Figure 13 summarizes
the results. As either the polymer concentration or interac-
tion strength is increased, preference shifts from spheres to
cylinders to vesicles. On the other hand, there are significant
overlapping domains between spherical and cylindrical mi-
celles, as well as cylinders and vesicles. In these parameter
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regions, coexistence of multiple morphological populations
is possible. The bifurcation sequence leading from spheres
to cylinders to vesicles has been reported in numerical stud-
ies [6,22,32].

For the cylindrical case, morphological stability in Fig. 13
reflects only the effect of short-wavelength perturbations,
i.e., those associated with the pearling region in Fig. 11.
This choice reflects the finite size expected in real systems,
where only rodlike micelles are observed in practice [7,8].
Another complication of the cylindrical case is that there
is an additional dimensionless quantity R/

√
β [see the first

expression in (12)]. For the purposes of Fig. 13, this ratio
was arbitrarily chosen to be 1/2; other choices over a range
of values from 1/10 to 1 appear to give a qualitatively (and
nearly quantitatively) similar picture.

VI. DISCUSSION AND CONCLUSION

Density functional models for amphiphilic systems provide
a valuable connection between molecular scale physics and
amphiphilic morphology. This was done here by exploit-
ing the separation of length scales between phase domains
and interfaces through the use of multiscale analyses. This
limit is analogous to the strong segregation regime of block
copolymer mixtures (e.g., Ref. [45]), but there appears to be
no similar theory for SCFT models of amphiphilic systems.
The benefit of the density functional model approach is that
the sharp interface regime is readily accessible and leads to
explicit formulas connecting the structure size to the ambient
chemical potential. In addition, the parameters in these for-
mulas (β, σ, γ , λ) can be directly related to the continuum
model and have a straightforward physical interpretation in
terms of length scales and thermodynamic quantities, making
comparison to experiment possible.

A. Comparison to experimental phase diagrams

Our analytic results immediately lead to prediction of
morphological preference as summarized in the phase dia-
gram. This allows for coexistence of different stable mor-
phologies, consistent with experimental findings [7,9,46,47].
Our conclusion differs from the study of a phenomenological
model by Christlieb et al. [48], who find that bilayers (in
the form of vesicles) and cylindrical micelles cannot coexist
over long times. Jain and Bates [9] suggest that coexistence is
largely a result of slow kinetics, and that global equilibrium is
inaccessible on experimental timescales. In contrast, we have
shown that coexistence is possible regardless of kinetics, since
competitive stability may be achieved simultaneously among
different types of equilibria.

B. Comparison to SCFT calculations

He and Schmid [22] used extensive numerical calculation
of a SCFT model to assemble a diagram of observed equi-
librium morphologies as a function of polymer concentration
and solvent-hydrophilic Flory-Huggins parameter χBS . It is
unclear how their results would vary as a function of the four
other model parameters that were fixed in their calculation,
so a quantitative comparison with this work is not readily
available. Interestingly, Ref. [22] found structure types not

considered here, specifically cage-type vesicles and toroidal
micelles. Numerical simulations of the density functional
model suggest these can be studied in the present framework;
this would be a valuable route for future study.

C. Relation to the Canham-Helfrich membrane energy

A commonly utilized model for the mechanics of am-
phiphilic bilayers was introduced by Canham [49] and Hel-
frich [50](called CH hereafter). This model treats a bilayer
as a thin elastic surface with no internal structure, which
of course excludes micelle architectures altogether. In their
most basic form, the CH model proposes a free energy of the
form

∫
κ2 dA, where the integral is over the two-dimensional

bilayer surface. In the absence of other constraints, a flat
bilayer sheet would therefore be entirely stable.

Both our model and the CH formalism predict spherical-
shaped vesicles [43]. In the latter case, it is easy to see that
the free energy is completely independent of vesicle radius,
which means that there is no propensity for competitive
instability. As mentioned in Sec. III C, our results indicate that
competitive instability becomes exceedingly weak for large
vesicles. In this respect, our results are consistent with the CH
predictions and should be viewed as an interpolation between
macroscopic behavior (as described by CH) and smaller scale
phenomena.

D. Relation to instability of other cylindrical structures

In the classical Rayleigh-Plateau problem [51], surface
energy alone is responsible for instability of the free surface,
which always exists at long wavelengths. Here the polymer
contribution to the free energy appears to suppress this insta-
bility over a range of dimensionless surface tension � but
also enhances other modes of instability. The suppression
and/or modification of the Rayleigh-Plateau instability is not
a feature unique to amphiphiles; recent studies of capillary in-
stabilities in gels [52,53] highlight the stabilizing role played
by elastic forces.

If the surface tension contribution is insufficient, axisym-
metric short wavelength instabilities may arise, leading to
pearling behavior. This phenomenon has also been studied in
the context of phenomenological models of amphiphiles [54]
and polymer brushes [55]. Pearling phenomenon have also
been observed in biological and synthetic membranes [44,56].

E. Outlook

Beyond issues of basic equilibrium shapes and stability,
one wonders what the effective elastic energy of a curved
bilayer might be in our model. One possible scenario is
that some variant of the CH energy can be recovered in
a certain distinguished limit, as has been done for certain
phenomenological models [57–59]. This would likely require
further expansion terms which were not considered in this
work.

We utilized linear (dynamic) stability as a criteria for
realizability of specific geometries. This is an incomplete
classification, because instabilities may lead to far more exotic
forms that have been reported experimentally [8]. In this
respect, morphological selection should be regarded as both
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a function of system parameters as well as initial conditions.
A more complete assessment of dynamic pathways leading to
equilibria is needed to fully characterize the accessible range
of self-assembled architectures.
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APPENDIX A: MATCHED ASYMPTOTIC EXPANSIONS

1. Bilayers

It is assumed that ν∞(ε) = o(1) as ε → 0, but otherwise
the dependence on ε is not initially prescribed; rather, it will
ultimately be determined by a nonlinear relationship with the
scaled bilayer half-width w(ε). Stretched coordinates z = x/ε
and ζ = z − w are used in regions I and II, respectively.

The leading order solutions �0, �0 in each region are

(
�0

�0

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − f

f

)
, Region I(

�h

�h

)
, Region II(

0
0

)
, Region III

(A1)

where the region II solution is the heteroclinic orbit of

−
(

�h

�h

)
ζ ζ

+ ∇W (�h, �h) = 0, (A2)

chosen so that its components approach zero when ζ →
∞ and (1 − f , f ) when ζ → −∞. Such a solution exists
under the given hypothesis on W (see Ref. [60] and refer-
ences therein) and is uniquely determined up to translation.
Linearization about (1 − f , f ) establishes the asymptotic
behavior(

�h

�h

)
∼

(
1 − f

f

)
− expλ1ζ a1 − expλ2ζ a2, ζ → −∞,

(A3)

where a j, λ j > 0 solve the eigenvalue problem

HAa j = λ2
ja j, HA ≡ ∇2W (1 − f , f ). (A4)

For simplicity, we suppose λ1 = λ2 = λ, and the eigenvectors
a j are chosen to be orthogonal.

The expansion in region III is written � ∼ �1(x; ε) + · · · ,
where �1 = o(1) as ε → 0, with a similar expansion for
�. The dependence on ε is not prescribed a priori but is
assumed to be the same asymptotic order as ν∞(ε). Similarly
expanding in the variables μ and ν leads to(

μ1

ν1

)
= H0

(
�1

�1

)
, H0 ≡ ∇2W (0, 0). (A5)

It follows that ν1 = ν∞(ε), and �1 solves the linear problem
(H0

���1 + H0
���1)xx = �1 whose solution is

�1 = �1(x = 0) exp(−x/
√

β ), β ≡ det H0/H0
��. (A6)

For region II, the same expansions for � and � are used,
but with independent variable ζ . Since matching implies

�1(ζ ) → �1(x = 0) as ζ → ∞, the equation for �1 may be
integrated twice to give the linear problem

L
(

�1

�1

)
=

(
μ

ν∞

)
, L ≡ −∂ζζ + ∇2W (�h, �h), (A7)

where μ is an integration constant, which by matching is

μ = β�(x = 0) + H0
��

H0
��

ν∞(ε). (A8)

Solutions to (A7) are bounded as ζ → ∞ but must grow
exponentially for ζ → −∞ to accommodate matching to
region I.

A solvability condition for may be derived by taking the
dot product of (A7) with the eigenfunction (�h, �h)ζ and
integrating from ζ to ∞, resulting in

−
(

�1

�1

)
·
(

�h

�h

)
ζ ζ

+
(

�1

�1

)
ζ

·
(

�h

�h

)
ζ

∼ −
(

μ

ν∞

)
·
(

1 − f
f

)
, ζ → −∞. (A9)

Using (A3), this can be written

∑
j=1,2

exp(λζ )a j ·
[
λ2

(
�1

�1

)
− λ

(
�1

�1

)
ζ

]

∼ −
(

μ

ν∞

)
·
(

1 − f
f

)
, ζ → −∞. (A10)

Anticipating exponential growth for ζ → −∞ of the form(
�1

�1

)
∼

∑
j=1,2

k j exp(−λζ )a j, (A11)

it follows that the undetermined coefficients k1,2 are related by

2λ2(k1 + k2) = −
(

μ

ν∞

)
·
(

1 − f
f

)
. (A12)

For region I, expansions � = 1 − f + �1(z; ε) + · · · and
� = f + �1(z; ε) + · · · are used, but with ε dependence
different than the other regions. In particular, matching will
require that �1(z, ε) 	 �1(ζ , ε) with a similar ordering for
�. After integrating the equation for �1 twice and using the
reflective boundary conditions at z = 0, one obtains

−
(

�1

�1

)
zz

+ HA

(
�1

�1

)
=

(
C
0

)
, �1z(0) = 0 = �1z(0),

(A13)

where C is a (ultimately irrelevant) constant of integration.
The solution of (A13) is(

�1

�1

)
= p +

∑
j=1,2

c j (ε)(eλz + e−λz )a j, HA p =
(

C
0

)
,

(A14)

where constants c j are to be determined.
Expansions in regions I and II may now be matched.

Writing the asymptotic solution for ζ → −∞ in region II in
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terms of the variable z in (A3) and (A11), one has(
�1

�1

)
∼

(
1 − f

f

)
+

∑
j=1,2

(k je
λw(ε)e−λz − e−λw(ε)eλz )a j .

(A15)
Equating coefficients to those in (A14) gives

c1(ε) = −e−λw(ε) = c2(ε) = k1(ε)eλw(ε) = k2(ε)eλw(ε).

(A16)

Together with (A12) this implies

4λ2e−2λw(ε) =
(

μ

ν∞

)
·
(

1 − f
f

)
. (A17)

Further expanding the variable μ ≡ −�zz + W� in region
I using μ = −�1zz + HA

���1 + HA
���1 + ε2μ∗ + o(ε2), one

obtains

μ∗zz = 1 − f , μ∗z(0) = 0,

which integrates to μ∗z = (1 − f )z. This matches to an ex-
pansion term μ∗ζ (ζ ) in region II with order ε2w(ε), satisfying
μ∗ζ ζ = 0, which means that μ∗ζ is constant throughout region
II. This in turn matches the leading order expression of the
expansion for μx in region III. The latter is μ1x = H0

���1 +
H0

���1, and it follows that

μ1x(x = 0) = (1 − f )εw(ε). (A18)

Expressions (A5), (A6), (A8), (A17), and (A18) can be used
to eliminate all unknowns except ν∞(ε) and w(ε), resulting
in (11). A balance of the three terms implicitly defines the
orders for expansion terms �1, �1. As w(ε) becomes large,
the balance is between the last two terms in (11), and one has
ν∞ ∝ εw(ε).

2. Micelles

Here it is assumed that ν∞, R 
 1 for ε → 0. Regions for
radially symmetric micelles are as in Fig. 3, where region I
uses a scaled coordinate ρ = r/R(ε) and region II uses ζ =
(r − R(ε))/ε.

It is useful to work in the variable μ ≡ −ε2
r� + W�. In
region III this is expanded as μ = μ∗(r; ε) + μ∗∗(r; ε) + · · · ,
where μ∗ = O(ν∞(ε)), μ∗∗ 
 μ∗, and the dependence on ε

is determined by matching. A similar expansion is required
for �, where by contrast, the far-field conditions require the
expansion � ∼ �∗∗(r; ε) with �∗∗ = O(μ∗∗).

Since 
rμ∗ = 0 for r > 0, the solution is just a constant,
determined by expansion of the far-field condition

μ∗ = μ∞ ≡ −H0
��

H0
��

ν∞.

At next order, one finds 
rμ∗∗ = �∗∗ = μ∗∗/β, where β is
defined as before. The solution can be written

μ∗∗ = C(ε)

{
K0(r/

√
β ), d = 2

exp(−r/
√

β )/r, d = 3
. (A19)

For region II, the leading order solutions are the
same as in the bilayer case. The second expansion terms
�∗(ζ ; ε), �∗(ζ ; ε) are of the same order as ν∞(ε) and solve

L
(

�∗
�∗

)
− ε(d − 1)

R(ε)

(
�h

�h

)
ζ

=
(

μ

ν∞

)
, (A20)

where μ is an integration constant. We are primarily interested
in the regime where ε/R(ε) ∼ ν∞(ε), so the second term
in (A20) is retained. Solvability is determined as before,
giving

σ (d − 1)ε

R(ε)
=

(
μ

ν∞

)
·
(

1 − f
f

)
,

σ ≡
∫ ∞

−∞
(�′

h)2 + (� ′
h)2 dζ . (A21)

Matching solutions in regions III and II can be accom-
plished using μ∗∗ ∼ −C(ε) ln[R(ε)/2

√
β] for d = 2 and

μ∗∗ ∼ −C(ε)/R(ε) for d = 3. It follows that μ∗∗(r) =
O[μ∗(r)/| ln ε|] in dimension 2 and μ∗∗(r) = O[R(ε)μ∗] in
dimension 3, and

μ = μ∞ + C(ε)

{− ln[R(ε)/2
√

β], d = 2
1/R(ε), d = 3

. (A22)

Defining the variable J ≡ rd−1μr , the leading order expres-
sion in region III has

J ∼ rd−1μ2r ∼ −C(ε), r → 0. (A23)

In region I, the leading order expression J = R(ε)d−2ρd−1μρ

solves

1

ρd−2
Jρ = R(ε)d (1 − f ) (A24)

subject to J (0) = 0, so that

J ∼ (1 − f )R(ε)d

d
, ρ → 1. (A25)

Similar to the one-dimensional case, one finds that J is con-
stant in region II to leading order, therefore matching across
all three regions leads to

C(ε) = (1 − f )R(ε)d

d
. (A26)

Combining expressions (A21), (A22), and (A26) give the
desired relationship (12).

3. Vesicles

Region I (Fig. 7) uses a coordinate ρ = (r − R)/ε1/2,
where R represents the midpoint radius. Regions II± use the
coordinate

ζ = r − R ± ε1/2w

ε
,

where w characterizes the width of region II and is also to
be determined. The scaling ν∞ = O(ε1/2) is prescribed in
advance, and all quantities are expanded in powers of ε1/2.

In the regions III±, one finds that(
μ1/2

ν∞

)
= H0

(
�1/2

�1/2

)
,

which may be inverted to write the leading order problem as


rμ1/2 = 1

β

(
μ1/2 − H0

��

H0
��

ν∞

)
, (A27)
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where H0 and β are defined above. The solution in region III−
with condition (9) is

μ1/2 = ν∞
H0

��

H0
��

+ c−

{
I0(r/

√
β ), d = 2

sinh(r/
√

β )/r, d = 3
, (A28)

where I0 is a modified Bessel function and c− is presently
unknown. The decaying solution in region III+ is similarly

μ1/2 = ν∞
H0

��

H0
��

+ c+

{
K0(r/

√
β ), d = 2

exp(−r/
√

β )/r, d = 3
. (A29)

For region II+, the leading order is the same as in the one-
dimensional situation, whereas in region II− the direction is
reversed so �0 = �h(−ζ ) etc. At the next order, we find μ1/2

is equal to the constant μ, and

−
(

�1/2

�1/2

)
ζ ζ

+ ∇2W (�0, �0)

(
�1/2

�1/2

)
=

(
μ

ν∞

)
. (A30)

Solvability of this equation yields the relationship (1 − f )μ +
f ν∞ = 0. Matching to region III determines the constants
in (A28) and (A29) as

c− = −γ ν∞
/{

I0(r/
√

β ), d = 2
sinh(r/

√
β )/r, d = 3

, (A31)

and

c+ = −γ ν∞
/{

K0(r/
√

β ), d = 2
exp(−r/

√
β )/r, d = 3

, (A32)

where γ is defined in (11). Further expansion gives (μ1)ζ ζ =
0 and (μ3/2)ζ ζ = 0. Integration and matching the former to
regions III± implies μ1(ζ ) is a constant, whereas integrating
and matching the later implies continuity of the derivative

μ1ρ (ρ = ±w) = (μ1/2)r (r = ±R). (A33)

The leading order solution in region I is the same as before.
The next order solves (μ1/2)ρρ = 0 and (ν1/2)ρρ = 0, which
by matching to regions II± imply that μ1/2 = μ and ν1/2 =
ν∞. The next order problem is (ν1)ρρ = 1 − f , whose general
solution is

μ1 = (1 − f )ρ2

2
+ Aρ + B. (A34)

Combining this with (A33), (A28), and (A29),

(1 − f )w + A = c+
β

{
K ′

0(R/
√

β ), d = 2
exp(−R/

√
β )(−1/R − √

β/R2), d = 3
(A35)

and

−(1 − f )w + A = c−
β

{
I ′
0(R/

√
β ), d = 2

cosh(R/
√

β )/R − √
β sinh(R/

√
β )/R2, d = 3

. (A36)

These equations determine w and A as functions of R,

w = ν∞w, w(R) = γ

2(1 − f )
√

β

{
I ′
0(R/

√
β )/I0(R/

√
β ) − K ′

0(R/
√

β )/K0(R/
√

β ), d = 2

1 + coth(R/
√

β ), d = 3
(A37)

and

A = ν∞A, A(R) = − γ

2
√

β

{
I ′
0(R/

√
β )/I0(R/

√
β ) + K ′

0(R/
√

β )/K0(R/
√

β ), d = 2

−1 − 2
√

β/R + coth(R/
√

β ), d = 3
. (A38)

Continuing the expansion in region II,

L
(

�1

�1

)
=

(
μ1

0

)
+ d − 1

R

(
�0

�0

)
ζ

+ q, q ≡ −1

2
∇3W (�0, �0) ·

(
�1/2

�1/2

)
·
(

�1/2

�1/2

)
. (A39)

Solvability of this equation is

μ1(1 − f ) = ±σ (d − 1)

R
+ Q, Q ≡

∫
−∞

q ·
(

�h

�h

)
ζ

dζ , (A40)

where + is chosen for region II+ and − for II−. Returning to
the solution for μ1(ρ) in (A34), matching to both regions II±
using (A40) leads to (14).

APPENDIX B: DERIVATION OF THE DYNAMIC FREE
BOUNDARY PROBLEM

For an arbitrary configuration, the interface region (still
denoted region II) is described using a a scaled, moving,

fitted coordinate system (ζ , s), defined so that ζ is the signed
distance, measured in units of ε, from the interface, and s is
a transverse coordinate (or coordinates). The orientation is
chosen so that ζ → −∞ as the region between interfaces is
approached. Region I, described using the scaled coordinates
(X,Y, Z ) now includes both the domain between interfaces
and an O(ε1/3) region outside. The normal velocity vn mea-
sures the motion of the interface (with respect to original
length scale) on a slow timescale τ = tε1/3. The scaling of ν∞
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is prescribed in advance to be O(ε1/3), which as will be shown
leads to a balance of polymer and surface tension effects. All
quantities are expanded in powers of ε1/3. The other details are
geometry dependent and explained in the following sections.

1. Bilayer configurations

The outermost layer, region III, has a leading order solution
which is the same as the equilibrium problem. In terms of the
variable μ this reads

(μ1/3)xx = (μ − μ∞)/β, (B1)

whose solution is

μ1/3 = C exp(−|x|/
√

β ) + μ∞, (B2)

valid for |x| 	 ε1/3.
In region II, the solutions at the first two orders are the

same as in Appendix A 1, with the exception that �1/3(ζ ) and
�1/3(ζ ) are bounded, and therefore the solvability condition
is simply (

μ

ν∞

)
·
(

1 − f
f

)
= 0. (B3)

Matching μ to region III gives

C = − f ν∞/(1 − f ) − μ∞. (B4)

At O(ε2/3) one finds that μ2/3(ζ ) and ν2/3(ζ ) are constants,
and

L
(

�1

�1

)
=

(
μ2/3

ν2/3

)
∓ κ

(
�0

�0

)
ζ

− ∇3W (�h, �h)

×
(

�1/3

�1/3

)
·
(

�1/3

�1/3

)
. (B5)

The interface curvature is defined here so that κ < 0 when the
region between interfaces is convex. Solvability gives(

μ2/3

ν2/3

)
·
(

1 − f
f

)
= −σκ + δ, (B6)

where δ is an ultimately irrelevant constant accounting for the
∇3W term.

In region I, the O(ε2/3) problems are


ν2/3 = �0, 
ν = 0, 
 ≡ ∂XX + ∂YY + ∂ZZ , (B7)

where �0 = 1 − f between the interfaces and �0 = 0 oth-
erwise. Matching to region II provides a boundary condition
for (B7), namely, (B6). In addition, matching to region III
yields

μ2/3X ∼ ∓C/
√

β, X → ±∞. (B8)

Dynamics are obtained from the next expansion term in
region II,

−vn

(
�0

�0

)
ζ

=
(

μ4/3

ν4/3

)
ζ ζ

, (B9)

whose solvability provides the condition

vn

(
1 − f

f

)
=

(
μ4/3ζ

ν4/3ζ

)∣∣∣∞
−∞

. (B10)

Matching to region I gives

vn

(
1 − f

f

)
=

[
∂

∂n

(
μ2/3

ν2/3

)]
, (B11)

where [] is the difference of a quantity from the outside region
to the region between interfaces.

The time-independent solution has interfaces at X = ±w0,
and

μ0
2/3X =

{
(1 − f )X, |X | < w0

∓C/
√

β, ±X > w
. (B12)

In addition, μ2/3X is continuous across interfaces, so that
using (B4),

ν = 1 − f

f
[(1 − f )w0

√
β + μ∞], (B13)

which is consistent with the more general result (11) for w0 =
O(ε1/3).

The conditions (B6)–(B9), and (B11) represent a dynamic
free boundary problem for the two interfaces constituting a
bilayer. This may be simplified by the introduction of the
variable V ≡ (1 − f )μ2/3 + f ν2/3 − δ, and a rescaled time
τ → τ ((1 − f )2 + f 2), giving the stated problem (17)–(19)
together with the far-field condition

lim
X→±∞

VX = ∓C(1 − f )/
√

β, (B14)

where the constant C given by (B4).

2. Cylinders

The dynamic free boundary problem is derived using
the same expansion as for the equilibrium problem (Ap-
pendix A 2); however, the scale for R(ε) is prescribed in
advance to be ε1/3. This sets the scale for cylindrical vari-
ables ρ = r/ε1/3 and Y = y/ε1/3. The expansion at order ∗
is therefore O[ε/R(ε)] = O[R(ε)2 ln R(ε)], and at order ∗∗ is
O[R(ε)2].

The solutions in region III are the same as in equilibrium,
with μ∗ = μ∞, ν∗ = ν∞, ν∗∗ = 0 and ν∗∗ = CK0(r/

√
β ). The

expansion terms in region II yield solvability conditions(
μ∗
ν∗

)
·
(

1 − f
f

)
= −σκ (B15)

and (
μ∗∗
ν∗∗

)
·
(

1 − f
f

)
= 0. (B16)

Here κ is the sum of principle interface curvatures. At order
εR(ε) in region II, an expression for the normal interface
velocity equivalent to (B9) arises. The region I expansion also
occurs on two levels, giving 
μ∗ = 0 = 
ν∗, 
ν∗∗ = 0, and

ν∗∗ = �0, with 
 being the Laplacian in scaled coordinates.

Matching from regions III to I produces

μ∗(ρ) ∼ μ∞ − C, μ∗∗(ρ) ∼ −C ln ρ + C ln(2
√

β ),

ρ → ∞, (B17)

as well as ν∗(ρ) ∼ ν∞ and ν∗∗ ∼ 0 as ρ → ∞. Note this
implies that ρμρ ∼ −C, which may be used to eliminate C
from these conditions.
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As above, the free boundary problems may be reformulated
into a single one by setting Setting V = (1 − f )(μ∗ + μ∗∗) +
f (μ∗ + μ∗∗). The result is the same as (17)–(19), and now the
far-field condition can be written

lim
ρ→∞(V − ρVρ ln ρ) = ln(2

√
β )ρVρ + f ν∞. (B18)

3. Spheres

The derivation of a free boundary problem for roughly
spherical interfaces closely follows the previous sections, and

the only unique aspect is the far-field condition. Matching
from region I to region III results in

μ2/3(ρ) ∼ μ∞, μ2/3(ρ) ∼ ν∞, ρ → ∞, (B19)

in contrast to (B8) in the bilayer case. Defining V = (1 −
f )μ2/3 + f ν2/3 as before leads to (17)–(19) together with

lim
ρ→∞V = (1 − f )μ∞ + f ν∞. (B20)
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