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Pattern formation induced by intraspecific interactions in a predator-prey system
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Differential diffusion is a source of instability in population dynamics systems when species diffuse with
different rates. Predator-prey systems show this instability only under certain specific conditions, usually
requiring one to involve Holling-type functionals. Here we study the effects of intraspecific cooperation and
competition on diffusion-driven instability in a predator-prey system with a different structure. We conduct
the analysis on a generalized population dynamics that bounds intraspecific and interspecific interactions with
Verhulst-type saturation terms instead of Holling-type functionals. We find that instability occurs due to the
intraspecific saturation or intraspecific interactions, both cooperative and competitive. We present numerical
simulations and show spatial patterns due to diffusion.
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I. INTRODUCTION

Population ecology treats the increases, decreases and
fluctuations of populations. Therefore, the purpose of these
models is the quantification of the population size of inter-
acting species. In this way, the very first works using the
Lotka-Volterra equations studied predator-prey and compet-
ing species relations. In many of these studies, spatial vari-
ation is not considered, although it is a necessary element
to understand the complete ecological behavior [1]. These
displacements might occur due to diffusive mechanisms when
the organisms are embedded in a substrate, or might be caused
by their own propagation. In those cases, small variations
in the environmental conditions of the substrates and the
physiological characteristics of the species might cause dif-
fusive behavior, and are also known to cause diffusion-driven
instabilities [2].

Turing instabilities in population dynamics has been stud-
ied thoroughly. Many authors have shown that only ecological
interactions of opposite signs among species, like predator-
prey or parasitism, may produce diffusion driven instability,
but pure mutualism or antagonism, with the same signs in
their interactions, may not [1,2]. Although a single Lotka-
Volterra system can not generate diffusion-driven instabil-
ity, modified models might. Segel and Jackson [3] showed
that quadratic interactions among populations are needed in
order to generate Turing instability in a predator-prey sys-
tem. They introduced a quadratic positive term for the prey,
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understood as cooperation, and a quadratic negative term for
the predators, interpreted as a density dependent death term.
Notably, it was also shown that cooperation among predators,
introduced as a quadratic expansion of the interaction term,
might not produce the same effect. The authors concluded that
diffusion-driven instability is caused, in predator-prey sys-
tems, by self-reinforcement mechanisms acting on the prey,
the destabilizers, and self-weakening mechanisms acting on
the predators, the stabilizers. Bartumeus et al. [4] also showed
in an innovative way that Turing instability might be produced
by interference among predators, by constructing a ratio-
dependent functional response, using a DeAngelis modified
model [5]. McGehee and Peacock-López [6] and McGehee
et al. [7] presented another case, using a modified Bazykin
model [5], where diffusion-driven instability is also produced
by an interference term between predators. In this case, the
interference is again produced by a quadratic negative term
reflecting predators’ interference. The authors introduced a
prey-dependent interaction term between species, instead of a
ratio-dependent term. These results somehow contradict what
Alonso et al. [8] showed about only ratio-dependent func-
tionals being able to producing diffusion-driven instabilities.
Ultimately, Sun et al. [9] showed that using a quadratic term
in a Holling-type-II functional response also might generate
Turing instabilities.

In this paper, we show that another mechanism for Turing
instabilities is possible within a predator-prey system. We use
a modified version of the model by García-Algarra et al.
[10] to show that using only quadratic interaction terms,
adequately bounded by Verhulst-type saturations, may pro-
duce diffusion-driven instability. These instabilities appear
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whether intraspecific direct interactions are allowed or not.
When intraspecific direct interactions are not present, the
instability arises from the intraspecific saturation acting on
the interspecific interaction. When intraspecific direct inter-
actions are allowed, both cooperation and competition terms
between predators and prey, promote the instability. All these
conditions give rise to different scenarios that we explore in
the following section.

II. THE MODEL

Diffusion-driven instability takes place in predator-prey
systems only under special conditions on the intraspecific
coefficients [1]. For a generic reaction-diffusion system, in
dimensionless form, such as

∂X1

∂t
= ∇2X1 + f1(X1, X2), (1)

∂X2

∂t
= δ∇2X2 + f2(X1, X2), (2)

it is required, according to Murray [2], that at least the partial
derivatives satisfy

f11 + f22 < 0 (3)
and

f11 f22 − f12 f21 > 0, (4)

with fi j = ∂ fi/∂Xj . Here t corresponds to time, the operator
∇2 indicates the Laplacian, the functions Xi are the dimen-
sionless populations of the species i, and the parameter δ

describes the ratio between their diffusivities (δ = d2/d1).
Models with Holling-type-II functionals can meet the require-
ments of Eqs. (3) and (4), but Verhulst-type functionals cannot
meet them [1].

We use a generalized model of population dynamics,
based on a modified version the population dynamics model
of García-Algarra et al. [10,11], which bounds mutualistic
behavior (otherwise unlimited) by saturation Verhulst-like
terms. The functionals of a two species system are described
with the following equations, in dimensionless form (see
Appendix A):

f1(u1, u2) = γ u1[1 − q1u1 + (p11u1 + p12u2)(1 − u1)], (5)

f2(u1, u2) = γ u2[s − q2u2 + (p21u1 + p22u2)(1 − u2)]. (6)

Turing instability is independent of the value of γ [2],
therefore we set γ = 1 to simplify the notation without los-
ing generality. Nondimensionalization required setting γ =
r1L2/d1, with L as a scaling parameter. Spatial patterns are
formed according to wave number k, which depends on γ and
δ, as long as δ � δc, the critical diffusion [2]. Thus, any spatial
pattern wavelength can be obtained by choosing an adequate
value of L.

Let us note that these equations include intraspecific sat-
uration terms, acting on the environment (−q1u1) but also
acting on the interspecific interactions (1 − u1). The system
also allows the existence of pii, which represent direct in-
traspecific interactions, such as cooperation or competition,
which are usually neglected. It is the presence of all these
intraspecific terms what allows diffusion-driven instability in
a Verhulst-type predator-prey system.

Calculating fi j for the stationary solutions ūi, we obtain

f11 = −(
1 + p12ū2 + p11ū2

1

)
, (7)

f12 = p12ū1(1 − ū1), (8)

f21 = p21ū2(1 − ū2), (9)

f22 = −(
s + p21ū1 + p22ū2

2

)
. (10)

As dimensionless equations, populations are restricted be-
cause of the scaling, within their carrying capacities, to ui �1.
Without losing generality, we set u1 as the prey and u2 as
the predators from now on. Thus, p12 < 0 and p21 > 0 which
mean that f12 < 0 and f21 > 0.

In diffusion-driven instability, we have two possibilities
according to Murray [2]. We might have f11 > 0 and f22 < 0,
and we denote this first scenario as autocatalytic prey. On
the other hand, we might have f11 < 0 and f22 > 0, and we
denote this second scenario as autocatalytic predators. Since
the autocatalytic population must be the one which diffuses
slower, we have that Eqs. (1)are (2) are consistent with the
first scenario, where d2 > d1. For the second scenario, where
d2 < d1, instead of having δ ∈ ]1,∞[ for Turing instability,
we have δ ∈ ]0, 1[.

In the absence of terms pii, evaluating Eqs. (5) and
(6) for the stationary solutions ūi force that (1 + p12ū2) =
ū1(q1 + p12ū2) and also (s + p21ū1) = ū2(q2 + p21ū1). Since
we already have that p12 < 0, f11 > 0 only occurs if |p12| >

1/ū2 and |p12| > q1/ū2. This opens the possibility of a new
mechanism for diffusion-driven instabilities motivated en-
tirely by the intraspecific saturation of the interspecific in-
teraction in Eqs. (5) and (6). This mechanism corresponds
to the autocatalytic prey scenario. No autocatalytic predators
scenario is possible, since u2(q2 + p21ū1) > 0 for any q2

and p21.
In the absence of intraspecific saturation of any interac-

tions, either intraspecific or interspecific, Eqs. (7)–(10) give
the familiar result of both f11, f22 � 0, that does not allow
diffusion-driven instability. The case without any intraspecific
saturation, not even with the environment, f11, f22 = 0, which
corresponds to the classical Lotka-Volterra system [1].

A. Autocatalytic prey without intraspecific interactions

In the absence of intraspecific interactions, i.e., for pii = 0,
we already saw that f11 > 0 only if |p12| > 1/ū2 and |p12| >

q1/ū2. For these relations, we might derive

max (1, q1)

ū2
< |p12|. (11)

On the other hand, f22 < 0 always, since (s + p21ū1) > 0 for
any p21, so no further conditions are needed.

B. Autocatalytic prey with intraspecific interactions

In this scenario, and by allowing the presence of pii,
we might have f11 > 0 only when (1 + p12ū2 + p11ū2

1) < 0.
From Eqs. (5) and (6) evaluated for ūi, we have

p11ū1 + p12ū2 = q1ū1 − 1

1 − ū1
, (12)

062414-2



PATTERN FORMATION INDUCED BY INTRASPECIFIC … PHYSICAL REVIEW E 100, 062414 (2019)

so, for f11 < 0 we need that

q1 − 1

(1 − ū1)2 + p11 < 0. (13)

This condition allows two possible behaviors for p11, i.e.,
for the intraspecific interactions of the prey. For q1 > 1,
prey must be competitive and |p11| > (q1 − 1)/(1 − ū1)2. For
q1 < 1, prey might be competitive, without any restriction,
or cooperative, as long as |p11| < (q1 − 1)/(1 − ū1)2. The
values of q1 comes from their interpretation in Eqs. (1)
and (2), through the transformations shown in Appendix A.
q1 = (1/c1)/(r1/a1), which might be understood as the ratio
between the population limit due exclusively to the resources
obtained from the interspecific and intraspecific interactions,
1/c1, and the population limit due exclusively to the resources
from the environment, r1/a1.

On the other hand, f22 < 0 requires (s + p21ū1 + p22ū2
2) >

0. For the stationary solution, f2 = 0 in Eqs. (5) and (6), we
derive

p21ū1 + p22ū2 = q2ū2 − s

1 − ū2
, (14)

so, for f22 > 0 we need that

q2 − s

(1 − ū2)2 + p22 > 0, (15)

which allows both cooperative and competitive predators,
regardless of the sign of s. As long as 0 < q2 − s, predators
might be cooperative, without any restriction, or they might
be competitive, as long as |p22| < (q2 − s)/(1 − ū2)2. But,
if q2 − s < 0, predators must be cooperative and |p22| >

(q2 − s)/(1 − ū2)2. We will see later that the intensity of this
self-interaction p22 will condition the value of the critical
diffusion.

C. Autocatalytic predators

In this other scenario, the only change is that now f11 < 0
and f22 > 0 are required. For the first condition, it is needed
that (1 + p12ū2 + p11ū2

1) > 0. Using what we derived on the
previous section, since Eq. (12) is fulfilled again, instead of
Eq. (13), we have

q1 − 1

(1 − ū1)2 + p11 > 0. (16)

Now, this condition allows both cooperative and competitive
prey in the opposite direction of what happened in the pre-
vious scenario. For q1 > 1, prey might be competitive, as
long as |p11| < (q1 − 1)/(1 − ū1)2, and cooperative without
any restriction. On the other hand, if q1 < 1, prey must be
cooperative and p11 > |q1 − 1|(1 − ū1)2. We will also see that
the intensity of p11 will determine the value of the critical
diffusion.

On the other hand, for f22 > 0, we also use Eq. (14) and
now, instead of Eq. (15), we have

q2 − s

(1 − ū2)2 + p22 < 0. (17)

For q2 − s > 0, p22 < 0 and predators must be competi-
tive, but additionally |p22| > (q2 − s)/(1 − ū2)2. But, when

q2 − s < 0, predators might be competitive, without any re-
striction, or cooperative, as long as p22 < |q2 − s|/(1 − ū2)2

All the conditions derived in the last two scenarios are
only established to see the possible ecological regimes, i.e.,
the signs allowed on pii, that are valid in order to produce
diffusion-driven instability. Since ūi are functions of pii, no
simple relation can be obtained from Eqs. (12)–(17). The same
applies to the first scenario, regarding p12 and its relation with
q1 and ū2. This can be seen in the Results section.

D. Diffusion-driven instability

Diffusion-driven instabilities require, according to Murray
[2], that conditions (3) and (4) change into

δ f11 + f22 > 0, (18)

(δ f11 + f22)2 − 4δ( f11 f22 − f12 f21) > 0. (19)

These conditions explain the reason why, considering the
autocatalytic prey scenario with intraspecific interactions, in
Eqs. (15) p22 was an indicator of the critical diffusion δc. This
applies also for the autocatalytic predators scenario, except
that in that case, it is the parameter p11 that acts as an indicator
of the δc. From Murray [2] it is required that δc follows

δ2
c f 2

11 + 2δc(2 f12 f21 − f11 f22) + f 2
22 = 0. (20)

This means that, at least, | f22/ f11| < δc for the autocatalytic
prey scenario. In other words, given an f11, the greater the co-
operation of the predators, the greater is the critical diffusion
that will be needed to get a diffusion-driven instability. In the
autocatalytic predators scenario we have that | f22/ f11| > δc,
i.e., the inverse dependence is needed between them in order
to get the critical diffusion.

We test for diffusion-driven instability using a nondi-
mensional system. We introduce small perturbations to the
homogeneous stationary solutions of the system, given by
X̄i. Perturbations are introduced, as functions of fixed wave-
length of the form Xi = X̄i + X ′

i eλt eikz, into Eqs. (1) and (2),
neglecting the nonlinear terms [12]. This gives a set of two
equations relating the eigenvalues λ with the wave number k.
This constitutes a dispersion relation from which the stability
of the system can be verified. We present this relation in the
following section, along with the numerical solutions of the
nonlinear system.

III. RESULTS

A. Linear stability analysis

We tested the stability of the homogeneous stationary
solution by replacing some test values for c1 and b12 in the
autocatalytic prey scenario without intraspecific interactions,
and some test values for s and pi j in both scenarios with
intraspecific interactions. Eigenvalues λ were obtained as
function of wave number k. Re(λ) changes from negative
to positive for a certain values of k, indicating the cases
where a small perturbation with wavelength 2π/k will not
vanish. Instead, those perturbations will grow and will make
the system unstable in a linear approximation; the system
will stabilize itself by the nonlinear terms. The wavelength
measures the size of the spatial pattern we produce, so an
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FIG. 1. Autocatalytic prey scenario without intraspecific interactions. Effects of predation intensity and intraspecific saturation, which
are two aspects of the interspecific relation between prey and predators, on the dependence of the real part of the eigenvalue λ on the wave
number k. We plotted the deviations from the values corresponding to Table I, which are the curves B. (a) We set b12 = −0.001015 for A and
b12 = −0.001005 for C. (b) We set c1 = 0.00195 for A and c1 = 0.00205 for C. In both cases, δ = 182. Lower absolute values of predation
intensity and higher intraspecific saturation benefit the instability of the system.

FIG. 2. Autocatalytic prey scenario with intraspecific interactions. Effects of cooperation of prey and competition of predators on the
dependence of the real part of the eigenvalue λ on the wave number k. We plotted the deviations from the values corresponding to
Table II, which are the curves B. (a) We set b11 = 0.0018996 for A and b11 = 0.0019004 for C. (b) We set b22 = −0.0018996 for A and
b22 = −0.0019004 for C. In both cases, δ = 19. Competition in predators and cooperation in prey promotes the stability in both cases.
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FIG. 3. Autocatalytic prey scenario with intraspecific interactions. Effects of cooperation of prey and cooperation of predators on the
dependence of the real part of the eigenvalue λ on the wave number k. We plotted the deviations from the values corresponding to Table III,
which are the curves B. (a) We set b11 = 0.0015 for A and b11 = 0.0016 for C. (b) We set b22 = 0.000965 for A and b22 = 0.001035 for C. In
both cases, δ = 45. Cooperation in predators promotes the stability of the system, while cooperation in prey promotes its instability.

adequate setting of values for γ and L might produce the
specific wavelength we require to reproduce a realistic case.
For the scenario of the autocatalytic prey without intraspecific
interactions, we tested the case where both species have a
positive dependence on the environment, i.e., s > 0. In Fig. 1
we show the effects of parameters c1 and b12 on the instability
of the system. We see, on the left, that instability is promoted
with lower values of |b12|, i.e., with less effect on the prey
by the predators; and, on the right, with greater values of c1,
i.e., with a higher intraspecific saturation. However, this effect
reaches a point where the system may become intrinsically
unstable (see curve C on the right) and no diffusion-driven
instability might be generated.

To explore the scenario of autocatalytic prey with intraspe-
cific interactions, we tested the case where both species have
a positive dependence on the environment, i.e., s > 0, and
where predators compete and cooperate among themselves. In
Fig. 2, we show the effects of both competition of predators
and cooperation of prey on the instability of the system. We
see, on the left, that lower competition among predators pro-
motes a greater instability in the system. But, on the right, we
also see that lower cooperation of prey promotes also a greater
instability. In Fig. 3, we show the effects of both cooperation
of predators and cooperation of prey on the instability of the
system. On the left, we see the influence of cooperation in
prey and how it promotes the system instability, while, on the
right, we see the influence of cooperation in predators, and
how it promotes the stability instead.

For the autocatalytic predators scenario, we tested the
case where s < 0, which means that prey have a positive
dependence on the environment, but the predators do not.

Also, besides cooperative predators, we use cooperative prey.
In Fig. 4, we show the effects of both cooperations on the in-
stability of the system. Higher cooperation in both populations
promotes Turing pattern formation, but lower cooperation also
allows the system to become unstable. Continuing to lower
the cooperation further results in a steady state that is unstable
even without diffusion.

All solutions we tested were pairs corresponding to saddle-
node bifurcations, because they converge and disappear when
parameters change [13]. It is interesting to see also that, when
parameters change the opposite way and solutions diverge,
the diffusion-driven instability is lost. Figure 5 shows the
phase space of the autocatalytic prey scenario, with values
corresponding to those of Table II.

The scenarios discussed here reflect some differences with
other previous attempts to find diffusion-driven instability in
predator-prey systems with cooperative prey. Levin and Segel
[14] discussed a predator-prey model without saturations and
with only the prey depending on the environment. For them,
prey were cooperative and predators competitive. Their model
required, for diffusion-driven instability to occur, that

p21 > p11,

|p21 p12| > |p11 p22|,

δc =
(√

p12

p22
−

√
p12

p22
− p11

p21

)−2

(21)

in the specific scenario of autocatalytic prey with intraspecific
interactions. These conditions are not met with values in either
Table II or Table III.
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FIG. 4. Autocatalytic predators scenario. Effects of cooperation of prey and cooperation of predators on the dependence of the real part
of the eigenvalue λ on the wave number k. We plotted the deviations from the values corresponding to Table IV, which are the curves B.
(a) We set b11 = 0.001909985 for A and b11 = 0.0019105 for C. (b) We set b22 = 0.00549915 for A and b22 = 0.00551 for C. In both
cases, δ = 0.357. Cooperation in predators and prey promotes instability in both cases, although only greater cooperation may guarantee
diffusion-driven instability, since lower cooperation values (curves A) make the system intrinsically unstable.

FIG. 5. Phase spaces for u1 and u2. (a) We show the autocatalytic prey scenario with intraspecific interactions with parameters
corresponding to Table III. (b) We show the autocatalytic predators scenario with parameters corresponding to Table IV. For this scenario,
the stable solution that allows diffusion-driven instability has another unstable solution right next to it, a pair corresponding to a saddle-node
bifurcation.
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TABLE I. Numerical values used in the simulations shown in
Fig. 1, which corresponds to the autocatalytic prey scenario without
intraspecific interactions.

Parameter Numerical value

r1 0.1
r2 0.01
b11 0.0
b12 −0.00101
b21 0.015
b22 0.0
a1 0.00001
a2 0.005
c1 0.002
c2 0.005

B. Numerical simulations

We solve the nonlinear system by carrying out a numer-
ical simulation of Eqs. (1) and (2). Since only two possible
patterns may arise in a one-dimensional system, which are
identical or inverse [2], we use values of Tables III and
IV to test both scenarios with intraspecific interactions: the
autocatalytic prey and the autocatalytic predators. We chose
periodic boundary conditions along a one-dimensional space
with cell width of size �z = 0.1 spatial units, where both
species Xi evolve. We use a simple Euler method with a
time step of �t = 0.0001, which we tested to be accurate.
Initial conditions where set with small random perturbations
around the homogeneous stationary solutions X̄i. Computa-
tions where carried out for enough time in order to reach a
steady pattern.

For the autocatalytic prey scenario with parameter values
of Table III, diffusion-driven instability appears with δ = 45.
The corresponding wavelength of the fastest growth for this
diffusion is 29.24 spatial units. As we use a grid of cells with
�z = 0.1 spatial units, it is expected to have a pattern of three
or four peaks in a length of 120 spatial units. Although an
almost uniform pattern of three peaks form for both popula-
tions, their amplitudes decrease constantly until they reach a
fixed value of 1.35×10−12 for u1 and 3.65×10−13 for u2. Both
dimensionless populations show the same pattern, given that

TABLE II. Numerical values used in the simulations shown in
Figs. 2 and 5, which correspond to the autocatalytic prey scenario
with intraspecific interactions.

Parameter Numerical value

r1 0.0001
r2 0.6
b11 0.0019
b12 −0.00075
b21 0.00091
b22 −0.0019
a1 0.0005
a2 0.000625
c1 0.001251
c2 0.001

TABLE III. Numerical values used in the simulations shown in
Figs. 3, 6, and 7, which correspond to the autocatalytic prey scenario
with intraspecific interactions.

Parameter Numerical value

r1 0.9
r2 0.00001
b11 0.00155
b12 −0.001
b21 0.00075
b22 0.001
a1 0.001
a2 0.001
c1 0.0001
c2 0.0001

in an autocatalytic prey scenario both species follow the same
dynamics. This is shown in Fig. 6. We also show the time
evolution of the pattern in Fig. 7.

For the autocatalytic predators scenario we conducted two
different tests. First, we used parameter values of Table IV and
b11 = 0.001915. Diffusion-driven instability appears with δ =
0.474. The corresponding wavelength of the fastest growth
for this diffusion is 13.49 spatial units. With �z = 0.1 spatial
units as the cell width, it is expected to have a pattern of nine
peaks in a length of 120 spatial units. Here, the dimension-
less populations show an inverse pattern, given that, in an
autocatalytic predators scenario, species follow the opposite
dynamics. This is shown in Fig. 8. The spatial pattern is
formed with the corresponding wavelength of the Turing
instability, but its amplitude continue growing indefinitely. We
show the pattern at two different times in Fig. 8 and the time
evolution in Fig. 9.

We also tested the case when b11 = 0.001911 and the other
parameters were those of Table IV. Diffusion-driven instabil-
ity appears with δ = 0.392 and the corresponding wavelength
of the fastest growth for this diffusion is 18.21 spatial units.
For a length of 120 spatial units, seven peaks would be
expected, but we obtained a pattern with nine. This pattern
is unstable, and not only does its amplitude grow, as in Fig. 10

TABLE IV. Numerical values used in the simulations shown in
Fig. 4, which corresponds to the autocatalytic predators scenario. In
Figs. 8 and 9 we changed b11 to 0.001915 and in Figs. 10 and 11 we
used b11 = 0.001911.

Parameter Numerical value

r1 0.02999
r2 −0.090151
b11 0.00191
b12 −0.0023515
b21 0.00105
b22 0.0055
a1 0.0021
a2 0.0005
c1 0.001
c2 0.0005
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FIG. 6. Numerical simulations of the nonlinear system. The curves represent the dimensionless population of the autocatalytic prey
scenario with intraspecific interactions and with parameter values of Table III. The straight line is drawn on the homogeneous stationary
solutions. The dashed and dot-dashed lines represent ui when they reach their constant values, while the solid gray lines represent an
intermediate previous state (t = 120 and t = 100 in Fig. 7). Although amplitudes differ significantly, both populations follow the same
dynamics, as expected for the autocatalytic prey scenario. We used δ = 45.

FIG. 7. Spatial patterns of the nonlinear system over time. The shadows represent higher (darker) or lower (lighter) values of ui. The
vertical axis represents the time in a.u. while the horizontal axis represents the space. Patterns corresponding to t = 120 and t = 100 are
plotted in Fig. 6. The pattern is reached quickly, but slowly fades away until it reaches fixed values. We used parameter values of Table III and
δ = 45.
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FIG. 8. Numerical simulations of the nonlinear system. The curves represent the dimensionless population of the autocatalytic predators
scenario and with parameter values of Table IV and b11 = 0.001915. We used δ = 0.474. The straight line is drawn on the homogeneous
stationary solution. The dashed and dot-dashed lines represent ui when simulation was stopped, while the solid gray lines represent an
intermediate previous state (t = 303 and t = 202 in Fig. 9). Amplitudes are different and both populations follow the inverse dynamics,
as expected for the autocatalytic prey scenario. The pattern is not stable and grows indefinitely.

FIG. 9. Spatial patterns of the nonlinear system over time. The shadows represent higher (darker) or lower (lighter) values of ui. The
vertical axis represents the time in a.u. while the horizontal axis represents the space. Patterns corresponding to t = 303 and t = 202 are
plotted in Fig. 8. The pattern is reached quickly, but it slowly increases to higher amplitudes, until it collapses in another stationary solution, a
partial extinction of u1. We used parameter values of Table IV with b11 = 0.001915 and δ = 0.474.
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FIG. 10. Numerical simulations of the nonlinear system. The curves represent the dimensionless population of the autocatalytic predators
scenario and with parameter values of Table IV and b11 = 0.001911. We used δ = 0.392. The homogeneous stationary solution is not drawn
because it is located offside of the axis (ū1 = 0.0677577, ū2 = 0.00191823). The dashed and dot-dashed lines represent ui just before it reaches
higher and lower enough values to move on to another stationary solution, a partial extinction of u1. The gray solid lines represent the state a
few step earlier (t = 80 and t = 75 in Fig. 11). Amplitudes are different and both populations follow the inverse dynamics, as expected for the
autocatalytic prey scenario. The pattern is not stable and grows indefinitely.

but it oscillates around the stationary solution, as can be seen
in the first steps of Fig. 11. Eventually, the amplitudes reach
another basin and the populations go to another stationary
solution, the partial extinction of u1.

IV. CONCLUSIONS

Here we studied the generation of patterns from intraspe-
cific interactions, which are usually neglected in most ecolog-
ical models or which are introduced ad hoc to study specific
cases. Lorenz [15] observed that, among animal species, in-
traspecific direct interactions act as inhibitory or autocatalytic
mechanisms. When individuals behave aggressively among
them, this behavior promotes their dispersion across the avail-
able territory. On the other hand, when the same individuals
cooperate, gregarious behaviors appeared. When these species
are involved in an ecological system, both mechanism might
couple and diffusion-driven instabilities arise.

In this work, we have shown that intraspecific interac-
tions in a predator-prey system might lead to diffusion-driven
instabilities. These intraspecific interactions can be positive
(cooperation) or negative (competition), they can act on the
predators or on the prey, or they can be direct (being an
active interaction) or indirect (acting as a saturation). This
means that they are not as limited as some previous studies
pointed out [3,4,6–9]. In the absence of intraspecific direct
interactions (terms biiXi), saturation acting on the prey relation
with environment resources might cause instability driven
by diffusion as long as Eq. (11) holds. This mechanism

leads to an autocatalytic prey scenario. No such mechanism
exists for predators. When intraspecific direct interactions are
present, Turing patterns might arise either with autocatalytic
prey or autocatalytic predators, with conditions (12)–(17) that
allow them to be cooperative or competitive, regardless of the
scenario.

We have shown with numerical simulations that instabili-
ties give rise to spatial patterns that might be identical for both
species, in the autocatalytic prey scenario (as in Fig. 6), or
inverse, in the autocatalytic predators scenario (as in Figs. 8
or 10). Spatial patterns are only stable in the autocatalytic
prey scenario, reaching a fixed amplitude lower than that
originally reached. For the autocatalytic predators scenario,
initial random perturbations grow continuously, or they show
oscillatory patterns of growing amplitude around the station-
ary solution. Their amplitudes grow until populations reach
the basin of a stable stationary solution. Although unstable
Turing patterns are known, specially around Hopf bifurcations
[16,17], here we found them around a saddle-node bifurcation.
Camara et al. [18] found that Turing instabilities around a
saddle-node bifurcation led to stationary Turing patterns, the
opposite of what we have found.

Since ecological models deal with living species that in-
habit spatial domains, patterns arising from diffusion mecha-
nisms are relevant to a better understanding of the behavior
of populations. Rietkerk and van de Koppel [19] reviewed
several examples of spatial pattern formation, from arid to sa-
vanna and wetlands ecosystems, and from coral reefs, ribbon
forests, mussel beds, intertidal mudflats, and marsh tussocks.
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FIG. 11. Spatial patterns of the nonlinear system over time. The shadows represent higher (darker) or lower (lighter) values of ui. The
vertical axis represents the time in a.u. while the horizontal axis represents the space. Patterns corresponding to t = 80 and t = 75 are plotted
in Fig. 10. The pattern is reached quickly, but it slowly increases to higher amplitudes, until it collapses in another stationary solution, a partial
extinction of u1. We used parameter values of Table IV with b11 = 0.001911 and δ = 0.392.

In all of these cases, spatial patterns arise in relatively ho-
mogeneous environments, with wavelengths that range from
a few centimeters to several meters, independently of the
organism sizes. Any wavelength size can be reproduced by
setting an adequate L, since wave number k of a Turing
pattern depends on γ and δ [2]. These examples are character-
ized by an interplay between negative long-range feedbacks,
associated with stress factors such as competition, adverse
environmental conditions or predation, and positive short-
range feedbacks, associated with resource facilitation, such as
nutrient concentration or intraspecific cooperation [19]. Both
mechanisms reflect the same autocatalytic behavior as those
described here. As Lorenz [15] pointed out, intraspecific be-
havior is a well known mechanism to disperse or concentrate
individuals. Therefore, pattern formation due to intraspecific
interactions should be considered as part of the ecological
behaviors that species show among their interactions.
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APPENDIX A: NONDIMENSIONALIZATION
OF THE POPULATION DYNAMICS SYSTEM

In this work, we added a diffusion term to a generalized
version of the population dynamics model of García-Algarra

et al. [10], denoted as

∂Xi

∂t
= di∇2Xi + Xi[ri − aiXi

+ (biiXi + bi jXj )(1 − ciXi )]. (A1)

We used the transformation

z∗ = z/L, t∗ = t (d1/L2), ∇∗2 = ∇2/L2,

δ = d2/d1, γ = r1L2/d1, s = r2/r1,

ui = ciXi, qi = ai/(cir1), pi j = bi j/(c jr1)

and dropped the ∗ in order to get Eqs. (5) and (6).

APPENDIX B: NUMERICAL VALUES

In Tables I–IV we presented the numerical values used in
the simulations. We presented the values according to the pop-
ulation equations instead of the dimensionless system, since
the latter can be derived from the transformation described in
Appendix A.
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