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The properties of cardiac muscle are anisotropic, and the degree of anisotropy may be different in the
intracellular and extracellular spaces. In the electrical bidomain model, such “unequal anisotropy ratios” of the
conductivity lead to unanticipated behavior. In the mechanical bidomain model, unequal anisotropy ratios of the
mechanical moduli might also result in unanticipated behavior. In this study, mathematical modeling based on the
mechanical bidomain model is used to calculate the distribution of mechanotransduction in cardiac tissue when it
is stretched. This analysis demonstrates that unexpected phenomena arise when the mechanical anisotropy ratios
are unequal.
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I. INTRODUCTION

Cardiac tissue is anisotropic [1–3] and the fiber geometry
throughout the heart is complicated [4,5]. Growth and remod-
eling of the heart may be influenced by mechanical forces and
mechanotransduction [6–9]. Therefore, anisotropy is crucial
for understanding the behavior of the heart.

The effects of anisotropy on cardiac tissue have been
discussed using the electrical bidomain model, a macroscopic
model that describes the bioelectric behavior of the heart [10].
In the electrical bidomain model, the tissue is considered as
a continuum of two phases; extracellular and intracellular
separated by a membrane. It calculates the electrical potential
in the intra- and extracellular spaces, and the differences be-
tween the two: the transmembrane potential. Sepulveda et al.
[11] used the electrical bidomain model to analyze anisotropic
cardiac tissue and observed complex spatial distributions of
current and potential with depolarized and hyperpolarized
areas adjacent to an externally applied cathode. They found
that these unusual spatial distributions were due to “unequal
anisotropy ratios;” the anisotropy of the electrical conduc-
tivity was different in the intra- and extracellular spaces.
Many other behaviors become apparent only when tissue has
unequal anisotropy [12].

In the last ten years, a mechanical version of the bidomain
model was developed to study mechanotransduction [13]. It
calculates displacements in the intra- and extracellular spaces,
and the differences between the two: the force on integrin
proteins. These membrane proteins are known to play a crucial
role during mechanotransduction in the heart [14–16]. The
key hypothesis of the mechanical bidomain model is that the
difference of displacements of intra- and extracellular spaces
gives rise to mechanotransduction [17]. Like the electrical
conductivity, the mechanical modulus can be anisotropic, and
may have different degrees of anisotropy in the intra- and
extracellular spaces.

In this paper we analyze the mechanical behavior of car-
diac tissue when it has unequal anisotropy ratios. We derive
the equations of the mechanical bidomain model that predict
where mechanotransduction occurs when the anisotropies of

the mechanical properties are different in the intra- and ex-
tracellular spaces. Our goal is to determine if—as for the
electrical bidomain model—unexpected behavior arises when
the mechanical anisotropy ratios are unequal.

II. METHODS

A. Derivation of analytical equations

We analyze a two-dimensional sheet of anisotropic cardiac
tissue using the mechanical bidomain model. The intracel-
lular and extracellular spaces are coupled by integrins, a
transmembrane protein that connects the cytoskeleton to the
extracellular matrix [16]. The two spaces and the integrins are
represented by springs obeying Hooke’s law. The intracellular
and extracellular displacements are denoted by u and w. The
difference between the displacement of the two spaces (u-w)
causes a mechanical force that activates the integrins.

Before deriving the mechanical equations in detail, we
outline the derivation. First, we propose stress-strain rela-
tionships for the intra- and extracellular spaces individually.
Then we assume incompressibility and mechanical equilib-
rium to obtain equations governing the intra- and extracel-
lular stream functions that determine uniquely the displace-
ments. Finally, the equations simplify if, instead of expressing
them in terms of intra- and extracellular stream functions,
we introduce “monodomain” and “bidomain” stream func-
tions. In particular the bidomain stream function is impor-
tant, because the bidomain displacement causes forces on
integrins.

The tissue is anisotropic, having different mechanical prop-
erties along and across the fibers. The direction of the curved
fiber distribution is specified by the angle of the fibers with
the x axis, θ (x, y). The isotropic part of the tissue properties is
characterized by intra- and extracellular shear moduli, ν and
μ. Anisotropy is included as an additional Young’s modulus
along the fiber axis in the intracellular (γi) and extracellular
(γe) spaces.

We consider an incompressible tissue since tissue is mostly
water. The relationships between intracellular stress (τ ) and
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FIG. 1. The monodomain stream function as a function of X and Y, for isotropic tissue. (a) ψ = XY (uniaxial stretch) and (b) ψ = − X 2

2
(shear).

strain (ε) tensors are

τixx = −p + 2νεixx + γi(εixx cos4θ + 2εixy sin θcos3θ

+ εiyy sin2θcos2θ ), (1)

τiyy = −p + 2νεiyy + γi(εixx cos2θsin2θ + 2εixysin3θ cos θ

+ εiyy sin4θ ), (2)

τixy = 2νεixy + γi(εixx sinθcos3θ + 2εixy sin2θcos2θ

+ εiyysin3θ cos θ ). (3)

The final terms multiplied by γi arise from the stress along
the fibers in the fiber coordinate system, transformed into
the lab coordinate system. Similarly, the stress and strain
relationships for the extracellular space are

τexx = −q + 2μεexx + γe(εexx cos4θ + 2εexy sin θcos3θ

+ εeyy sin2θcos2θ ), (4)

τeyy = −q + 2μεeyy + γe(εexx cos2θsin2θ + 2εexysin3θ cos θ

+ εeyy sin4θ ), (5)

τexy = 2μεexy + γe(εexx sinθcos3θ + 2εexy sin2θcos2θ

+ εeyysin3θ cos θ ), (6)

where p and q are the hydrostatic pressure of the intra- and
extracellular spaces.

Linear strains can be expressed in terms of the displace-
ments of intra- and extracellular spaces, u and w,

εixx = ∂ux

∂x
, εiyy = ∂uy

∂y
, εixy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
, (7)

εexx = ∂wx

∂x
, εeyy = ∂wy

∂y
, εexy = 1

2

(
∂wx

∂y
+ ∂wy

∂x

)
.

(8)

The displacements have zero divergence because the tissue is
incompressible. Using stream functions φ and η, we can write
down the intracellular and extracellular displacements as

ux = ∂φ

∂y
, uy = −∂φ

∂x
, wx = ∂η

∂y
, wy = −∂η

∂x
. (9)

The four equations of the mechanical equilibrium are

∂τixx

∂x
+ ∂τixy

∂y
= K (ux − wx ), (10)

∂τixy

∂x
+ ∂τiyy

∂y
= K (uy − wy), (11)

∂τexx

∂x
+ ∂τexy

∂y
= −K (ux − wx ), (12)

∂τexy

∂x
+ ∂τeyy

∂y
= −K (uy − wy). (13)

These equations imply that the sum of the forces in each space
is zero. As an example, in the intracellular space the forces in
the x direction can be found by taking the divergence of the
intracellular stress tensor, and including a term representing
the coupling between the two spaces by the integrins [18]. The
parameter K indicates the spring constant of the coupling.

By substituting Eqs. (1)–(9) into the four equations of me-
chanical equilibrium, Eqs. (10)–(13), we obtain four equations
for the forces in the intra- and extracellular spaces. The two
equations of the intracellular space are

−∂ p

∂x
+ ν

(
∂3φ

∂x2∂y
+ ∂3φ

∂y3

)
+ γi

8

{
(1 + 3 cos 4θ + 4 cos 2θ )

∂3φ

∂x2∂y
+ (3 sin 4θ + 2 sin 2θ )

∂3φ

∂x∂y2

−
[

(8 sin 4θ + 8 sin 2θ )
∂θ

∂x
− 8 cos 4θ

∂θ

∂y

]
∂2φ

∂x∂y
− (sin 4θ + 2 sin 2θ )

∂3φ

∂x3
+ (1 − cos 4θ )

∂3φ

∂y3

+
[

4 sin 4θ
∂θ

∂y
+ (4 cos 4θ + 4 cos 2θ )

∂θ

∂x

](
∂2φ

∂y2
− ∂2φ

∂x2

)}
= K

(
∂φ

∂y
− ∂η

∂y

)
, (14)

062417-2



MECHANICAL BIDOMAIN MODEL OF CARDIAC MUSCLE … PHYSICAL REVIEW E 100, 062417 (2019)

− ∂ p

∂y
− ν

(
∂3φ

∂x∂y2
+ ∂3φ

∂x3

)
+ γi

8

{
(3 sin 4θ − 2 sin 2θ )

∂3φ

∂x2∂y
+ (−1 − 3 cos 4θ + 4 cos 2θ )

∂3φ

∂x∂y2

+
[

8 cos 4θ
∂θ

∂x
+ (8 sin 4θ − 8 sin 2θ )

∂θ

∂y

]
∂2φ

∂x∂y
− (1 − cos 4θ )

∂3φ

∂x3
− (sin 4θ − 2 sin 2θ )

∂3φ

∂y3

+
[

4 sin 4θ
∂θ

∂x
− (4 cos 4θ − 4 cos 2θ )

∂θ

∂y

](
∂2φ

∂y2
− ∂2φ

∂x2

)}
= −K

(
∂φ

∂x
− ∂η

∂x

)
. (15)

Similarly, we can derive two equations for the extracellular
space.

Next, we introduce two stream functions λ and ψ ,

λ = φ − η, (16)

ψ = φ + μ

ν
η. (17)

These stream functions simplify the set of derived equations
[18]. The stream function λ describes the bidomain behavior
(the difference between the two spaces) and therefore specifies
where there are forces on integrins. The stream function ψ

describes the monodomain behavior (a weighted average of
the two spaces). The specific weighting is chosen so that
the final equations, Eqs. (20) and (21), uncouple under the
condition of equal anisotropy ratios.

In addition to the stream functions, we introduce a set of
dimensionless parameters,

X = x

D
, Y = y

D
, ε =

(σ

D

)2
, (18)

where D is a length characteristic of the tissue (in our case, it
is the length of a side of the tissue sheet), and σ is the length
constant that commonly arises in the mechanical bidomain
model [17]:

σ =
√

νμ

K (ν + μ)
. (19)

We manipulate the two intracellular equations, Eqs. (14)
and (15), in such a way that the hydrostatic pressure p is
eliminated, i.e., by taking the difference of the Y derivative
of Eq. (14) and the X derivative of Eq. (15). Similarly, the hy-
drostatic pressure q can be eliminated from the two equations
for the extracellular space. This leads to a system of coupled
equations for ψ and λ,

∇4ψ + (γi + γe)

8(ν + μ)
f̂ ψ + (μγi − νγe)

8ν(ν + μ)
f̂ λ = 0, (20)

∇4λ + (μ2γi + ν2γe)

8μν(ν + μ)
f̂ λ + (μγi − νγe)

8μ(ν + μ)
f̂ ψ = 1

ε
∇2λ,

(21)

where the operator f̂ is

f̂ = (6 cos 4θ + 2)
∂4

∂X 2∂Y 2
+ (1 − cos 4θ )

(
∂4

∂X 4
+ ∂4

∂Y 4

)
−

(
24 cos 4θ

∂θ

∂X
+ 24 sin 4θ

∂θ

∂Y

)
∂3

∂X 2∂Y

+
(

24 cos 4θ
∂θ

∂Y
− 24 sin 4θ

∂θ

∂X

)
∂3

∂X∂Y 2
+

(
8 sin 4θ

∂θ

∂Y
+ 8 cos 4θ

∂θ

∂X

)
∂3

∂Y 3
+

(
8 sin 4θ

∂θ

∂X
− 8 cos 4θ

∂θ

∂Y

)
∂3

∂X 3

− 4 sin 4θ

(
∂4

∂X 3∂Y
− ∂4

∂X∂Y 3

)
−

{
8 cos 4θ

(
∂2θ

∂X 2
− ∂2θ

∂Y 2

)
+ 16 sin 4θ

∂2θ

∂X∂Y
+ 32 sin 4θ

[(
∂θ

∂Y

)2

−
(

∂θ

∂X

)2
]

+ 64 cos 4θ
∂θ

∂Y

∂θ

∂X

}
∂2

∂X∂Y
+

{
4 sin 4θ

(
∂2θ

∂Y 2
− ∂2θ

∂X 2

)
+ 8 cos 4θ

∂2θ

∂X∂Y
+ 16 cos 4θ

[(
∂θ

∂Y

)2

−
(

∂θ

∂X

)2
]

− 32 sin 4θ
∂θ

∂Y

∂θ

∂X

}(
∂2

∂Y 2
− ∂2

∂X 2

)
. (22)

The two partial differential equations, Eqs. (20) and (21), are
a coupled system of equations governing the monodomain,
ψ , and bidomain, λ, behavior. If μγi − νγe is zero, the
equations of the mechanical bidomain model uncouple in a
way similar to the electrical bidomain model, and γi

ν
�= γe

μ
is

analogous to the condition of unequal anisotropy ratios [12].
In our simulations, we will assume ν = μ, so the condition of
unequal anisotropy ratios is γi �= γe.

Note that in Eqs. (20) and (21) the four parameters ν, μ,
γi, and γe can all be rescaled by a common factor and the
equations remain unchanged. Therefore, we assume ν = μ =
1 and vary γi and γe. For isotropic tissue, γi = γe = 0. For
anisotropic tissue with equal anisotropy ratios, γi = γe = 1.
Finally, for the general case of unequal anisotropy ratios, γi =
1 and γe = 0.
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FIG. 2. The fiber distribution in a 2D sheet of cardiac tissue given
by Eq. (23). X is horizontal and ranges from −1 to 1.

B. Derivation of numerical equations

The coupled equations, Eqs. (20) and (21), are solved using
the finite difference approximation and over-relaxation, an
iterative technique. We considered a square grid with an equal
space step in both directions [18,19].

Previous studies have examined how a boundary layer
can form within a few length constants of the tissue surface
[17,20]. In this study, we do not want to further examine
that behavior, but rather want to focus on the effects of
fiber curvature and unequal anisotropy ratios. Therefore, we
introduce artificial boundary conditions: We set ψ at the
boundary to a function that represents the limiting behavior
of the monodomain far from the fiber direction heterogeneity,
and set λ = 0 to eliminate any boundary layer.

We applied two different functions for the monodomain
behavior ψ shown in Fig. 1. Figure 1(a) corresponds to normal
strain with a magnitude of 1 and zero shear strain, as if
the tissue were stretched in one direction (uniaxial stretch).
Figure 1(b) corresponds to pure shear; the shear strain has a

FIG. 3. Monodomain displacement m in isotropic tissue under
uniaxial stretch. The fiber geometry θ (X,Y ) is given by Eq. (23), the
boundary conditions were applied using ψ = XY , and γi = γe = 0.
The peak value of the monodomain displacement is 1 (in dimension-
less units). Because |m| is much larger than |b| (see Fig. 5), a plot of
m looks nearly identical to a plot of u or w.

magnitude of 1
2 and zero normal strain. The plots in Fig. 1

indicate how the stream functions behave throughout isotropic
tissue, in which case ψ obeys the biharmonic equation ∇4ψ =
0. In our calculations with anisotropic tissue, at the boundary
we set λ equal to zero and ψ equal to one of these assumed
functions, and then calculate how ψ and λ behave in the
interior.

We used a N × N grid in numerical calculations, where
N = 105 (including four fictitious nodes to implement the
boundary conditions). In the dimensionless variables X and
Y, the sheet extended from −1 < X < 1 and −1 < Y < 1.
Therefore, the space step () is 0.02. The value of ε depends
on the coupling strength between the two spaces, and repre-
sents the relative size of the bidomain length constant σ and
the length scale D. We set σ = D/100, implying ε = 0.0001.

FIG. 4. Monodomain (a) normal strain and (b) shear strain for equal anisotropy ratios under uniaxial stretch. The fiber geometry θ (X,Y )
is given by Eq. (23), boundary conditions were applied using ψ = XY , and γi = γe = 1.
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FIG. 5. (a) Bidomain displacement b in tissue with unequal anisotropy ratios under uniaxial stretch and (b) its magnitude |b|. The fiber
geometry θ (X,Y ) is given by Eq. (23), boundary conditions were applied using ψ = XY , and γi = 1 and γe = 0. The length of the bidomain
arrows in (a) is scaled differently than the length of the monodomain arrows in Fig. 3. The monodomain displacement is about 5000 times
larger than the bidomain displacement.

III. RESULTS

A. Simple fiber geometry

As our first example, consider the fiber distribution given
by the function

θ (X,Y ) = π

2
(16X 4 − 8X 2 + 1) (16Y 4 − 8Y 2 + 1), (23)

in the center region of the sheet (−0.5 < X < 0.5 and −0.5 <

Y < 0.5) and θ (X,Y ) = 0 elsewhere, which leads to the sim-
ple fiber geometry shown in Fig. 2.

One virtue of this fiber geometry is that the fiber curvature
is confined to a region near the center of the tissue, so we can
avoid confusing effects caused by fiber curvature with effects
arising at the tissue boundary. A similar fiber geometry was
used in the analysis of the mechanical bidomain model with
curving fibers that exert a tension [18], and in the analysis of
the electrical bidomain model with curving fibers [21].

1. Uniaxial stretch

We define the monodomain, m, and bidomain, b, dis-
placements as m = u + μ

ν
w and b = u − w [18]. The X

and Y components of the displacement vectors m and b are
mx = ∂ψ

∂Y , my = − ∂ψ

∂X , bx = ∂λ
∂Y , and by = − ∂λ

∂X . Figure 3
shows the monodomain displacement for an isotropic tissue
where γi = γe = 0, corresponding to a uniaxial stretching
in the X direction with narrowing in the Y direction because
of incompressibility. In this case the bidomain displacement
b is zero. The monodomain normal strain is equal to 1 and
is uniform throughout the tissue, and the monodomain shear
strain is zero.

The monodomain displacement is changed only slightly
when the tissue is anisotropic with equal anisotropy ratios
(γi = γe = 1). A plot of m is nearly indistinguishable from

that in Fig. 3. The bidomain displacement remains identically
zero. The monodomain normal and shear strains, however,
emphasize small deviations of the stream function caused
by anisotropy, even for equal anisotropy ratios (Fig. 4). The
magnitude of the normal strain varies by only about 10% from
its value of 1 for isotropic tissue, and the shear strain is small
(less than 0.1) throughout the sheet. The heterogeneities of the
strains are largest where the fiber direction changes abruptly,
but also spread throughout the tissue.

For unequal anisotropy ratios (γi = 1 and γe = 0), the
monodomain displacement and strain appear similar to those

FIG. 6. Monodomain displacement m, in isotropic tissue under
shear. The fiber geometry θ (X,Y ) is given by Eq. (23), boundary
conditions were applied using ψ = − X 2

2 , and γi = γe = 0. The peak
value of the monodomain displacement is 1 (in dimensionless units).
Because |m| is much larger than |b| (see Fig. 8), a plot of m looks
nearly identical to a plot of u or w.
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FIG. 7. Monodomain (a) normal strain and (b) shear strain for equal anisotropy ratios undergoing shear. The fiber geometry θ (X,Y ) is
given by Eq. (23), boundary conditions were applied using ψ = − X 2

2 , and γi = γe = 1.

shown in Figs. 3 and 4. However, the bidomain displacement
is no longer zero. Figure 5 shows a plot of b with its spi-
raling geometry. Note that the magnitude of the bidomain
displacement (Fig. 5) is much smaller than the monodomain
displacement (Fig. 3), implying that the difference between
the intracellular and extracellular displacements is small com-
pared to the intracellular and extracellular displacements
themselves. This distribution of the bidomain displacement
[Fig. 5(b)] is qualitatively different than the distribution of
monodomain strain (Fig. 4), and is largest where the fiber
direction changes most rapidly. The bidomain displacement
indicates where forces on integrins are greatest; Fig. 5(b) can
be interpreted as a prediction of where integrins will cause
mechanotransduction.

2. Shear

Monodomain displacement in isotropic tissue undergoing
shear is shown in Fig. 6. The bidomain displacement is
identically zero, the monodomain normal strain is zero, and
the magnitude of the monodomain shear strain is 1

2 .
When anisotropic tissue with a fiber geometry given by

Eq. (23) is sheared, plots of normal and shear strains (Fig. 7)
are similar to when the tissue undergoes unixaial stretch.
However, the normal strain is now small, and the shear strain
contains small deviations from its isotropic value of 1

2 . The
bidomain displacement is zero.

Figure 8 shows the bidomain displacement (and therefore
the location of integrin activation and mechanotransduction)
for tissue with unequal anisotropy ratios undergoing shear.
The distribution of the displacement is similar to that in Fig. 5,
but the magnitude is smaller. The monodomain displacement
and strains are similar to Figs. 6 and 7.

B. Complex fiber geometry

Our second example fiber geometry is given by

θ (X,Y ) = π

4
(−448X 6 + 240X 4 − 36X 2 + 1)

× (16Y 4 − 8Y 2 + 1), (24)

which is distributed in the same region specified for Eq. (23),
−0.5 < X < 0.5 and −0.5 < Y < 0.5 (Fig. 9). It is more
complicated than in Fig. 2, and contains higher spatial fre-
quencies.

1. Uniaxial stretch

For isotropic tissue the plot of monodomain displacement
is the same as Fig. 3 (the fiber geometry plays no role when
the tissue is isotropic). The bidomain displacement is zero.

For equal anisotropy ratios, the monodomain normal and
shear strains are shown in Fig. 10. As before, the normal strain
varies about a value of 1, and shear strain is small. The spatial
distribution is different than in Fig. 4, reflecting the difference
in fiber geometry. The bidomain displacement is zero.

For unequal anisotropy ratios, the bidomain displacement
is no longer zero. The distribution of b is shown in Fig. 11;
it is similar in magnitude but different in distribution than in
Fig. 5.

2. Shear

When isotropic tissue with the fiber geometry shown in
Fig. 9 undergoes shear, the monodomain displacement is
identical to that shown in Fig. 6. The monodomain normal
strain is zero, the monodomain shear strain is 1

2 , and the
bidomain displacement is zero.

For equal anisotropy ratios, the monodomain displacement
is like that shown in Fig. 6, and the bidomain displacement
is zero. However, the monodomain strain shown in Fig. 12
has a different distribution than in Fig. 4, 7, or 10, indi-
cating that both the fiber geometry and how the tissue is
stretched are important for determining strain. As for all
cases with equal anisotropy ratios, the bidomain displacement
is zero.

When the tissue has unequal anisotropy ratios, the mon-
odomain displacement and strain are similar to those shown
in Figs. 6 and 12. The bidomain displacement is no longer
zero and its distribution is shown in Fig. 13.
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FIG. 8. (a) Bidomain displacement b in tissue with unequal anisotropy ratios under shear and (b) its magnitude |b|. The fiber geometry
θ (X,Y ) is given by Eq. (23), boundary conditions were applied using ψ = − X 2

2 , and γi = 1 and γe = 0. The length of the bidomain arrows in
(a) is scaled differently than the length of the monodomain arrows in Fig. 6. The monodomain displacement is about 10 000 times larger than
the bidomain displacement.

IV. DISCUSSION

We analyzed cardiac tissue using the mechanical bido-
main model, which is a macroscopic mathematical model
of mechanotransduction. The mechanical behavior of cardiac
tissue becomes increasingly complex as we progress from
an isotropic model, to equal anisotropy ratios, to unequal
anisotropy ratios. For isotropic tissue the monodomain dis-
placement is independent of fiber geometry; fiber direction
has no influence (indeed no meaning at all) if the mechanical
properties are isotropic: the same parallel and perpendicular
to the fibers. Only in anisotropic tissue does fiber direction
matter. In our examples, the monodomain strain is uniform,
and depends on how the tissue is stretched (uniaxial stretch

FIG. 9. The fiber distribution in a 2D sheet of cardiac tissue given
by Eq. (24). X is horizontal and ranges from −1 to 1.

or shear). The bidomain displacement is zero. For equal
anisotropy ratios the monodomain strain is more heteroge-
neous, but the inhomogeneities represent small deviations
about the isotropic values. Our plots of strain (Figs. 4, 7,
10, and 12) may exaggerate the significance of these devi-
ations, as the color scale extends over only a small range
about the isotropic average value. The bidomain displacement
remains identically zero. For unequal anisotropy ratios, the
monodomain behavior changes only slightly, but the bidomain
displacement is no longer zero, indicating a force on integrins.
The distribution of |b| is qualitatively different than the dis-
tribution of strain (normal or shear). In particular, the strain
caused by the curving fibers extends into the surrounding
straight fibers to a greater degree than does the bidomain
displacement.

We have shown that unequal anisotropy ratios are critical
for the bidomain displacement, and therefore for the distri-
bution of forces on integrins and mechanotransduction. Does
cardiac tissue have unequal anisotropy ratios? Most studies
of cardiac biomechanics are based on monodomain models,
so the anisotropic properties of the intra- and extracellular
spaces are not measured individually. When Ohayon and
Chadwick derived their monodomain model of cardiac tissue,
they included an isotropic contribution corresponding to the
extracellular collagen matrix, and an anisotropic contribution
corresponding to the intracellular tension along the fibers
caused by the interaction of actin and myosin [22]. If their
model is recast in bidomain language, they would predict that
cardiac tissue is more anisotropic in the intracellular space
than in the extracellular space. The electrical properties of
cardiac tissue are known to have unequal anisotropy ratios
[23], so by analogy the mechanical properties may have un-
equal anisotropy ratios too. We do not have data to determine
definitively if cardiac tissue has unequal anisotropy ratios.
One contribution of our study is to suggest that experimental-
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FIG. 10. Monodomain (a) normal strain and (b) shear strain for equal anisotropy ratios under uniaxial stretch. The fiber geometry θ (X,Y )
is given by Eq. (24), boundary conditions were applied using ψ = XY , and γi = γe = 1.

ists should examine the mechanical properties and anisotropy
in each space individually.

Our previous work indicates that bidomain displacements
can occur near tissue boundaries [17]. We excluded boundary
effects from this study by setting λ = 0 at the boundary. In
general, bidomain displacements and integrin forces might
occur both near tissue boundaries and in the bulk if the
fibers are curving and the tissue has unequal anisotropy
ratios. We speculate that other heterogeneities, such as a
gradient in the intra- or extracellular shear modulus, that
we did not consider here might also lead to bidomain
displacements.

Fibers rotate and change direction in the heart [4,5]. How-
ever, our assumed fiber geometries in Figs. 2 and 9 are

not meant to represent the realistic cardiac fiber geometry.
Instead, we analyze two generic cases in order to highlight
general principles. Experimentalists can create in vitro tissue
samples having a user-specified fiber geometry [24,25], and
our simulations might be experimentally tested using such
techniques.

The bidomain model was derived based on the assump-
tion that differences between intracellular and extracellular
displacements cause forces on integrins and lead to mechan-
otransduction. Other monodomain studies have assumed that
tissue stress or strain drives mechanotransduction, particu-
larly during tissue growth and remodeling in the heart [6–9].
The distribution of monodomain strain and the distribution
of bidomain displacement (integrin forces) are qualitatively

FIG. 11. (a) Bidomain displacement b in tissue with unequal anisotropy ratios under uniaxial stretch and (b) its magnitude |b|. The fiber
geometry θ (X,Y ) is given by Eq. (24), boundary conditions were applied using ψ = XY , and γi = 1 and γe = 0. The length of the bidomain
arrows in (a) is scaled differently than the length of the monodomain arrows in Fig. 3. The monodomain displacement is about 5000 times
larger than the bidomain displacement.
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FIG. 12. Monodomain (a) normal strain and (b) shear strain for tissue with equal anisotropy ratios under shear. The fiber geometry θ (X,Y )
is given by Eq. (24), boundary conditions were applied using ψ = − X 2

2 , and γi = γe = 1.

different. Therefore, the distribution of cardiac growth and
remodeling is different, depending on the underlying mecha-
nism of mechanotransduction. In principle, one could measure
the fiber distribution, compare strain and |b| in an experiment,
and correlate them with the location of greatest tissue remod-
eling, and thereby distinguish between these two assumptions
about the mechanism of mechanotransduction. Growth and
remodeling of the heart is important in cardiac hypertrophy
and heart failure. Therefore, a bidomain approach may be
critical to understand these diseases.

The shear moduli of the intracellular and extracellular
spaces, ν and μ, represent the isotropic part of the mechanical
behavior. We assume that ν = μ. We repeated the calculations

in Figs. 3 – 5 using ν = 0.5, μ = 1 and ν = 2, μ = 1. When
the value of ν changed to 0.5, the magnitude of bidomain
displacement was increased by nearly 25% with no significant
changes in the spatial distributions of bidomain displacement,
and monodomain normal and shear strains. Similar outcomes
were observed in monodomain strains when the value of ν was
changed to 2. However, the magnitude of bidomain displace-
ment decreased by nearly 30% compared to the results shown
in Fig. 5.

What we called the “additional Young’s modulus” rep-
resents the increase in stiffness along the fiber axis com-
pared to other directions and is a measure of the mechanical
anisotropy. We examine cases in which γi and γe are either

FIG. 13. (a) Bidomain displacement b in tissue with unequal anisotropy ratios when sheared and (b) its magnitude |b|. The fiber geometry
θ (X,Y ) is given by Eq. (24), boundary conditions were applied using ψ = − X 2

2 , and γi = 1 and γe = 0. The length of the bidomain arrows in
(a) is scaled differently than the length of the monodomain arrows in Fig. 6. The monodomain displacement is about 10 000 times larger than
the bidomain displacement.
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zero or 1. In highly anisotropic tissue, γi

ν
and γe

μ
might be

significantly greater than 1. We repeated the calculations in
Figs. 4 and 5 using γi

ν
= 10, γe

μ
= 10 and γi

ν
= 10, γe

μ
= 0. We

observed a large increase (≈600%) in the magnitude of bido-
main displacement compared to the increase in monodomain
normal (≈55%) and shear (≈400%) strains. Furthermore,
when the anisotropy ratios are more different, the distribution
of the magnitude of bidomain displacement becomes more
localized.

The parameter ε represents the square of the ratio of the
bidomain length constant, σ , to the tissue size, D. We do not
know of data for σ in cardiac tissue. Using data from human
embryonic stem cell colonies [26], Auddya and Roth [27]
estimated σ is on the order of 150 μm. In the current study
we considered σ = 200 μm and assumed the tissue size D is
20 mm, implying that σ

D is 1
100 , and therefore ε = 0.0001. We

repeated the calculation in Fig. 5 for ε = 0.001 and found that
the magnitude of bidomain displacement increased in propor-
tion to the value of ε, with no effect of ε on monodomain
strains.

Our model is based on additional assumptions: (1) The
tissue is at steady-state mechanical equilibrium. (2) Strains
are linear. (3) The stress-strain relationship is linear. (4) The
coupling between the intracellular and extracellular space is
linear and can be represented by a spring constant K . (5) Both
the intracellular and extracellular spaces are incompressible.
(6) The tissue is two dimensional and undergoes plain strain.

Our results are not the first to examine the behavior of
the mechanical bidomain model for curving fibers. Sharma
and Roth [18] studied the case when the mechanical mod-
uli are isotropic, but an active tension arising from the in-
teraction of actin and myosin acts along the fiber direc-
tion. They found that bidomain behavior is localized to

the region where fiber angle changes whereas monodomain
behavior is widely distributed throughout the tissue. Also,
they observed an increase in the magnitude of bidomain
displacement and a more localized distribution when the
value of ε is increased (monodomain behavior does not
depend on ε).

Our calculation was motivated by the importance of un-
equal anisotropy ratios in the electrical bidomain model.
Roth and Langrill Beaudoin [21] performed an electrical
calculation that is analogous to our mechanical calculation.
They applied a uniform electric field (rather than a uniform
stretch) to tissue with curving fibers that had unequal ra-
tios of electrical conductivity in the intracellular and ex-
tracellular spaces (rather than unequal ratios of mechanical
moduli). They found a heterogeneous distribution of trans-
membrane potential (rather than integrin stretching) caused
by the fiber curvature, which disappeared when the tissue
had equal anisotropy ratios. The transmembrane potential
had a spiral distribution reminiscent of the results shown in
Fig. 5. Unequal anisotropy ratios have many implications for
the electrical bidomain model [12] and might similarly have
implications for the mechanical bidomain model beyond what
we have discussed here.

In summary, we find that the mechanical bidomain model
predicts unexpected behavior when the anisotropy of the
mechanical moduli are different in the intracellular and ex-
tracellular spaces ( γi

ν
�= γe

μ
). If the differences between the

intracellular and extracellular displacements drive mechan-
otransduction, then these differences can be predicted only
by taking into account unequal anisotropy ratios. Our results
could have implications for the study of growth and remod-
eling of cardiac tissue in the heart during diseases such as
cardiac hypertrophy.

[1] Y. C. Fung, Biomechanics: Mechanical Properties of Living
Tissues (Springer-Verlag, New York, 1981).

[2] J. D. Humphrey, Cardiovascular Solid Mechanics: Cells, Tis-
sues and Organs (Springer, New York, 2002).

[3] A. D. McCulloch, Cardiac biomechanics, in Biomedical Engi-
neering Fundamentals, edited by J. D. Bronzino (CRC Press,
Boca Raton, FL, 2006).

[4] D. D. Streeter and W. T. Hanna, Circ. Res. 33, 639
(1973).

[5] P. M. Nielsen, I. J. Le Grice, B. H. Smaill, and P. J. Hunter, Am.
J. Physiol. 260, H1365 (1991).

[6] W. Kroon, T. Delhaas, P. Bovendeerd, and T. Arts, Med. Image
Anal. 13, 346 (2009).

[7] P. H. M. Bovendeerd, J. Biomech. 45, 872 (2012).
[8] R. C. P. Kerckhoffs, J. H. Omens, and A. D. McCulloch, Mech.

Res. Commun. 42, 40 (2012).
[9] M. Genet, L. C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-

Bolton, Z. Zhang, L. Ge, K. Ordovas, S. Kozerke, and J. M.
Guccione, J. Appl. Physiol. 117, 142 (2014).

[10] C. S. Henriquez, Crit. Rev. Biomed. Eng. 21, 1 (1993).
[11] N. G. Sepulveda, B. J. Roth, and J. P. Wikswo, Biophys. J. 55,

987 (1989).

[12] B. J. Roth, in Proceedings of the 28th Annual International
Conference of the IEEE Engineering in Medicine and Biol-
ogy Society, New York, 2006 (IEEE, Piscataway, NJ, 2006),
p. 580.

[13] S. Puwal and B. J. Roth, Phys. Rev. E 82, 041904
(2010).

[14] M. Brancaccio, E. Hirsch, A. Notte, G. Selvetella, G. Lembo,
and G. Tarone, Cardiovasc. Res. 70, 422 (2006).

[15] S. Israeli-Rosenberg, A. M. Manso, H. Okada, and R. S. Ross,
Circ. Res. 114, 572 (2014).

[16] B. E. Dabiri, H. Lee, and K. K. Parker, Prog. Biophys. Mol.
Biol. 110, 196 (2012).

[17] K. Sharma, N. Al-asuoad, M. Shillor, and B. J. Roth, J. Coupled
Syst. Multiscale Dyn. 3, 200 (2015).

[18] K. Sharma and B. J. Roth, Phys. Biol. 15, 066012 (2018).
[19] S. P. Gandhi and B. J. Roth, Comput. Methods Biomech.

Biomed. Eng. 19, 1099 (2016).
[20] B. J. Roth, in Cardiomyocytes: Methods and Protocols, edited

by G. R Skuse and M. C. Ferran (Humana, New York, 2015),
Vol. 1299, p. 93.

[21] B. J. Roth and D. Langrill Beaudoin, Phys. Rev. E 67, 051925
(2003).

062417-10

https://doi.org/10.1161/01.RES.33.6.639
https://doi.org/10.1161/01.RES.33.6.639
https://doi.org/10.1161/01.RES.33.6.639
https://doi.org/10.1161/01.RES.33.6.639
https://doi.org/10.1152/ajpheart.1991.260.4.H1365
https://doi.org/10.1152/ajpheart.1991.260.4.H1365
https://doi.org/10.1152/ajpheart.1991.260.4.H1365
https://doi.org/10.1152/ajpheart.1991.260.4.H1365
https://doi.org/10.1016/j.media.2008.06.015
https://doi.org/10.1016/j.media.2008.06.015
https://doi.org/10.1016/j.media.2008.06.015
https://doi.org/10.1016/j.media.2008.06.015
https://doi.org/10.1016/j.jbiomech.2011.11.029
https://doi.org/10.1016/j.jbiomech.2011.11.029
https://doi.org/10.1016/j.jbiomech.2011.11.029
https://doi.org/10.1016/j.jbiomech.2011.11.029
https://doi.org/10.1016/j.mechrescom.2011.11.004
https://doi.org/10.1016/j.mechrescom.2011.11.004
https://doi.org/10.1016/j.mechrescom.2011.11.004
https://doi.org/10.1016/j.mechrescom.2011.11.004
https://doi.org/10.1152/japplphysiol.00255.2014
https://doi.org/10.1152/japplphysiol.00255.2014
https://doi.org/10.1152/japplphysiol.00255.2014
https://doi.org/10.1152/japplphysiol.00255.2014
https://www.ncbi.nlm.nih.gov/pubmed/8365198
https://doi.org/10.1016/S0006-3495(89)82897-8
https://doi.org/10.1016/S0006-3495(89)82897-8
https://doi.org/10.1016/S0006-3495(89)82897-8
https://doi.org/10.1016/S0006-3495(89)82897-8
https://doi.org/10.1103/PhysRevE.82.041904
https://doi.org/10.1103/PhysRevE.82.041904
https://doi.org/10.1103/PhysRevE.82.041904
https://doi.org/10.1103/PhysRevE.82.041904
https://doi.org/10.1016/j.cardiores.2005.12.015
https://doi.org/10.1016/j.cardiores.2005.12.015
https://doi.org/10.1016/j.cardiores.2005.12.015
https://doi.org/10.1016/j.cardiores.2005.12.015
https://doi.org/10.1161/CIRCRESAHA.114.301275
https://doi.org/10.1161/CIRCRESAHA.114.301275
https://doi.org/10.1161/CIRCRESAHA.114.301275
https://doi.org/10.1161/CIRCRESAHA.114.301275
https://doi.org/10.1016/j.pbiomolbio.2012.07.002
https://doi.org/10.1016/j.pbiomolbio.2012.07.002
https://doi.org/10.1016/j.pbiomolbio.2012.07.002
https://doi.org/10.1016/j.pbiomolbio.2012.07.002
https://doi.org/10.1166/jcsmd.2015.1079
https://doi.org/10.1166/jcsmd.2015.1079
https://doi.org/10.1166/jcsmd.2015.1079
https://doi.org/10.1166/jcsmd.2015.1079
https://doi.org/10.1088/1478-3975/aadacd
https://doi.org/10.1088/1478-3975/aadacd
https://doi.org/10.1088/1478-3975/aadacd
https://doi.org/10.1088/1478-3975/aadacd
https://doi.org/10.1080/10255842.2015.1105964
https://doi.org/10.1080/10255842.2015.1105964
https://doi.org/10.1080/10255842.2015.1105964
https://doi.org/10.1080/10255842.2015.1105964
https://doi.org/10.1103/PhysRevE.67.051925
https://doi.org/10.1103/PhysRevE.67.051925
https://doi.org/10.1103/PhysRevE.67.051925
https://doi.org/10.1103/PhysRevE.67.051925


MECHANICAL BIDOMAIN MODEL OF CARDIAC MUSCLE … PHYSICAL REVIEW E 100, 062417 (2019)

[22] J. Ohayon and R. S. Chadwick, Biophys. J. 54, 1077 (1988).
[23] B. J. Roth, J. Math. Biol. 30, 633 (1992).
[24] A. Agarwal, Y. Farouz, A. P. Nesmith, L. F. Deravi, M.

L. McCain, and K. K. Parker, Adv. Funct. Mater. 23, 3738
(2013).

[25] N. Badie and N. Bursac, Biophys. J. 96, 3873 (2009).
[26] K. A. Rosowski, A. F. Mertz, S. Norcross, E. R. Dufresne, and

V. Horsley, Sci. Rep. 5, 14218 (2015).
[27] D. Auddya and B. J. Roth, J. Phys. D 50, 105401

(2017).

062417-11

https://doi.org/10.1016/S0006-3495(88)83044-3
https://doi.org/10.1016/S0006-3495(88)83044-3
https://doi.org/10.1016/S0006-3495(88)83044-3
https://doi.org/10.1016/S0006-3495(88)83044-3
https://doi.org/10.1007/BF00948895
https://doi.org/10.1007/BF00948895
https://doi.org/10.1007/BF00948895
https://doi.org/10.1007/BF00948895
https://doi.org/10.1002/adfm.201203319
https://doi.org/10.1002/adfm.201203319
https://doi.org/10.1002/adfm.201203319
https://doi.org/10.1002/adfm.201203319
https://doi.org/10.1016/j.bpj.2009.02.019
https://doi.org/10.1016/j.bpj.2009.02.019
https://doi.org/10.1016/j.bpj.2009.02.019
https://doi.org/10.1016/j.bpj.2009.02.019
https://doi.org/10.1038/srep14218
https://doi.org/10.1038/srep14218
https://doi.org/10.1038/srep14218
https://doi.org/10.1038/srep14218
https://doi.org/10.1088/1361-6463/aa59b5
https://doi.org/10.1088/1361-6463/aa59b5
https://doi.org/10.1088/1361-6463/aa59b5
https://doi.org/10.1088/1361-6463/aa59b5

