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State-dependent mean-field formalism to model different activity states in conductance-based
networks of spiking neurons
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More interest has been shown in recent years to large-scale spiking simulations of cerebral neuronal
networks, coming both from the presence of high-performance computers and increasing details in experimental
observations. In this context it is important to understand how population dynamics are generated by the designed
parameters of the networks, which is the question addressed by mean-field theories. Despite analytic solutions
for the mean-field dynamics already being proposed for current-based neurons (CUBA), a complete analytic
description has not been achieved yet for more realistic neural properties, such as conductance-based (COBA)
network of adaptive exponential neurons (AdEx). Here, we propose a principled approach to map a COBA on a
CUBA. Such an approach provides a state-dependent approximation capable of reliably predicting the firing-rate
properties of an AdEx neuron with noninstantaneous COBA integration. We also applied our theory to population
dynamics, predicting the dynamical properties of the network in very different regimes, such as asynchronous
irregular and synchronous irregular (slow oscillations). This result shows that a state-dependent approximation
can be successfully introduced to take into account the subtle effects of COBA integration and to deal with a
theory capable of correctly predicting the activity in regimes of alternating states like slow oscillations.

DOI: 10.1103/PhysRevE.100.062413

I. INTRODUCTION

Recent developments in recording techniques are shedding
light on the dynamics of cortical neural networks in higher and
higher spatiotemporal detail [1]. There are different scientific
ways to investigate and understand such large amounts of
data. A first class of approaches are top-down, aiming to
use data as a constrain to build generative models capable
to automatically reproduce statistical features observed in
experiments [2–5]. However, it is possible to interpret the
experimental observed behavior by mean of a bottom-up the-
oretical model. To achieve this, different levels of description
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are possible, ranging from single spiking neurons [6,7] to
population model [8–15], from extremely detailed [8,16–18]
to more coarse-grained models [19,20].

While keeping the model as simple as possible, it has been
recently shown that some minimal requirements are necessary
to reproduce a rich repertoire of dynamical features. In partic-
ular, a quite refined model as the AdEx is necessary to de-
scribe a response on a broad range of frequencies [21]. More-
over, voltage-dependent synapses have been largely shown
to be a crucial mechanism of neurons’ interaction [22,23].
While direct simulation of large ensembles of single neurons
can be performed, such an approach can be computationally
heavy and does not permit a straightforward understanding
of the system dynamics. A principled dimensional reduction
approach such as mean-field (MF) theories are powerful and
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TABLE I. Neuronal parameters defining the two populations RS-FS model.

θ (mV) τm (ms) C (nF) El (mV) �V (mV) τi (ms) Ei (mV) Qi (nS) b (nA) τW (s)

RS −50 20 0.2 −65 2.0 5 0 1 0.005 0.5
FS −50 20 0.2 −65 0.5 5 −80 5 0 0.5

widespread tools, used to obtain a large-scale description of
neuronal populations. One of the first successful attempts
was to provide a theory to describe leaky integrate and fire
neurons with current-based input [14,19,24,25], where the
firing-rate properties of the neurons are described as a function
of the statistics of its input current through a Fokker-Planck
formalism. This approach was also successfully exploited to
work out asymptotic firing rates under mean-field approxi-
mation incorporating synaptic filters [26,27]. For relatively
small synaptic timescales this leads to an effective current-
to-rate gain function equivalent to the one for instantaneous
synaptic transmission with a perturbative modulation of the
firing threshold.

The description of the asymptotic firing rates when
conductance-based inputs under mean-field approximation
has also a long track of successful attempts [15,28–30].
However, neither current fluctuations nor synaptic filters was
taken into account simultaneously. In the same framework, the
dynamics beyond the asynchronous linearizable state has been
addressed by numerically integrating the Fokker-Planck equa-
tion [31–33], while theoretical insights have been obtained
only for specific quasi-stationary conditions [15,33].

However, taking into account these modeling features all
together in an excitatory-inhibitory network is extremely chal-
lenging. Only recently, a method was proposed based on a
semianalytic approach [34,35] that can give satisfactory quan-
titative predictions also for networks with adaptation and slow
wave activity [36]. Nevertheless, this method is based on a
fitting procedure for the transfer function in regimes with rela-
tively low activity and low synchronization. Accordingly, it is
still far from a full analytic approach that would capture differ-
ent dynamical brain states. Steps in this direction are not only
a mere exercise of elegance but permit a deeper understanding
of the role played by model features (e.g., voltage-dependent
interactions) for the emerging dynamics. As we will describe
in this manuscript, thanks to such an approach we found out
that neurons work in two main regimes as different approxi-
mations can lead to two different analytic results. In particular,
each of the two approximations only work in a specific
dynamical condition, that can be either drift- or fluctuation-
driven. Moreover, in light of these results, we propose here a
principled state-dependent approximation, where we use two
approximations valid in the two limits described above, and
which can be analytically merged. This allows us to define
a current-to-rate gain function reliable also in regimes where
the dynamics is not strictly drift or fluctuation driven.

One of the main functions introduced here is an effective
current-to-rate gain function aimed at simplifying the theo-
retical description of the dynamics of networks composed of
COBA neurons. This allowed us to make a step further in
terms of usability of the theory also for numerical integration
of the mean-field dynamics, compared to the double-integral
expression provided in Refs. [28,30].

Our approach turns out to be rather effective for investi-
gating the properties of neuronal populations dynamics. In
particular, we considered a network composed of excitatory
and inhibitory neurons, namely, the standard minimal circuitry
for cortical neuronal networks [37,38]. The network parame-
ters are set to reproduce two different dynamical conditions
that are biologically relevant, i.e., asynchronous irregular and
slow oscillating dynamics [39]. We show that both of them are
reliably described by our mean-field model and that the state-
dependent approach is indispensable to achieve the quality of
such result.

Furthermore, our approach is particularly convenient to
compare dynamical properties of CUBA and COBA net-
works. In particular, we investigated the effect of the network
integration of multiple incoming inputs. We found, in accor-
dance with Ref. [23], that COBA networks have a stronger
sublinear suppression, which is important to account for ex-
perimental observations. This is also an interesting feature
in terms of computational capabilities, since the presence
of COBA synapses plays an important role for networks to
disambiguate stimuli.

II. RESULTS

A. Neuronal network model

We derive a state-dependent current-to-rate gain function
for conductance-based (COBA) AdEx-type neurons, whose
dynamics evolves according to the following equations [7]:

dV (t )
dt = −V (t )−El

τm
+ �V

τm
e[ V (t )−θ

�V ] + I[t,V (t )]
C − W (t )

C

dW (t )
dt = −W (t )

τW
+ b

∑
k δ(t − tk ) + a[V (t ) − El ]

(1)

where the synaptic input I is defined as

I[t,V (t )] =
∑

α

gα (t )[V (t ) − Eα], (2)

and where V (t ) is the membrane potential of the neuron
and α = e, i defines the excitatory (e) and the inhibitory (i)
input. The parameters of the neurons, which depend on the
populations they belong to (excitatory RS or inhibitory FS, see
Table I), are τm the membrane time constant, C the membrane
capacitance, El the reversal potential, θ the threshold, �V the
exponential slope parameter, W the adaptation variable, and
a and b are the adaptation parameters. gα are the synaptic
conductances, defined as

gα (t ) =
∑

k

�(t − tk ) Qαexp[−(t − tk )/τα]. (3)

We define the spiking time of the neuron when the mem-
brane potential reaches the threshold Vspike = θ + 5�V . tα

k
indicates the times of presynaptic spikes received by the
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neuron from synapse type α with characteristic time τα and
its synaptic efficacy Qα .

B. Current-to-rate gain function

Under the assumption of quasi-instantaneous synaptic
transmission (negligible τα), for a neuron described by the
dynamical system of Eq. (1) it is possible to write a Fokker-
Planck equation describing the dynamics of the probability
density function (p.d.f.) for its membrane potential V as

τm
∂ p(V, t )

∂t
= ∂

−∂V
[( f (V ) + μ)p(V, t )] + σ 2

2

∂2

∂2V
p(V, t ) ,

(4)

where f (V ) = −(V (t ) − El ) + �Ve( V (t )−θ

�V ) and suited bound-
ary conditions are taken into account [40], i.e., an ab-
sorbing barrier at the spike emission threshold Vspike = θ +
k�V (k is arbitrarily chosen to be 5, its value weakly
affects the spike timing) and that the probability cur-
rent [ f (V ) + μ]p(V, t ) + 1

2σ 2∂V p(V, t )|
V =Vspike

is reinjected in
Vreset = −65 after a refractory period τarp = 5 ms. We as-
sumed that the input I (t )

C is a white noise with infinitesimal
mean μ and infinitesimal variance σ [Fig. 1(a)]. This means
that the firs line of Eq. (1) would be rewritten as

dV (t ) =
[
−V (t ) − El

τm
+ �V

τm
e( V (t )−θ

�V ) − W (t )

C

]
dt,

+μdt + σξ (t )
√

dt, (5)

where ξ (t ) is a Gaussian white noise. Under stationary con-
ditions, the firing rate of the neuron is given by the flux of
realizations (i.e., the probability current) crossing the thresh-
old Vspike [24]:

F (μ, σ ) = 1

σ 2

∫ θ+5�V

−∞
dV

∫ θ+5�V

max(V,Vr )
du

× e− 1
τmσ2

∫ u
V [ f (v)+μτm]dv

. (6)

Such a function, usually referred to as a transfer func-
tion (or current-to-rate gain function), provides an estimate
of neuronal firing rate which is in remarkable agreement
with the one measured from numerical integration of Eq. (1)
[Fig. 1(b)]. Nevertheless, in the case of voltage-dependent
synapses determining the infinitesimal moments of the input
current (mean μ and variance σ 2) as a function of the input
firing rate is not straightforward.

In particular when a conductance-based input is considered
[Fig. 1(c)], the stochastic process describing the input current
has voltage-dependent infinitesimal mean and variance due to
the voltage-dependent nature of the impact of the incoming
spikes on the membrane potential dynamics [Fig. 1(d)]. In this
framework, an explicit solution of the aforementioned Fokker-
Planck equation has not yet been worked out.

1. Moment closure (MC) approximation

One of the major problems in modeling COBA neurons
is that the input current is voltage-dependent and can be

FIG. 1. Current-to-rate gain function for AdEx neurons with
conductance-based input: (a) Sketch of a AdEx neuron with current-
based input represented by a white noise. (b) Current-to-rate gain
function F (μ, σ ) for AdEx neuron receiving a white noise input
with mean and variance (μ and σ , respectively). Theory and simula-
tions (lines and circles, respectively) are in remarkable agreement.
(c) Sketch of an AdEx neuron with conductance-based (COBA)
input. (d) Graphic presentation of the voltage dependence of the
conductance-based input. (e) Firing rate of neuron with COBA input
as a function of the excitatory input and with constant inhibitory one
(circles). Two different theoretical approximations in red (light gray)
and blue (dark gray).

written as

I (t ) =
∑
α=e,i

[ḡα (Eα − V̄ ) − ḡαδV + δgαV̄ − δgαδV ], (7)

where we wrote V and gα as their average value plus their
time-dependent variations (V = V̄ + δV and gα = ḡα + δgα).
A first naive approximation consists in replacing the variable
V by its average V̄ , such that the input current I = ge(Ee −
V̄ ) + gi(Ei − V̄ ) is now independent from V . Under diffusion
approximation (i.e., in the limit of small gi and ge, and a large
rate of incoming spikes), the two infinitesimal moments μ and
σ 2 of I are:

μ = ḡe(Ee − V̄ ) + ḡi(Ei − V̄ )

C (8)

σ 2 = σ 2
ge

(Ee − V̄ )2 + σ 2
gi

(Ei − V̄ )2

C2
.

062413-3



CRISTIANO CAPONE et al. PHYSICAL REVIEW E 100, 062413 (2019)

Since μ and σ can be written as a function of the firing
rate, it is possible to write the transfer function as

F (νe, νi ) = 1

σ 2

∫ θ+5�V

−∞
dV

∫ θ+5�V

max(V,Vr )
du

× e− 1
τmσ2

∫ u
V [ f (v)+ f1(v̄,ḡe,ḡi )]dv

. (9)

This equation is the same as Eq. (6) where μ =
f1(v̄, ḡe, ḡi )/τm due to Eq. (8). Comparing this expression
with numerical simulations of the single-neuron spiking ac-
tivity in Fig. 1(e) [red (light gray) line], a good agreement is
mainly apparent under drift-driven regime (μτm > θ ).

2. Voltage-dependent (VD) approximation

It is also possible to take into account the dependence of
the input current I (t ) on the voltage [28,30,41,42] by writing
it in the following way:

I (t ) =
∑
α=e,i

[ḡα (Eα − V̄ ) − ḡαδV + δgαV̄ − δgαδV ]

�
∑
α=e,i

[ḡα (Eα − V̄ ) − ḡαδV + δgαV̄ ]. (10)

In the last step, the term −∑
α δV δgα has been neglected

since δV is assumed to be of the same order as δgα [30,41],
so δV gα ∼ O[(δgα )2]. Under this approximation, the synap-
tic current can be then written as a deterministic voltage-
dependent part plus a stochastic component which is inde-
pendent from V . As we are considering a quasi-instantaneous
synaptic transmission (τα � 0), such stochastic source of
current can still be modeled by a Gaussian white noise [24]
such that

I = f1(V, ḡe, ḡi ) + σξ (t ), (11)

where σ =
√

σ 2
ge (Ee−V̄ )2+σ 2

gi
(Ei−V̄ )2

C2 , ξ (t ) is a white noise
N (0, 1) and f1(V, ḡe, ḡi ) = ḡe(EE − V ) + ḡi(EI − V ), with
ḡe, ḡi and σ 2

ge
, σ 2

gi
the mean and the variance of the synaptic

conductances, respectively. In the case of input spike trains
with Poissonian statistics these infinitesimal moments result
to be [24,43,44]

ḡα = ταQαKανα

(12)

σ 2
gα

= ταQ2
αKανα

2
,

where Kα is the number of synaptic contact each neuron
receives from the population α ∈ {e, i}.

As above, considering f1(V ) as an additional term to f (V ),
it is again possible to work out an analytic expression for the
transfer function:

F (ḡe, ḡi, σ ) = 1

σ 2

∫ Vup

−∞
dV

∫ Vup

max(V,Vr )
du

× e− 1
τmσ2

∫ u
V [ f (v)+ f1(v,ḡe,ḡi )]dv

. (13)

The result of such approximation is shown in Fig. 1(e)
[blue (dark gray) line]. We observe that this approximation
gives good theoretical prediction as far as the average mem-
brane potential of the neuron is sufficiently low (i.e., under
noise-dominated regime).

C. A mixed framework: State-dependent (SD) approximation

The two proposed approximations rely on different as-
sumptions of the composition of the input current I (t ) to the
neurons, which turned out to be valid under different dy-
namical regimes of the neuron. In this paragraph we propose
a mixed framework to have a continuous transfer function,
by introducing a new parameter that allows us to interpolate
between the two regimes. This parameter is introduced not by
an a posteriori fit but by a priori considerations on the input
current.

Under drift-dominated regime (μτm > θ ), the spiking
times are mainly determined by the deterministic component
of the input and not by the stochastic one.

Accordingly, neglecting V fluctuations and replacing it
with its average value, is a good assumption and the use of
MC approximation is very satisfactory [Fig. 1(e), left side].

When μτm < θ , i.e., under fluctuation-driven regime, the
neuron can only fire in presence of large-enough subthreshold
fluctuations, as V̄ � θ . Therefore, all the variability of V
has to be taken into account, as subthreshold suppression
appears when V is close to the θ . Under this condition, VD
approximation result to be the most effective [Fig. 1(e), right],
as the additional term −∑

α ḡαδV in the current I (t ) is taken
into account. This term is lacking in the MC approximation.

Starting from that, we unify these two expressions for F
by writing

I (t ) =
∑
α=e,i

[ḡα (Eα − V̄ ) + δgαV̄ − (1 − s)ḡαδV ], (14)

where s is an arbitrary state-dependent parameter which is 0
when V̄ � θ and 1 when V̄ approaches θ as

s = 1

1 + exp
[ − (V̄ +σV −θ )

�V

] (15)

that is a sigmoid function with a very small width �V (we
chose this parameter since it represents the natural scale of the
absorbing barrier) to preserve the derivability and smoothness
of the current-to-rate gain function. This is a key step to
define an effective expression for smoothly merging the two
approximations (VD and MC) when the regime transitions
from fluctuation- to drift-driven.

Finally, we get the following current-to-rate gain function:

F (νe, νi, s) = 1

σ 2

∫ θ+5�V

−∞
dV

∫ θ+5�V

max(V,Vr )
du

× e− 1
τmσ2

∫ u
V [ f (v)+ f1(v̄,ḡe,ḡi )−(1−s) (ge+gi )(v−V̄ )/gl ]dv

.

(16)

This formulation is valid in absence of synaptic integration
(τα = 0), but its firing-rate estimation is rather accurate even
in presence of coloured input, as expected according to [26],
as shown in Fig. 2.

To check the effectiveness of Eq. (16), we compared the F
obtained with the MC and the VD approximations, and with
the state-dependent one, for varying excitatory and inhibitory
input firing rates [Fig. 3(a)]. We report the respective errors
[difference between theory and simulations, see Fig. 3(b)],
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(a)

(b)

FIG. 2. Different scales of synaptic integration. Comparison be-
tween two different scales of synaptic integration 5 ms (a) and 1 ms
(b). Circles and crosses are COBA simulations, respectively, with
and without synaptic filter. The diamonds are CUBA simulations.
MC and VD approximations in red (light gray) and blue (dark gray)
fit almost exactly CUBA simulations with synaptic filter and COBA
simulations without synaptic filter, respectively.

showing that in our approach they are smaller and distributed
in a narrower region in the νe, νi plane.

We considered also the adaptation variable W (t ) with a
relaxation timescale τW = 500 ms, and compared the predic-
tion with the simulations for the three models, observing an
optimal estimation for the state-dependent one [Fig. 3(c)].

D. Application: Population dynamics

We applied our result for describing an effective mean-field
dynamics for the canonically considered minimal structure
of a cortical network, namely, two coupled population of
neurons, one excitatory (regular spiking, RS) and one in-
hibitory (fast spiking, FS). RS neurons also have a spike
frequency adaptation mechanism [see Fig. 4(a)]. The external
input is provided by increasing the excitatory firing rate in
the input of both the population by an amount of νext = 6 Hz.
Neuronal parameters are specified in Table I. The probability
of connection is p = 0.25.

We define the MF dynamics for the average excitatory and
inhibitory firing rates of the network (respectively, νe and νi)
following the approach used in Ref. [45]:

τe
dνe

dt
= Fe(νe, νi,W ) − νe + σeξe(t )

τi
dνi

dt
= Fi(νe, νi ) − νi + σiξi(t ) (17)

dW

dt
= −W

τw

+ b νe − a(V̄e − El )

where we also considered the adaptation variable W . The
parameter b and a are the same as in Eq. (1). τe and τi

are the same as the membrane potential time scales. ξα are
white normal noises, and σα are the extents of the noise.
V̄e = 〈V (t )〉e is the population average membrane potential.
This is evaluated by integrating its deterministic differential
equation. The adaptation corresponds to an additional term in
the first infinitesimal moment, so that we can define

μw = μ − W

C
. (18)

By changing the parameters, it is possible to set the net-
work in different dynamical states. The asynchronous irregu-
lar (AI) is obtained by the parameters defined above. The slow
oscillations (SO) are achieved by multiplying the probability
of connection between excitatory neurons by a factor 1.15,
increasing the excitatory adaptation strength to b = 0.02 nA
and decreasing the external input to νext = 0.95 Hz.

The different regimes can be studied by the means of
standard techniques used in dynamical systems theory, e.g.,
null-clines representation [see Fig. 4(b)]. Each null-cline rep-
resent the region where the derivative is zero for a certain
variable (respectively, black line for νe and orange dashed
line for W ), and the intersection between them is a fixed
point that can be either stable or unstable. The green (light
gray) line represents the dynamics in the plane (νe,W ). This
analysis is performed for the different choices of parameters
and thus for the different dynamical conditions AI and SO.
Figure 4(c) presents an example of the time-course of the
dynamics for the two regimes in green (light gray) and red
(dark gray), respectively, for νe and νi. We eventually reported
the average firing-rate time course for a network of spiking
neurons with the same choice of parameters as in the previous
analysis [Fig. 4(d)], confirming that the predicted dynamics
turns out to match the spiking simulations [same color coding
as Fig. 4(c)].

E. Robustness of the prediction:
Need of a state-dependent approach

We tested the robustness of the mean-field dynamical pre-
dictions by exploring for the network for different parameter
values different the network parameters. First we changed the
the external input to the network in the AI regime, observing
the change in the stationary excitatory (green—light gray)
and inhibitory (red—dark gray) firing rates of the network
[Fig. 5(a)]. When only one of the two approximation is con-
sidered (top and middle panel) the mismatch between the the-
ory (solid lines) and simulations (circles:mean, bars:standard
deviation) is relevant, while the state-dependent approxi-
mation correctly reproduces the network behavior (bottom
panel).

However, in the SO regime we modulated the adaptation
b and analyzed the change in up and down states duration
[Figs. 5(b) and 5(c)]. Again, the first two approximations
taken alone poorly predict the dynamics observed in the
spiking simulations (top and middle panels), while such task
was performed quite well in the state-dependent approach
(bottom panel).
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FIG. 3. State-dependent mean-field approximation. (a) Theoretical predicted firing rate (color-coded) for the MC, VD, and the state-
dependent approximation. (b) Difference between the three theoretical models and the firing rate estimated in simulations. (c) Theoretical
predicted firing rate (solid line) and firing rate from simulations for COBA and CUBA (respectively, circles and diamonds) for the three
theoretical approximations.

F. Sublinear stimulus suppression

One of the main advantages of our approach is the possi-
bility to compare the effect of COBA and CUBA synapses at
the level of the population dynamics. We can indeed use the
MC approximation for CUBA (the VD approximation is not
necessary in this case) networks and the SD approximation
for COBA network and perform a well defined comparison
(see Fig. 2). To test the role of COBA synapses we consider
a phenomenon recently observed in the visual cortex, and
giving rise to a sublinear population response to external
stimuli which plays a key role to decode correctly different
stimuli [23]. To evaluate the capability of our theoretical
description to capture such phenomenology, we study the
nonlinearity of the network response to the presentation of
two consecutive stepwise stimuli [νstim

ext (t ) = ν1(t ) + ν2(t ), see
Fig. 6(a)]. This is obtained by providing an additional input
νstim

ext (t ) to the external input νext provided to the network. We
then compared the mean-field response to such stimulus for an
excitatory-inhibitory network with COBA and CUBA input
integration, respectively. In Fig. 6(a) the difference δνe(t ) =
νe(t ) − ν̄e between the firing rate of the excitatory population
with and without stimulation [νe(t ) and ν̄e, respectively] is
shown.

We then compared the response predicted under the linear
input-output hypothesis and the predictions from our approx-
imated mean-field theory.

The linear response to the two stimuli ν1(t ) and ν2(t ) is
assumed to be given by the sum of the responses to the
two isolated stimuli [δν lin

e = δν (1)
e + δν (2)

e ]. As experimentally
observed, we found that the system is sublinear (i.e., δνe −
δν lin

e < 0) for both COBA and CUBA network [see Fig. 6(c)],
although the intensity of the suppression is higher in the
COBA model, as in Ref. [23]. This confirms the role of
the COBA synapses in further emphasizing the differences in
the response to two stimuli in sequence.

Due to the enhanced sensitivity of the COBA synapses
to the working regime of membrane potential of the neu-
rons, we expect the differences highlighted in Fig. 6 to be
state-dependent. To investigated this aspect of the sublin-
ear summation effect we measured δνe − δν lin

e for different
levels of the network activity, here modulated by changing
the external input νext before the arrival of the two stimuli
[see Fig. 7(a)].

As a result, we found that the suppression of the responses
to the second stimulus is always stronger in COBA networks
than those measured in networks with CUBA currents.

Intriguingly, such effect is even more apparent when νext is
low.

The suppression enhancement is related to the change in
the membrane potential after the first impinging stimulus.
Indeed, the population average membrane potential in the
COBA network appears to be more depolarized at the onset

062413-6



STATE-DEPENDENT MEAN-FIELD FORMALISM TO MODEL … PHYSICAL REVIEW E 100, 062413 (2019)

RS FS

W

as
yn

ch
ro

no
us

 ir
re

gu
la

r
sl

ow
 o

sc
ill

at
io

ns

phase space MF dynamics spiking simulation

0

10

20

30

40

50

60

(a)

(b) (c) (d)

0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

ν e/
i (

H
z)

0

20

40

60

80

100

W
(n

A
)

inh
exc
W

0 1 2-20
- W (nA) 

0

5

10

15

20

25

30

35

0 20 40

0

10

20

30

40

50

60

- W (nA)
-40-60

ν e 
(H

z)

3
0

10

20

30

40

50

60

0

20

40

60

80

100

W
(n

A
)

0 1 2

ν e/
i (

H
z)

time (s)
-20 0

ν e 
(H

z)

ν e/
i (

H
z)

ν e/
i (

H
z)

time (s) time (s)

0 1 2 3 4 5

time (s)
0 1 2

FIG. 4. Mean-field dynamics in a RS-FS network: (a) Sketch of the network structure. (b) Nullclines representation of the dynamical
system in the phase space for two different dynamical regimes (top: asynchronous irregular; bottom: slow oscillations). Blue solid (dark gray
solid) and orange dashed (light gray dashed) lines: Nullclines for the excitatory firing rate and the adaptation variables. The green (light-gray
solid line) line represents the trajectory of the dynamics of excitatory firing rate in the phase-space. (c) Example of mean-field dynamics for the
two different regimes, green (light gray) and red (dark gray) represent excitatory and inhibitory firing rates, respectively. (d) Average firing-rate
dynamics of the spiking simulation. Green (light gray) and red (dark gray) represent excitatory and inhibitory firing rates, respectively.

time of the second stimulus (t2) than at the beginning of the
first stimulation (t1) [Fig. 7(b)].

To the purpose of this comparison, the excitatory synaptic
efficacy in CUBA networks is set to be proportional to (Ee −
V ∗) where V ∗ is the average membrane potential in t1 and
represented by the dark blue line in Fig. 7(b).

Finally, we evaluate the current contribution during the
second stimulation [Istim

2 = ge (Ee − V )] for both COBA and
CUBA networks [Fig. 7(c)]. In CUBA networks this contribu-
tion is almost unaffected by the changes of the membrane po-
tential (dark blue line) while for COBA networks the current
is reduced by the increase of V (light pink line), accounting
for the stronger suppression observed in COBA networks.

III. DISCUSSION

The mean-field description of a large network of excitatory
and inhibitory spiking neurons has been tackled analytically

on relatively simple models but often far from biophysical
reality [19,20]. However, anatomically sophisticated mod-
els [8,16–18] are computationally consuming and very hard
to be explored by mean of theoretical frameworks.

In the present paper, we proposed a tradeoff between these
two possibilities. First we chose a neuron model which has an
intermediate mathematical complexity but also a high physio-
logical validity: the exponential integrate-and-fire neuron with
spike frequency adaptation. Second, we consider voltage-
dependent synapses (COBA) that so far made this problem
difficult to be exactly solved.

To overcome the mathematical difficulty of solving a
Fokker-Planck equation with a voltage-dependent noise, de-
scribing a conductance-based input, we proposed a mapping
on a CUBA model, which has a known solution [19]. How-
ever, we showed that this mapping has to be state-dependent,
since different approximations have to be considered in dif-
ferent regimes. Indeed, in the fluctuation-driven regime it
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is possible to use a standard approximation that basically
maps the COBA on a CUBA with rescaled membrane time
scale [30].

Nevertheless, in the drift-driven regime this approxima-
tion is no longer providing a good description, and it has
been shown only to work in a relatively simple model with
instantaneous synapses and leaky integrate and fire neuron.
Our analysis reported that this is no longer valid when a
synaptic integration is considered since this that creates a
strong interaction between conductances and membrane po-
tential. Nevertheless, a different suitable approximation can
be performed neglecting the fluctuations of the membrane
potential, obtaining again an effective CUBA model where
the variable the membrane potential V is frozen and replaced
by a stochastic process with the same statistical moments.
An analytic merge of the two approaches provides a good
prediction of the firing rate in the whole phase space.

Making approximations is a natural way to simplify a prob-
lem and understand more easily the underlying mechanisms.

Our approach, since it relies on two different approximations,
points out that the relevant aspects producing the observed dy-
namics are state-dependent. It allows to understand in which
condition a single approximation works and when it doesn’t,
improving an intuitive understanding of the system.

Since neurons in cortical populations notoriously go across
both noise and drift dominated regimes [46–48], to define a
population mean-field dynamics requires to take into account
a unified framework like the one we propose. To support this
statement we have shown that when a single approximations
have been considered the quality of predictions was extremely
poor.

A unique transfer function reliable in various dynamical
conditions is particularly relevant also because different pop-
ulation may be in different regimes or the same population can
change regime across time, as in the case of slow oscillations.

We showed that our method is robust and flexible and suc-
cessfully describes different population dynamical regimes,
such as asynchronous irregular state and slow oscillations.
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Our approach suggests a general method to perform a state-
dependent mapping of neurons with COBA input on to CUBA
input even with different types of neuron such as QIF and LIF.

Our model could be interpreted as an attempt to do a
step forward to the development of analytic but still rich
and realistic theories that allow to describe experimentally
observed phenomenons [22].

Note that we did not investigate the fast-responses of the
network as described by other theoretical efforts [49]. Consid-
ering only first-order ODE implies a limitation in describing
very high-frequencies, however we focused on the out-of-
equilibrium dynamics induced by spike-frequency adaptation,
thus a dynamics unfolding on relatively long time scales.
To include a delayed and filtered version of the firing rate
(such as the one due to synaptic filtering) to induce resonant
frequencies (in the gamma range, for instance) will be the
subject of future studies.

We propose that the model can be naturally extended to
more complicated structures, such as the thalamocortical loop
and network with spatial extension. This would permit to
test our model on experimental data recording the activity
of populations of neurons over space where it may provide
a mechanistic understanding of the emerging dynamics based
on neurons voltage-based interactions.
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A semianalytic approach was proposed recently [34,36]
which relies on a fitting of the transfer function to numeri-
cal simulations. This approach yields mean-field models of
COBA neurons with good quantitative predictions. The main
advantage provided by this “orthogonal” approach is to be po-
tentially applicable to any neuronal model and to experimental
data. On the other side, as being a semianalytic fit, it does not
permit the same understanding of the dynamical mechanisms
underlying the neurons response function as a principled
approach like it does the one here proposed. More detailed
comparison of the two approaches is the object of future
directions and the knowledge derived from these two different
approaches will help to make important steps forward towards
an unified theory of mean-field models of COBA neurons.
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