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Effect of visual and auditory sensing cues on collective behavior in Vicsek models
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In the present study, we consider two independent sensing modes (auditory and visual) in Vicsek-like models

and compare the emergent group-level behaviors in terms of polarization, cohesion, and cluster size. The auditory
and visual modes differ in the determination of particle neighbors, which at the level of groups results in higher
polarization, lower cohesion, and larger cluster size for the auditory mode relative to the visual. With the increase
in average density of the particles, these differences are more pronounced. These differences are due to the fact

that these sense modalities robustly generate distinct spatial distributions of the particles. We demonstrate the
use of a data-driven approach, called transfer entropy, to distinguish the sensing modalities by considering only
a pair of particle trajectories. Such an approach could be applicable to real-world systems, where it may be a
challenge to measure the position and velocity of every particle within a swarm.
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I. INTRODUCTION

Collective behavior refers to the emergence of group-level
behavior from individual interactions and is observed in both
living (e.g., birds [1], fish schools [2], and human crowds [3])
and nonliving systems [4,5]. Collective behavior may arise
from purely local rules in the absence of any central coor-
dination, as demonstrated by a variety of models [6—10]. For
the popular Vicsek model [11], order spontaneously emerges
in systems where particles align their directions of motion to
those within a local neighborhood, exhibiting a phase tran-
sition from a random disordered state to an aligned ordered
state as the intensity of random perturbations of individual
velocities decreases or the average particle density increases.
Inspired by various features of real-world collective behavior,
a number of variants of the Vicsek model have been proposed,
for instance, a generalization to three dimensions [12] and
consideration of both attractive and repulsive interactions
[13]. A restriction of the sensing region (the spatial region
determining the neighbors of a particle) from a circular disk to
a sector has also been considered in the literature [14,15]. The
study is motivated from the fact that the real-world swarms
may not have a panoramic view, and the results demonstrate
that restricting the sensing region enables the system to attain
faster convergence to global alignment [16].
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Although it is typically implicitly assumed that pairwise
interactions in collective behavior models are mediated by vi-
sual cues [14,15,17], there are a number of social species that
use auditory cues to at least partly determine their motion, for
example, bats and dolphins [18]. This motivates the present
study where we investigate a modified Vicsek model in which
the particles communicate by independent use of auditory
information and compare it to an existing model that uses a vi-
sual sensing scheme. One previous study incorporated sound
as an additional mode of agent interaction in a Vicsek model
[19]. However, it was assumed that sound generation was
omnidirectional so that agents can “hear” others regardless
of their relative orientation. Outside the Vicsek paradigm, the
study in [20] examines more than one sense modality using a
network model with consensus and synchronization protocols.
However, the network model ignores the spatial distribution
of particles and neighbor detection is stochastic. In a study
of midges [21], acoustic interactions are introduced via an
adaptive gravity model in which the attractive force between
particles is assumed to be proportional to sound intensity.
Though theoretical models have given limited consideration
to auditory cues, a number of empirical studies have provided
evidence of animals altering their motion in response to audio
cues. For instance, in [22] it was shown that bats navigate by
combining signals from multiple sensory modalities including
vision and audition. Another study [23] has found a rear-to-
front coupling in a flying bat pair, which may indicate that
pairs of bats may adjust their flight in response to auditory
stimulus.
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In the present study, we examine the consequences within
the Vicsek paradigm of a purely auditory sensing mode
which, unlike [19], restricts the acoustic information emit-
ted by agents to a limited volume around their direction
of motion. The auditory sensing implemented in our study
emulates a well-characterized directivity pattern that can be
observed in ultrasonic beam formation. With directional ul-
trasound beams, a microphone inside a source’s beam can
hear the sound, while one at the same linear distance from
the source but at a different angular distance may not [24,25].
The present model takes inspiration from biological systems,
specifically bat swarms which effectively use this type of
directional ultrasound to navigate their environment. We con-
sider in our study an idealized version of the ultrasonic beam
and we model it as a sector of a circle. We quantify the result-
ing collective behavior of simulated groups in terms of order
parameters including polarization (group linear momentum),
cohesion (a measure of group compactness), and cluster size
(a measure of sensory connectedness) [8,26,27]. Measured
this way, we observe very different group-level behaviors for
a Vicsek model modified to reflect an auditory sensing scheme
relative to an existing model that implements a visual sensing
scheme. However, it would be difficult to assess whether
analogous differences are manifest in real-world groups using
these same order parameters. While easy to compute for
simulations with perfect state information, they are difficult or
impossible to compute when the data for the particles’ states
are partial or noisy.

To overcome this challenge, we explore the use of transfer
entropy, a data-driven model-free method for detecting the
dominant direction of information flow [28]. Data-driven
methods which include approaches based on information-
theoretic entropy have already proved useful in the study
of collective behavior, for example, to detect the direction
of navigational influence in pairs of animals [23,29,30]. We
implement transfer entropy on the data generated from Vicsek
models using either auditory or visual sensing schemes and
find that transfer entropy effectively distinguishes between
these modalities.

The paper organized as follows. In Sec. II we provide
details of two models and the relevant order parameters. In
Sec. III we provide our simulation results and discuss the
effect of average density on group-level behaviors. In Sec. [V
we present a model-free method for discriminating sensing
modalities using the information from trajectory data. Finally,
we draw our conclusions in Sec. V.

II. MODELING SENSING MODALITIES

In this section, we present the general Vicsek framework
and formally distinguish visual from auditory sense modal-
ities through the set of sensory neighbors. We then define
the order parameters in terms of which collective behavior is
described.

A. Vicsek models

We consider N self-propelled particles moving with a
constant speed vy in a square two-dimensional box of length
L with periodic boundary conditions in discrete time. The

average density of particles is given by p = N/L?. The po-
sition and unit velocity vectors of the ith particle at time
step k are denoted by x* € R? and vk e R%, i€ 1,...,N,
respectively. At every time step, the ith particle assumes
the average direction of motion of the neighboring particles
with an estimation error characterized by a random noise.
Specifically, the heading angle of the ith particle at time step
k + 1 is denoted by Gik“ and updates as

0f = tan™! (—ZJEA'k s (GJI? ) + A6F,
3 jenr cos ()

where Af? is the index set of the neighbors of the ith particle,
including itself, and AO{‘ denotes noise and is a random
variable uniformly distributed in the interval [— g %], where 7
is the noise intensity. Based on the heading angle, the velocity
vector of the ith particle then updates as

Vit = cos (F 1" )e; + sin (6)e,,

where e; and e, are two unit vectors orthogonal to each other.
Finally, the position of the ith particle updates as

k

i

R

We use the same update protocol as defined above for both
sensory modalities. What distinguishes the two sense modali-
ties is the index set of neighbors A¥. To model visual sensing,
we suppose each particle has a field of vision, modeled as
a sector bounded by two radii of length r, symmetric about
the individual’s current heading. The opening angle of the
sector is 2¢, where the sensing angle ¢ can vary from O to
. When ¢ = 7 the model reduces to the original Vicsek
model, where the interaction neighborhood of a particle is a
circle. At each time step, the particles that occupy the field of
vision of an individual comprise its set of neighbors A¥. For
auditory sensing, each particle’s acoustic beam is modeled as
a sector of a circle. Similar to the field of vision, the beam has
an opening angle 2¢, where ¢ can vary from O to 7, and is
also assumed to be symmetric about the individual’s current
heading direction. The particles, whose beams are occupied
by an individual, are defined as that individual’s neighbors. In
other words, the neighbors of a given particle are all of those
particles which it can hear because it is within their acoustic
beam. Figure 1 presents the schematic of the two modes of
interactions.

B. Order parameters

We define three observables to evaluate the collective
behavior: polarization, cohesion, and cluster size.

Polarization is a measure of group alignment given by the
average of the normalized linear momentum of the system and
can be calculated as

Polarization ranges between zero and one, where one corre-
sponds to perfect alignment and zero corresponds to a random
walk.

Cohesion measures the closeness of the particles with
respect to the overall center of mass. To calculate cohesion,
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FIG. 1. Schematic showing that the green particles (marked with
crosses) are neighbors of the red particle (marked with pluses) based
on the sensing scheme used. The gray particles (unmarked) do not
qualify as neighbors of the red (plus) particle. Shown on the left is
the visual sensing scheme, in which the green (cross) particles lie
inside the field of vision of the red (plus) individual and hence are
its neighbors. Shown on the right is the auditory sensing scheme, in
which the red (plus) individual resides inside the acoustic beam of its
neighbors.

we first compute the center of mass of the group as Xt =
(1/N) ZN , X and then the relative position of each panicle
with respect to the center of mass through rf = x* — X*.
Cohesion is then defined as

Zexp[ I

where [, = 4r is a scaling coefficient consistent with the study
in [8]. Cohesion ranges between zero and one, where one
corresponds to a scenario in which all particles are at the
center of mass while zero corresponds to the scenario in which
all particles are dispersed infinitely far from the common
center of mass. Given periodic boundary conditions for a finite
arena, a cohesion of zero is impossible.

Finally, cluster size corresponds to the size of the largest
collection of particles at a given time who are connected to
one another by some path in the interaction graph, where
the latter is built by drawing an undirected edge from each
particle to every one of its neighbors. That is, the cluster size
S is the size of the largest weakly connected component of
the interaction graph at time k. Two particles are therefore in
the same cluster if they are connected by a path of interacting
particles.

III. DIVERGENT GROUP BEHAVIOR FOR DISTINCT
SENSE MODALITIES

The auditory and visual models differ in the determination
of particle neighbors. To ascertain the effect of this difference
on group-level behavior, we conduct contrasting simulations
that differ only in the sensing modality. For these numerical
simulations, we set the length of the square box L = 10,
the radius of the sensing region r = 1, the constant speed
vo = 0.03, and the average density of the particles p = 10.
We further vary two control parameters, the sensing angle ¢
and the amplitude of noise intensity n. The initial positions
of the particles and their heading directions are randomly
assigned within the square box of side length L and in
the range [0, 2], respectively, with uniform distributions.
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FIG. 2. Order parameters as computed for auditory (left column)
and visual sensing (right column) modes when p = 10.

Though randomly determined, these initial conditions are kept
identical for both the visual and auditory simulations. We
run our simulations for 50 000 time steps, recording the data
only after excluding an initial transient phase of 10 000 time
steps. Next we compute the mean polarization, mean cohe-
sion, and mean size of the largest cluster, averaged over the
steady state.

Figure 2 shows the results for the order parameters where
p =10, and n and ¢ are varied. Observing Figs. 2(a) and
2(b), we identify that for both auditory and visual sensing
cues, polarization is zero for the special case when ¢ = 0.
This corresponds to the absence of interaction that results in a
random walk for the particles for all choices of noise intensity
n. On the other hand, polarization reaches the maximal value
of one when ¢ = m for all choices of n and for each of the
sensing cues. The special case of ¢ = m corresponds to the
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original Vicsek model, where the sensing neighborhood of
the particles is a circle, and hence the neighbor determina-
tion mechanism for both the visual and auditory models is
equivalent.

However, comparing vertical slices of polarization
(columns of constant ¢ in the figures) between auditory and
visual sensing modes, we observe a difference when the
sensing angle is small. In particular, for the visual sensing
mode we observe that the polarization is relatively small at
sensing angles of ¢ < 67 /15 and increases with increasing
¢. However, in the case of the auditory sensing mode, the
particles achieve a polarization of one for all sensing angles
¢ > 37 /15 independent of noise intensity.

The difference in group-level behavior between swarms
using auditory and visual sensing cues is also observed in
terms of cohesion [Figs. 2(c) and 2(d)] and largest cluster
size [Figs. 2(e) and 2(f)]. For example, in the visual mode
we observe cohesion is high when the sensing angle is small
(0 < ¢ < 7T /15), as the particles form closely packed clus-
ters. In contrast, for the auditory sensing mode, we observe
cohesion is less sensitive to the variation in sensing angle
and also that the values are small relative to the visual
mode. Again, in terms of cluster size, we notice that the
particles form one large cluster for ¢ > 37 /15 in the audi-
tory sensing scheme, but only for ¢ > 67 /15 in the visual
sensing scheme.

A. Effect of the average density on order parameters

The Vicsek model [11] demonstrated a phase transition as
the noise intensity decreases or the average density increases.
Accordingly, next we investigate the effect of the average
density of the particles on the behaviors discussed above.
Thus we perform an additional simulation for p = 0.3. The
other system parameters are set as before. The results are
shown in Fig. 3. First, we notice that at this lower density,
the difference between the two sensing modes in terms of
polarization is less pronounced. For both, we clearly see a
decrease in polarization from a value of one to near zero
with increasing noise when ¢ = /15, ..., 87 /15. However,
polarization appears to increase slightly faster with respect
to ¢ in the auditory mode. With respect to cohesion, differ-
ences between the visual and auditory modes are subtle at
best; comparing vertical slices, we observe somewhat higher
values of cohesion for the visual sensing mode at a given ¢
relative to the auditory sensing mode. However, the pattern
of dependence on ¢ and 5 for either mode is dramatically
different from the high-density case. Comparing Figs. 2 and 3,
we notice that, unlike in the high-density case, cohesion at
low density for both modes increases monotonically with ¢
and attains much higher values at a maximum sensing angle
of ¢ = m. With respect to cluster size, we notice that the
largest cluster size increases with an increase in the sensing
angle. This is because, at small values of sensing angles, the
particles fail to interact when the average density is small.
However, with the increase in sensing angle the particles begin
interacting and the cluster size is primarily dictated by the
noise intensity. In particular, as noise intensity increases the
particles require larger sensing angle to form one large cluster.
This phenomenon is also observed for both sensing modes.
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FIG. 3. Order parameters as computed for auditory (left column)
and visual sensing (right column) modes when p = 0.3.

B. Sensing mode determines spatial distribution

In terms of the order parameters considered, distinct sens-
ing modes generate different group-level behavior, especially
at high particle density and small sensing angle. The ob-
served differences with respect to cohesion and mean cluster
size indicate that particles distribute themselves differently
in space depending on sensing mode, and the differences
with regard to polarization suggest that patterns of particle
orientation differ as well. To characterize the disparate spatial
distribution for these two systems, we conduct a new analysis
at each density for which ¢ = 4x /15 and n = 0.2, and all
other system parameters are as above. We further divide the
square domain into square cells with equal side lengths of
one unit. The number of particles in each cell constitutes
the cell occupancy. For each time step k in the simulation,
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FIG. 4. Standard deviation in cell occupancy for (a) p = 10 and
(b) p =0.3.

we compute the standard deviation (SD) in normalized cell
occupancy across cells. The normalization is performed by
dividing the occupancy in each cell by the total number of
particles present in the system. The resulting time series for
the high-density case (o = 10) is plotted in Fig. 4(a). The SD
in cell occupancy is small at the beginning (and identical for
both modalities) as determined by the uniform random distri-
bution used to set the initial particle positions. For the auditory
sensing scheme, the SD in cell occupancy maintains a small
value over time, indicating that the particles remain evenly
spread over space. This is clear from the inset of Fig. 4(a),
which depicts a snapshot of the spatial distribution of the
particles at the termination of each simulation. However, the
SD increases substantially with time in the visual sensing
scheme. This indicates that at later times in the simulation the
particles form closely packed clusters, resulting in high cell
occupancy values for some cells and zero for the remaining.
This is again evident in the inset of Fig. 4(a). These results
demonstrate that in the auditory mode with small sensing
angle the particles are evenly distributed in space, loosely
packed in one large cluster, and perfectly aligned. On the other
hand, in visual mode with small sensing angle, the particles
form multiple clusters. The particles within the cluster are

closely packed and aligned, but all the clusters may not have
perfect alignment; hence polarization does not attain value
one, but the cohesion increases.

For the low-density case (p = 0.3), the differences be-
tween the sensing modes remain pronounced as is clear from
Fig. 4(b), though reduced relative to the high-density case. It is
still clear that in the visual case, the SD in spatial occupancy
remains higher than for the auditory mode. An explanation
for the reduction of the difference is suggested by the inset of
Fig. 4. Given the low density, particles in either simulation end
up forming spatially disjoint subgroups (clusters). This has the
effect of raising the SD for the auditory sense mode. However,
within those groups, we see the same pattern of behavior as at
high density. Specifically, the auditory sensing agents space
themselves in a lattice within a group (e.g., the blue group at
the center of the inset), keeping spatial SD relatively low. The
visual sensing particles, on the other hand, continue to form
compact clusters, driving SD relatively high (though, given
that there are fewer agents, the SD cannot be as high as in the
high-density case).

C. Distance of closest approach lower for pairwise
auditory interactions

We hypothesize that some of this difference may be due to
differences in the distance of closest approach (the minimum
separation) in pairwise interactions. Specifically, there are
interactions in which only one particle senses the other (but
not vice versa) where particles operating in the visual sensing
mode can approach closer to one another than those in the
auditory mode. That is because in the latter case the sensed
particle (the particle hearing the beam of the approaching
peer) immediately turns away from the oncoming particle. In
the visual case, the sensing particle itself adjusts to move into
the trajectory of the sensed particle.

To test the hypothesis that such differences in closest
approach are systematic and contribute to the observed group-
level results, we simulate an isolated pair of particles for each
of the two sensing schemes. The initial positions for the two
particles are set as x! = (6,0) and x) = (0,0). We further
fix the initial heading directions, set 6’3 = /4, and vary
00 =7 /6, ..., . We choose the remaining system parame-
ters as follows: L = 500, r = 3, vy = 0.01, and n = 0. Both
simulations are run in the absence of noise (n = 0), so the
trajectories of both particles will be deterministic. This is done
to guarantee particle interaction when the initial conditions
would allow it and that differences between the simulations
are due to the effect of interest rather than random variations
in injected noise. Additionally, for each initial 9? , we vary the
sensing angle ¢ from /15 to 7. The simulation is run for
1000 time steps to enable the two particles to attain a steady
state and the distance of closest approach is recorded.

Figure 5 presents the difference of the distances of closest
approach between the two sensing modes, where we subtract
the minimum distance of closest approach for the visual
sensing mode from that of the auditory sensing mode. We
observe that the difference between the two modes is zero
for two scenarios: first, for 6{) < 7 /3 at all values of ¢, and
second, for ¢ > 7m /15 at all values of 0{) . In the first scenario,
the particles never pass through one another’s sensing region
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FIG. 5. Difference of the distances of closest approach between
auditory and visual sensing modalities for a pair of particles. The
positive difference means that in the auditory mode particles main-
tain a larger minimum separation than in the visual mode.

as the initial heading direction of the first particle is too
oblique. In the second scenario, the wide sensing angles mean
that both particles sense each other at the maximum possible
distance, thus leading to no difference in the two sensing
schemes. In all other cases, the difference is positive. Thus
the distance of closest approach is sometimes significantly
smaller for the visual mode of interaction but never vice versa.
This both supports our hypothesis and plausibly accounts
for the asymmetry in results seen at the group level at high
average density.

IV. DISCRIMINATING SENSE MODALITIES

The results above show that the two distinct sensing modal-
ities lead to significant differences in collective behavior of
the simulated swarm at multiple levels of description. The
question remains how many collective systems (animal or
otherwise) are better represented in terms of an auditory as
opposed to visual sensing modality. For the Vicsek models
reported here, the differences in sensing modality are de-
tectable in terms of the high-level order parameters. However,
computation of these parameters requires perfect information
about particle position and momentum over long periods of
(simulated) time. This sort of information is impractical to
obtain for real world systems. Here we use these modified
Vicsek models as a test bed to demonstrate a method for
discerning visual from auditory sensing modes using only
partial information. This method relies on the notion of
transfer entropy.

A. Transfer entropy

Transfer entropy (TE) is based on information theory and
measures the amount of directed transfer of information be-
tween two time series variables [28]. The expected value of
the information associated with the occurrence of an event is

referred to as Shannon entropy and is defined as

HX)=— Z Pr[x] log, Pr[x], 1)
xeX

where Pr[x] is the probability mass function for a time se-
ries variable X taking the value x and X refers to the set
containing all possible realizations of X. The TE extends this
idea between two time series variables considered as one-step
Markov chains to quantify information transfer. For example,
given two time series variables X and Y, the TE from Y
to X (Ty_x) measures the reduction in entropy of X when
conditioned on Y and is defined as

Trox= Y, Prix(+1),x0),y0)]

xt+1)eX@+1),
x(t) € X(1),
y(t) € Y(@)

Prlx(r + Dx(@), y(1)]
x log, , ()
Prx(r + 1)|x(1)]

where Pr{x(¢ 4+ 1)|x(¢)] and Pr[x(z + 1)|x(¢), y(¢)] denote the
probability of x(¢ 4+ 1) conditioned on x(¢) alone and on both
x(t) and y(¢), respectively; Pr[x(t + 1), x(z), y(t)] denotes
joint probability. In case the time series variable Y does
not influence variable X, Pr[x(t 4+ 1)|x(¢), y(¢)] = Pr[x(r +
1)|x(¢)], and hence Ty x equals zero. In general, Ty . x and
Tx_y are asymmetric quantities, and by directly comparing
them we can identify the dominant direction of influence.

We implement TE using the open-source Java Information
Dynamics Toolkit [31]. To estimate the probability mass
functions (PMFs) used in the above definitions, we used the
Kraskov-Stogbauer-Grassberger method, which uses a dy-
namically altered kernel width in terms of K nearest neighbors
(knn) that decreases errors in PMF estimation [32].

B. Distinguish sense modalities by analyzing a pair
of trajectories using TE

In this simulation study, we consider the use of two sensory
modalities independently for a pair of particles and fix their
initial positions by placing one particle in front of the other.
We place the front particle f at the coordinate (1,0) and the
rear particle r at the coordinate (0,0). Both particles start with
the same initial heading angle, where 9]9 =0 =0 and con-
stant speed vy = 0.03. This setup ensures that the interaction
direction is from front to rear (f — r) for the visual sensing
modality, whereas the direction is from rear to front (r —
f) in the auditory sensing modality. The other parameters
for the numerical simulation are set as L = 500, n = 0.01,
¢ =4 /6, and r = 3. We run the simulation for 10 000 time
steps to generate trajectory data for each particle. As we
consider the presence of noise in this set up, the trajectories
are stochastic. Thus, we perform a Monte Carlo simulation
and generate 20 independent trajectories for the fixed initial
conditions and system parameters. From two-dimensional
trajectory time series of each particle we compute a one-
dimensional curvature-based time series to use as input for TE
analysis. We use curvature since it is a measure of a particle’s
steering and can be used to assess pairwise interaction as, for
example, in the study of bats [23,30,33]. Figures 6(a) and 6(b)
show the TE results as computed on curvature time series data
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FIG. 6. Implementation of TE on one-dimensional curvature-
based time series data considering (a) the auditory sensing scheme
and (b) the visual sensing scheme.

for the auditory and visual modalities, respectively. In each
panel, TE in the front to rear direction is denoted by Ty_,, and
TE in the rear to front direction is denoted by 7,_, ¢, both as a
function of knn. The central dashed line indicates the median,
and the bottom and top edges of the shaded region indicate the
25th and 75th percentiles, respectively.

We notice that TE detects the correct coupling direction
for each sensory modality. In particular, Fig. 6(a) shows
the TE results for the auditory sensing mode. In this case,
the median value of 7y, is zero for all choices of knn,
whereas the median of T,_.; is strictly greater than Ty_,,.
Thus, TE correctly recognizes that the dominant direction of
information transfer is from rear to front. Figure 6(b) shows
the TE results for the visual sensing mode, where the median
of Ty, , is always greater than T,_, 7, thus correctly indicating
the coupling direction from front to rear.

Thus, TE correctly detects the correct directionality of
interaction for each sensory modality. This is an important
result, as it demonstrates that TE is a potential tool for
detecting the coupling direction between a pair of particles
for which the mode of interaction is not known. In addition,
these results also confirm that 1D curvature time series may
be used as the input variable for such analysis. Thus, in the

real world, TE may be a potential tool to detect the sensory
modalities used by a pair of individuals. Specifically, if TE
detects a rear-to-front coupling, we may infer that individuals
use an auditory sensing mode and vice versa.

V. CONCLUSION

Vicsek models have been widely studied in the context of
collective behavior. In the present study, we introduced an
audition-based sensing modality for a group of self-propelled
particles in the Vicsek model and compared the emergent
behavior with that of the vision-based sensing modality.
Although the auditory and visual sensing modalities differ
only in the determination of particle neighbors, they result
in disparate group-level behaviors in terms of polarization,
cohesion, and cluster size. These group-level differences are
more pronounced as the average density of the particles
increases. We further demonstrated that the observed group-
level differences are due to the fact that these sense modalities
robustly generate distinct spatial distributions of the particles.
Interestingly, we found that the particles maintain a larger
distance of closest approach while using auditory sensing
in comparison to that while using visual sensing. Although
the group-level differences are reflected in the appropriate
order parameters, the effect of distinct sensing modalities may
not be obvious while observing only a subset of particles.
We demonstrated the use of transfer entropy to distinguish
the sensing modality by considering only a pair of particle
trajectories. Such an approach could be applicable to real-
world systems, where it may be a challenge to measure the
position and velocity of every particle within a swarm. This
study demonstrates that the sensing modality plays a key
role in collective behavior within the Vicsek paradigm, and
the results suggest applications involving both biological and
robotic swarms.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion under Grants No. 1454190 and No. CMMI-1751498.

[1] I. L. Bajec and F. H. Heppner, Anim. Behav. 78, 777 (2009).
[2] B. L. Partridge, Sci. Am. 246 (6), 114 (1982).

[3] E. Bonabeau, Proc. Natl. Acad. Sci. USA 99, 7280
(2002).

[4] V. Narayan, S. Ramaswamy, and N. Menon, Science 317, 105
(2007).

[5] D. L. Blair, T. Neicu, and A. Kudrolli, Phys. Rev. E 67, 031303
(2003).

[6] C. M. Topaz, A. L. Bertozzi, and M. A. Lewis, Bull. Math. Biol.
68, 1601 (2006).

[7] 1. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R.
Franks, J. Theor. Biol. 218, 1 (2002).

[8] M. Aureli and M. Porfiri, Europhys. Lett. 92, 40004 (2010).

[9] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).

[10] A. B. Barbaro, K. Taylor, P. F. Trethewey, L. Youseft, and B.

Birnir, Math. Comput. Simul. 79, 3397 (2009).

[11] T. Vicsek, A. Czirok, E. Ben-Jacob, 1. Cohen, and O. Shochet,
Phys. Rev. Lett. 75, 1226 (1995).

[12] A. Czirok, M. Vicsek, and T. Vicsek, Physica A 264, 299
(1999).

[13] I. Tarras, R. Bakir, A. Hader, M. Mazroui, D. Cambui, and
Y. Boughaleb, Sensor Lett. 16, 123 (2018).

[14] B.-M. Tian, H.-X. Yang, W. Li, W.-X. Wang, B.-H. Wang, and
T. Zhou, Phys. Rev. E 79, 052102 (2009).

[15] Y.-J. Li, S. Wang, Z.-L. Han, B.-M. Tian, Z.-D. Xi, and B.-H.
Wang, Europhys. Lett. 93, 68003 (2011).

[16] M. Durve and A. Sayeed, Phys. Rev. E 93, 052115 (2016).

[17] X.-G. Wang, C.-P. Zhu, C.-Y. Yin, D.-S. Hu, and Z.-J. Yan,
Physica A 392, 2398 (2013).

[18] J. A. Thomas, C. F. Moss, and M. Vater, Echolocation in Bats
and Dolphins (University of Chicago Press, Chicago, 2004).

[19] M. J. Shirazi and N. Abaid, Phys. Rev. E 98, 042404 (2018).

062415-7


https://doi.org/10.1016/j.anbehav.2009.07.007
https://doi.org/10.1016/j.anbehav.2009.07.007
https://doi.org/10.1016/j.anbehav.2009.07.007
https://doi.org/10.1016/j.anbehav.2009.07.007
https://doi.org/10.1038/scientificamerican0682-114
https://doi.org/10.1038/scientificamerican0682-114
https://doi.org/10.1038/scientificamerican0682-114
https://doi.org/10.1038/scientificamerican0682-114
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1126/science.1140414
https://doi.org/10.1126/science.1140414
https://doi.org/10.1126/science.1140414
https://doi.org/10.1126/science.1140414
https://doi.org/10.1103/PhysRevE.67.031303
https://doi.org/10.1103/PhysRevE.67.031303
https://doi.org/10.1103/PhysRevE.67.031303
https://doi.org/10.1103/PhysRevE.67.031303
https://doi.org/10.1007/s11538-006-9088-6
https://doi.org/10.1007/s11538-006-9088-6
https://doi.org/10.1007/s11538-006-9088-6
https://doi.org/10.1007/s11538-006-9088-6
https://doi.org/10.1006/jtbi.2002.3065
https://doi.org/10.1006/jtbi.2002.3065
https://doi.org/10.1006/jtbi.2002.3065
https://doi.org/10.1006/jtbi.2002.3065
https://doi.org/10.1209/0295-5075/92/40004
https://doi.org/10.1209/0295-5075/92/40004
https://doi.org/10.1209/0295-5075/92/40004
https://doi.org/10.1209/0295-5075/92/40004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.matcom.2008.11.018
https://doi.org/10.1016/j.matcom.2008.11.018
https://doi.org/10.1016/j.matcom.2008.11.018
https://doi.org/10.1016/j.matcom.2008.11.018
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1016/S0378-4371(98)00468-3
https://doi.org/10.1016/S0378-4371(98)00468-3
https://doi.org/10.1016/S0378-4371(98)00468-3
https://doi.org/10.1016/S0378-4371(98)00468-3
https://doi.org/10.1166/sl.2018.3923
https://doi.org/10.1166/sl.2018.3923
https://doi.org/10.1166/sl.2018.3923
https://doi.org/10.1166/sl.2018.3923
https://doi.org/10.1103/PhysRevE.79.052102
https://doi.org/10.1103/PhysRevE.79.052102
https://doi.org/10.1103/PhysRevE.79.052102
https://doi.org/10.1103/PhysRevE.79.052102
https://doi.org/10.1209/0295-5075/93/68003
https://doi.org/10.1209/0295-5075/93/68003
https://doi.org/10.1209/0295-5075/93/68003
https://doi.org/10.1209/0295-5075/93/68003
https://doi.org/10.1103/PhysRevE.93.052115
https://doi.org/10.1103/PhysRevE.93.052115
https://doi.org/10.1103/PhysRevE.93.052115
https://doi.org/10.1103/PhysRevE.93.052115
https://doi.org/10.1016/j.physa.2013.01.022
https://doi.org/10.1016/j.physa.2013.01.022
https://doi.org/10.1016/j.physa.2013.01.022
https://doi.org/10.1016/j.physa.2013.01.022
https://doi.org/10.1103/PhysRevE.98.042404
https://doi.org/10.1103/PhysRevE.98.042404
https://doi.org/10.1103/PhysRevE.98.042404
https://doi.org/10.1103/PhysRevE.98.042404

ROY, SHIRAZI, JANTZEN, AND ABAID

PHYSICAL REVIEW E 100, 062415 (2019)

[20] S. Roy and N. Abaid, IEEE Trans. Automat. Contr. 61, 4063
(2016).

[21] D. Gorbonos, R. Ianconescu, J. G. Puckett, R. Ni, N. T.
Ouellette, and N. S. Gov, New J. Phys. 18, 073042 (2016).

[22] Z. Kong, N. Fuller, S. Wang, K. Ozcimder, E. Gillam, D.
Theriault, M. Betke, and J. Baillieul, Sci. Rep. 6, 27252
(2016).

[23] S. Roy, K. Howes, R. Muller, S. Butail, and N. Abaid, Entropy
21, 42 (2019).

[24] J. Kuutti, J. Leiwo, and R. E. Sepponen, Technologies 2, 31
(2014).

[25] Y. Ochiai, T. Hoshi, and 1. Suzuki, Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (ACM,
New York, 2017), pp. 4314-4325.

[26] M. J. Shirazi and N. Abaid, ASME 2017 Dynamic Systems and
Control Conference, Tysons Corner, 2017 (American Society of
Mechanical Engineers, New York, 2017), p. VO02T14A010.

[27] C. Huepe and M. Aldana, Physica A 387, 2809 (2008).

[28] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).

[29] S. Butail, V. Mwaffo, and M. Porfiri, Phys. Rev. E 93, 042411
(2016).

[30] N. Orange and N. Abaid, Eur. Phys. J. Spec. Top. 224, 3279
(2015).

[31] J. T. Lizier, Front. Robotics AI 1, 11 (2014).

[32] A. Kraskov, H. Stogbauer, and P. Grassberger, Phys. Rev. E 69,
066138 (2004).

[33] J. G. Puckett, D. H. Kelley, and N. T. Ouellette, Sci. Rep. 4,
4766 (2014).

062415-8


https://doi.org/10.1109/TAC.2016.2538999
https://doi.org/10.1109/TAC.2016.2538999
https://doi.org/10.1109/TAC.2016.2538999
https://doi.org/10.1109/TAC.2016.2538999
https://doi.org/10.1088/1367-2630/18/7/073042
https://doi.org/10.1088/1367-2630/18/7/073042
https://doi.org/10.1088/1367-2630/18/7/073042
https://doi.org/10.1088/1367-2630/18/7/073042
https://doi.org/10.1038/srep27252
https://doi.org/10.1038/srep27252
https://doi.org/10.1038/srep27252
https://doi.org/10.1038/srep27252
https://doi.org/10.3390/e21010042
https://doi.org/10.3390/e21010042
https://doi.org/10.3390/e21010042
https://doi.org/10.3390/e21010042
https://doi.org/10.3390/technologies2010031
https://doi.org/10.3390/technologies2010031
https://doi.org/10.3390/technologies2010031
https://doi.org/10.3390/technologies2010031
https://doi.org/10.1016/j.physa.2008.01.081
https://doi.org/10.1016/j.physa.2008.01.081
https://doi.org/10.1016/j.physa.2008.01.081
https://doi.org/10.1016/j.physa.2008.01.081
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevE.93.042411
https://doi.org/10.1103/PhysRevE.93.042411
https://doi.org/10.1103/PhysRevE.93.042411
https://doi.org/10.1103/PhysRevE.93.042411
https://doi.org/10.1140/epjst/e2015-50235-9
https://doi.org/10.1140/epjst/e2015-50235-9
https://doi.org/10.1140/epjst/e2015-50235-9
https://doi.org/10.1140/epjst/e2015-50235-9
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1038/srep04766
https://doi.org/10.1038/srep04766
https://doi.org/10.1038/srep04766
https://doi.org/10.1038/srep04766

