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Ion channels exhibit a remarkably high accuracy in selecting uniquely its associated type of ion. The
mechanisms behind ion selectivity are not well understood. Current explanations build mainly on molecular
biology and bioinformatics. Here we propose a simple physical model for ion selectivity based on the driven
damped harmonic oscillator (DDHO). The driving force for this oscillator is provided by self-organizing
harmonic turbulent structures in the dehydrating ionic flow through the ion channel, namely, oscillating pressure
waves in one dimension, and toroidal vortices in two and three dimensions. Density fluctuations caused by these
turbulences efficiently transmit their energy to aqua ions that resonate with the driving frequency. Consequently,
these release their hydration shell and exit the ion channel as free ions. Existing modeling frameworks do not
express the required complex spatiotemporal dynamics, hence we introduce a macroscopic continuum model for
ionic dehydration and transport, based on the hydrodynamics of a dissipative ionic flow through an ion channel,
subject to electrostatic and amphiphilic interactions. This model combines three classical physical fields:
Navier-Stokes equations from hydrodynamics, Gauss’s law from Maxwell theory, and the convection-diffusion
equation from continuum physics. Numerical experiments with mixtures of chemical species of ions in various
degrees of hydration indeed reveal the emergence of strong oscillations in the ionic flow that are instrumental in
the efficient dehydration and cause a strong ionic jet into the cell. As such, they provide a powerful engine for
the DDHO mechanism. Theoretical predictions of the modeling framework match significantly with empirical
patch-clamp data. The DDHO standard response curve defines a unique resonance frequency that depends on
the mass and charge of the ion. In this way, the driving oscillations act as a selection mechanism that filters out
one specific ion. Application of the DDHO model to real ion data shows that this mechanism indeed clearly
distinguishes between chemical species and between aqua and bare ions with a large Mahalanobis distance and
high oscillator quality. The DDHO framework helps to understand how SNP mutations can cause severe genetic
pathologies as they destroy the geometry of the channel and so alter the resonance peaks of the required ion type.
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I. INTRODUCTION

A. The biological relevance of ion channels

In the biology of animal cells, ion channels are nanoscale
mechanisms that transport aqua ions from the extracellular
environment into the interior of the cell or vice versa. Aqua
ions are hydrated ions, i.e., bare ions, positively or negatively
charged, wrapped inside one or more layers of dipole water
molecules [1,2]. Part of their mechanism is to dehydrate the
in-flowing aqua ions.

Ion channels are essential in the conduction of electro-
physiological signals over space and time, as in the nervous
system and the brain, and the proper conduction of electro-
physiological signals over the surface of the heart [3]. There
exist numerous types of ion channels, each type for a spe-
cific biological role [4]. Ion channels select for one specific
positive ion as only potassium or sodium, or one negative
ion as only iodide or chloride. Moreover, they can act on
different timescales: slow, rapid, and ultrarapid. Cardiac cells
(myocytes) and nerve cells (neurons) typically contain many
thousands ion channels of various types, ranging from a slow
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sodium to an ultra-rapid potassium channel. Natural selection
on the genetic variations constituting the ion channel pheno-
type resulted in a wide range of different exons that, with the
right expression level, code for markedly different ion channel
types in different organisms, reflecting the requirements of its
lifestyle, viz., predator or prey [124].

B. Ion channels: Function and control

The main role of an ion channel is to generate an inward or
outward flux of specific target ions through the membrane. In
doing so, they change the electric charge inside the cell—and
therefore the potential difference along the cell membrane.
This potential itself can trigger changes in the cell and in the
ion channel state, as in voltage-gated ion channels. This feed-
back mechanism is at the basis of macroscopic conductance
of electrical signals [5]. Numerous sources, both experimental
and theoretical, report the inherently stochastic nature of
ion transport through nanochannels. Siwy and Fulinski [6]
show that the flicker noise observed in synthetic nanopores
and biological channels originates from its opening-closing
process, and that it is related to the underlying motions of
channel wall constituents. This provides clear experimental
evidence that the underlying dynamics is entirely stochastic.
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FIG. 1. Schematized lateral view of the ligand-gated ion channel
“ELIC” from Erwinia chrysanthemi [13] with channel axis vertical.
Functional parts indicated right. Bottom side is intracellular, upper
side extracellular. Dotted: interior walls, dark gray: α-subunit protein
envelope, light gray: lipid bilayer of cell membrane. Protein subunits
β, γ , . . . not depicted

C. Architecture and geometry of ion channels

Ion channels exist in a wide variety of geometries and
architectures [7]. Here, we focus on the bacterial ligand-
gated ion channels ELIC from Erwinia chrysanthemi (Fig. 1)
and GLIC from Gloeobacter (Fig, 2), and the prokaryotic
potassium channel KcsA from Streptomyces lividans (Fig. 4).
An ion channel is composed of four functional units: (1) an
extracellular funnel, (2) a selectivity filter, (3) a central cavity,
and (4) an activation gate [8]. Note that ELIC and GLIC have
particularly wide selectivity filters (SFs) [129,134] compared
to KcsA that exhibits a narrow tubular SF [128].

Ion channels are situated in the membrane of the cell. As
integral membrane proteins, they typically consist as assem-
blies of several individual homologous proteins, in a more
or less rotational-symmetric assembly [9], closely packed
around a water-filled pore through the cell membrane. The
core geometry of an ion channel consists of α subunits that are
transcribed and translated from a single gene [7,10].1 These
subunits combine to form a slightly skewed helically winding
but otherwise mostly cylindrical symmetric structure [11].
Besides the pore-forming α subunits, they contain various
auxiliary subunits, denoted β, γ , and so on. The internal
geometry is defined in terms of the equipotential surface of the
tertiary structure based on the individual three-dimensional
(3D) positions of the thousands of ligands of the proteins.
The geometrical configuration of the ion channel exists in a
number of conformal states, varying between the extremes
“open” (full conduction of ions) and “closed” (no ion flux)
[12]; see Fig. 2. Crystal structure data are available for an ever
increasing number of ion channels [13,14].

1For instance, the KCNQ1 gene directly codes for the KCNQ1
potassium voltage-gated ion channel [122].

FIG. 2. Schematic representation of the lateral view of the GLIC
proton-activated channel from Gloebacter violaceus [13] used in
EAH modeling. (a) Closed state (GLIC1), (b) open state (GLIC2).
Right side: extracellular, left side: intracellular environment. Dotted:
interior walls. Cell membrane and subunits not depicted.

D. What is ion channel selectivity

The mechanism behind ion channel selectivity2 is not
well understood [15]. There is a vast literature on theories
explaining ion selectivity, predominantly in the biomolecular
and genetic domain. While values for ion selectivity for an ion
channel in the open state attain values exceeding 99% [16,17],
the simultaneous rate of transport easily surpasses 107 ions per
second by magnitudes [11]. Measurements on the bacterial
ELIC channel exhibit transport rates peaking at 2.5 × 109

ions/sec [18]; see Fig. 12 below. Some scholars report ionic

2We define the selectivity of an ion channel as the fraction
CI/(CI + FI ). Here CI is the amount of the correct ion species
(true positives) it selects from an ambient mixture of various aqua
ions in the extracellular suspension into the intracellular space. FI is
the amount of incorrect ions the channel erroneously selects (false
positives). The associated flux is defined as the rate in which the
correct ion species enters the cell.
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speeds up to 39 m/s [19]. The high ion species selectivity
combined with a large conductance rate is called the “central
paradox of ion channels” [20,21]. There is overwhelming
experimental evidence and general consensus among scholars
that in most ion channels ions pass in a single file through
the narrow SF; see Ref. [16]. For such channels the challenge
is to find a one-dimensional (1D) physical mechanism that
simultaneously explains fast throughput and high selectivity.
Pawełek et al. [22] modeled asynchronous motion of ions and
water molecules in the SF of KcsA. Their model correctly
estimates the experimentally determined electrical current
through the channel. Kopec et al. [23] recently presented
numerical simulations of direct knock-on of desolvated ions
that favors K+ over Na+ ions with high accuracy and effi-
ciency. Water molecules play an essential role in their model,
as the energetic cost for dissolving a K+ ion is considerably
lower than for a Na+ ion. Their work thus exposes the deep-
rooted role of dehydration and the thermodynamic potential
in the selectivity process.

Yet there are also numerous other types of ion channels,
for instance, the bacterial ligand-gated ion channels ELIC and
GLIC, that do not exhibit narrow SFs but a more spacious
cavity that actually overarches the SF.

The question thus is whether there is a more fundamental
physical principle that explains selectivity in both cases, viz.,
narrow and broad SFs. Central in this principle must be the
ionic transport, de- and rehydration, and thermodynamics.
This demands some additions to current physical explana-
tions, notably the Poisson-Nernst-Planck model, that cover
these concepts.

E. Survey of physical models for ion channel selectivity

The conductance and selectivity of ion channels is a wide
and intensively studied multidisciplinary field, accompanied
by a substantial and comprehensive literature. In the perspec-
tive of the biomedical field, notably structural and molecular
biology and bioinformatics, emphasis is on the effects of
binding sites, protein structures, and genome sequences on se-
lectivity and conductance [1,2,24,25]. See Ref. [9] for a recent
survey. However, most models in the biomolecular domain
have problems explaining the small nanoscale timescales in-
volved in ion selection.

We focus on the perspective of the physical-chemical do-
main, where fundamental physical principles are applied to
obtain mathematical representations and computational solu-
tions. In this perspective, the three major theoretical frame-
works are deterministic continuum models, many-particle
system molecular dynamics, and the stochastic Brownian
dynamics (BD). Continuum theories describe, among other
things, ionic permeation [26] or diffusion of charged chem-
ical species in a fluid medium [27], e.g., using free energy
barriers. The Poisson-Nernst-Planck (PNP) model is based
on a mean-field approximation of ion interactions and con-
tinuum descriptions of concentration and electrostatic poten-
tial [28]. It provides qualitative explanation and increasingly
quantitative predictions of experimental measurements for
the ion transport problems. The system of PNP equations
provide the most appropriate and widely accepted continuous
description framework for ion transport problems, despite

its notorious technical difficulties, both in simulations and
numerical solution. Kuyucak and Bastug [20] and Sahu et al.
[29] employ PNP and the Poisson-Gauss equation to deter-
mine the electrostatic potential to describe electrodiffusion
and electrophoresis. Kosinska et al. [30] provide an analytic
expression for ion current rectification using model reduction
on 3D PNP and obtain a 1D model of synthetic nanopores
that adequately describes experimental data. Molecular dy-
namics is a fundamental ab initio approach, and essentially a
classical mechanics many-particle system description [31,32].
However, like in continuum models, it suffers from numerous
formal and practical setbacks, such as the inability to derive
various key properties, including ion channel conductance,
and severe computational complications [20]. BD [33,34]
and random walk models [35,36] provide a semimicroscopic
alternative to continuum theories [20]. In this approach, the
microscopic motion of ions is averaged over a large ensemble
in phase space, starting from the master equation [37], using
the Langevin equation, while the rest of the system is treated
in the continuum approximation. This models the average
motion near the interior surface, taking various constraints
in account, including finite size. However, BD simulations
are computationally much more demanding than solving the
Poisson-Boltzmann (PB) and PNP differential equations.

In current modeling, most researchers focus entirely on the
effect of the electric field on ion conduction and totally neglect
the impact of geometric constraints on channel gating. In our
work, the ionic flow characteristics depends strongly on the
channel geometry, and thus it belongs to a family of recently
published models [38–41], where the influence of channel
protein’s geometry on its activity are discussed.

F. The physical sense of continuous models
in the nanoscale domain

Working with a macroscopic-continuum model is attrac-
tive, as it eliminates mathematical and computational prob-
lems posed by discrete atomic discontinuities and random
events, namely by averaging the microscopic quantities over
the entire reachable phase space [42]. However, the continuum
assumption assumes that phase space is ergodic and complete.
This is not the case for various dynamical systems, including
those described by the Navier-Stokes equations. As time
develops, these systems eventually become limited to only a
minute subset of phase space, a phenomenon called ergodicity
breaking (EB) [133]. This poses an essential question to the
validity of the continuum assumption in our case. Moreover;
what are the smallest physical scales where a physical contin-
uum theory give valid predictions? These two questions are
considered in this section.

1. Ergodicity breaking and the validity of macroscopic models

The validity of the here proposed macroscopic “electro-
amphiphilic hydrodynamic” (EAH) model as derived from
the underlying stochastic microscopic dynamics hinges on the
assumption it is a true ergodic dynamical system. This implies
that its dynamics “explores” the reachable phase space equally
in a temporal and a spatial sense. However, understanding the
ergodic properties of dynamical systems is a basic unresolved
problem in mathematical physics [43]. Among the most
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notorious examples of this is the formation of fully developed
turbulence on the basis of a microscopic or macroscopic
mathematical model [44], touching the central tenet of our
explanation of ion channel selectivity. The most notable and
massively studied system in this context is the Navier-Stokes
equation, which is at the basis of the EAH model. Single
particle trajectories generated by the EAH equations exhibit
a tremendously complex or even fractal structure. Yet its
detailed knowledge is irrelevant for understanding the full sys-
tem. On the other hand, statistical information of the collective
and average motion—notably the system’s attractor set in
phase and configuration space—is much more significant and
useful [43]. The dimension of the full phase and configuration
spaces of the system is impressively huge (e.g., 1080), but
ergodicity breaking fragments it in numerous smaller sub-
units, either fully disconnected (hard EB) or weakly connected
(weak EB) [132]. EB is a well-known feature of Navier-
Stokes systems [45], so this poses the question whether a
mean-field derivation is allowed at all, as ultimately only a
small subspace of the entire phase space is occupied. On the
other hand, Galanti et al. [46], studying the Navier-Stokes
equations, found evidence favoring the validity of the ergodic
hypothesis in turbulent flows.

However, and first, observed statistical properties of turbu-
lent flows are remarkably reproducible and ergodic, in spite of
various deterministic forces pursuing to break the ergodicity
on large scales [47].

Second, it is a different matter whether EB really affects
the validity of the derivation of the EAH equations. EB
surely governs the dynamics of a single specific instance of
the system dynamics. However, the complete scope of the
system’s dynamics is based, not only on an accidental and
ephemeral subspace of phase space the system may find itself
in after EB, but much more on the entire ensemble of all
possible ensembles of such subspaces. Averaging over this
complete set provides the macroscopic EAH equations, thus
unaffected by hard or weak EB.

2. From microscopic discrete dynamics
to macroscopic continuum models

It should be noticed that there is a longstanding contro-
versy about the applicability of continuous models in the
nanoscale domain [48]. Corry, Kuyucak, and Chung [49,50]
compared mean field approximation in PB and PNP theories
with BD in cylindrical pores of varying radius, as first-
order approximation of a nanochannel. They thus found that
both continuum theories largely overestimate shielding effects
when the pore radius is smaller than two Debye lengths, and,
therefore, cannot be used to describe the physics of elec-
trolytes in nanopores. Moreover, continuous models exhibit
several theoretical limitations, such as disregarding dielectric
self-energy, responsible for saturation of conductance due
to the formation of self-energy barriers [29,51,52], and they
suffer from practical, notably computational problems. These
controversies question the physical sense of macroscopic
continuum modeling the nanoscale dynamics inside ion chan-
nels. A question that is essential for our explanation of ion
selectivity as it relies on the emergence of vortices and eddies
on nanoscales. We address this matter in Sec. II D 4, where

we examine physical markers that define the smallest length
scales that allow for turbulence, and hence the existence of
microvortices.

Ultimately, on even smaller scales where quantum phe-
nomena dominate, continuum modeling definitely applies,
viz., via the Schrödinger equation.

G. Motivation and structure of the paper

In this paper we study the physical foundations of ion
channel selectivity and to this ends we propose the classi-
cal physical mechanism of the the driven damped harmonic
oscillator (DDHO). Current models for ionic transport and
selectivity in ion channels fail to provide the required har-
monic driving force for generating the resonances. Therefore,
in Sec. II we introduce a physical continuum model for the
hydration electrohydrodynamics of a dissipative ionic flow
through an ion channel in the amphiphilic environment of its
interior walls. This model is called the electro-amphiphilic
hydrodynamics (EAH) model. This approach yields a macro-
scopic continuum model, that is new in that it allows for
the internal motion in the channel. As it is expressed in
terms of the fluid vector field, it can represent streamlines,
so oscillations in one dimension, and vortices and eddies in
two and three dimensions. This can not be achieved in BD
and MD. In Sec. III we study the EAH model numerically in
one, two, and three dimensions and compare its predictions
with experimental patch clamp data. In Sec. IV we venture
to explain ion channel selectivity as result of frequency en-
trainment by the classical DDHO mechanism. The driving
frequency is provided by persistent fluid oscillations, such as
standing waves and toroidal vortices in the dissipative ionic
flow through the ion channel. In Sec. V we discuss how the
observed oscillatory fluid dynamics actually acts as the core
of the ion selectivity control mechanism. Thus, we come to
the conclusion that hydrated ions (aqua ions) and dehydrated
ions (bare ions), as they differ in mass and effective electrical
charge, respond differently to the driving frequency of the
fluid oscillations when trapped inside. In case of resonance
this response is maximal, which defines a resonance frequency
that depends on the mass and charge of the ion. In this way,
the oscillator, vortex or oscillating pressure wave, acts as a
selective mechanism that uniquely filters out one specific ion.

II. ELECTRO-AMPHIPHILIC HYDRODYNAMICS (EAH):
A PHYSICAL MODEL FOR THE SPATIOTEMPORAL

DYNAMICS OF A DEHYDRATING IONIC FLUID

We introduce a macroscopic continuum model for ion
transport through an ion channel, and show that it exhibits
strong and persistent oscillations in the form of oscillating
pressure waves in one dimension and vortices in two and
three dimensions. These oscillations act as the driving force
for self-organized ion species selectivity.

A. Model assumptions and generalizations

1. Ions as fluid: From discrete events to a continuum model

Rather than the microscopic dynamics of individual ions,
we here focus on a macroscopic continuum model in the
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FIG. 3. Flow lines of the fluid velocity field u(r, t ) (solid black)
and hydration η(r, t ) in a cross section of the ELIC ion channel at t =
20 ms, showing a strong central toroidal vortex. With Re = 600, after
250 K iterations. Gray scales depicts hydration. Left: intracellular,
right: extracellular space, middle (white): cell membrane. Figure
made with the EAH model.

ergodic subspace of a microcanonical ensemble of a large
number of ions. It is well known from computational physics
that even for relatively small numbers of molecules, viz., a few
dozen, a macroscopic model adequately describes the overall
systems dynamics [53,54]. Our approach is justified by (1) the
aforementioned high rate of ion transport, peaking to 2.5E9
ions/sec for ELIC; (2) the fast selection (>99%) and small
length and timescales (Å and nanosec) involved in the selec-
tion process that are more characteristic for a physical than for
a molecular-biological phenomenon [55–57]; and (3) the huge
number of ion channels per individual cell, typically many
tens of thousands [5,58]. The latter statistically averages out
the ion channel dynamics per cell. The thus obtained average
ionic motion exhibits highly detailed fluid streamlines as in
Fig. 3, despite the comparable size of an ion and the diameter
of a channel—the pore radius—of only a few ångströms
[59]. Macroscopically, our model constitutes an electrically
charged incompressible fluid of several ion species, spatially
contained within the confinement of the ion channel. The
interactions between the ions are governed by electrostatic
interactions and collisions, while the interactions of ions with
the surface of the ion channel are dominated by amphiphilic
interactions. Gravitational and magnetic forces are considered
too weak and are not included. Another assumption is that the
process is considered to be isothermal.

2. Physical foundations of the EAH model

Starting point for constructing a macroscopic model is
the microscopic Boltzmann master equation for a mixture
of multiple interacting chemical species in a fluid. Fol-
lowing the derivation of Bisi and others [60–65] in an

electrohydrodynamic setting following Zhakin [66], we obtain
a modified Navier-Stokes equation (NSE) for the fluid veloc-
ity vector field u(r, t ) of an incompressible fluid in Eq. (2)—
incompressible, because of the strong repelling forces be-
tween the ions and the ambient water. In our case, however,
we allow for a continuum of species, namely the dehydration
series of the ions, measured by 0 � η � 1. Internal collisions
between the molecules are quantified by the diffusion term in
the NSE and gauged by the dynamic viscosity ν [67].

Starting point for the hydration [Eq. (3)] is the chemical
reaction

X K · (H2O)nH � X K + nH H2O (1)

for the (de- or re-)hydration of ion X with chemical valence
K (+ or −) and its hydration number nH .3 This leads to a
convection-diffusion equation for η with terms for convec-
tive transport (including vorticity), orthotropic diffusion, and
sources and sinks.

Furthermore, the geometry of the ion channel imposes
strict boundary conditions. First, a Neumann boundary con-
dition on u, as we assume that the flow is entirely parallel
to the surface on the set of all ion channel boundaries B.
So, u is perpendicular to the normal vector of ion channel
interior surface at the boundary. Moreover, we assume that
at the entrance of the ion channel, with cylindrical coordinate
z = L, the velocity faces horizontally inward with a velocity
U0. Second, Dirichlet conditions on (1) η and u because of
a constant influx of fresh fully hydrated ions at the entrance
of the ion channel, i.e., z = L and (2) the electric potential
φE (r, t ) = 0 on B.

3. Mathematical EAH equations

Combining both macroscopic processes, ion transport and
ion (de)hydration, we obtain the set of coupled PDEs in
Eqs. (2)–(5). They model the electro and amphiphilic hydro-
dynamics of an incompressible mixture of aqua and bare ions,
immersed in ambient H2O molecules. We refer to the obtained
continuum model as the electro-amphiphilic hydrodynamics
(EAH) model. The dynamic EAH model is expressed in terms
of the following:

(1) The joint spatiotemporal fluid velocity vector field
u(r, t ) pertaining to all types and species of ions and all other
molecules, including H2O.

(2) The scalar field ηs(r, t ): the local degree to which ion
species s is hydrated, so a number between 0 and 1.4

(3) The spatiotemporal scalar electric potential field
φE (r, t ).

(4) The ion concentration, i.e., the particle density, ns of
ion species s.

The EAH model is expressed as a system of four PDEs and
three associated conditions and constraints:

3For example X K = Ca2+ has nH = 7.2.
4Note that individual ions contain an integer number of surrounding

H2O molecules, but that in the statistical average of our approach this
number is real, called the hydration number nH .
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Solve: {u, ηs, ns, φE} for all (r, t ) ∈ S × T from

Du
Dt

= ν∇2u − ∇P/ρ − χ∇φE − a∇φA, (2)

Dηs

Dt
= (1 − ηs) ∗ σ+

s − ηs ∗ σ−
s + ∇ · (Ds∇ηs), (3)

ε0∇ · (εr∇φE ) = −(nχ + λE ), (4)

Dns

Dt
= −∇ · s (5)

subject to:

Incompressible fluid: ∇ · u = 0, Dρ

Dt = 0

Boundary conditions: ηs|z=L = 1, u|z=L = −U0êz,
∂u
∂n |B = 0, φE |B = 0

Initial conditions: ηs(r, 0) = 1, u(r, 0) = 0.

With convective derivative: D
Dt = ∂

∂t + (u · ∇), and the
Hadamard-Schur, i.e., component-wise vector product: (a ∗
b)i = aibi. S represents the set of spatial coordinates, in-
side the interior of the ionchannel and left and right where
necessary. T represents the time domain in our modeling,
starting from t = 0. The plane z = L (in cylindrical coordi-
nates with the z axis aligned with the ion channel symmetry
axis) marks the extracellular entrance of the ion channel. A
mixture of S species of ions is represented by the hydration
array [η1, η2, . . . , ηS]. Overline characters η, ν, χ, a describe
weighted ensemble averages over η; see Eqs. (6)–(9). All
other elements in these equations are discussed in detail in
the sections below.

B. Parameters and terms in the EAH equations

Equation (2) gives the spatiotemporal equation for the
vector field u that applies for all species of the mixture. The
left-hand side (LHS) of the equation represents the convective
derivative of the flow. The right-hand side (RHS) contains
various terms. The first term is the isotropic diffusion mea-
sured by the viscosity ν. The second term represents the force,
exerted on the fluid, due to pressure gradients. Note that this is
the only term that explicitly contains the mass density ρ. The
next two terms are the body forces exerted by respectively
the electrical field and the amphiphilic interaction, and will be
discussed in more detail below. The hydrodynamic pressure
P(r, t ) in Eq. (2) is a scalar field used for regularization to
match the LHS and RHS.

The system of PDEs is solved under constraints that the
flow u is divergence-free, and the net mass density ρ is
conserved—as, following Eq. (1), only the frequencies of the
aqua versus bare ions interchange. Consequently, the particle
density n is not conserved, as aqua ions break up in bare
ions and water molecules. For a mixture of bare and aqua
ions in a substrate of inert (organic and inorganic) molecules
(the “rest”) in ambient water, the integral densities ρ and n
are given by ρ = ρH2O + ρrest + ∑

k ρk + ∑
k nkhkmH2O, and

n = nH2O + nrest + ∑
k nk + ∑

k (1 − ηk )hknk .
Here ρ∗ and n∗ are, respectively, the mass and particle

density of component *, m∗ the (free, i.e., unhydrated) mass
of an individual molecule of the component. Note that ρk =
nkmk . For ion species k, hk denotes its hydration number

(a.k.a. nH : “shell number”). Note that several variables in
the equations explicitly depend on the degree of hydration.
Besides the particle density n, these include the charge density
χ and the viscosity ν.

The boundary conditions, including Neumann or Dirichlet,
model the ion interactions and the electric field with the
ion channel wall. As initial conditions we start from a fully
hydrated field at rest.

An important auxiliary local variable in the model is the
orthogonal or minimal distance d to the ion channel wall.
This metric is a function of position r only and gives the
minimum distance from r to any point on the ion channel
walls. The gradient ∇d (r) gives the direction towards the
wall, and after normalization it becomes the local orthogonal
unit vector ê⊥(r) directed towards the wall and by implication
also defines two local unit vectors (ê‖1(r), ê‖2(r)) parallel to
the wall.5

1. Hydration dynamics

Equation (3) represents the dynamics of de- or re-hydration
and consists of three terms. The LHS expresses the convective
motion of ions. The first term of the RHS denotes the sources
and sinks for aqua ions near the walls. We introduce the am-
phiphilic source-sink function σ acting on the hydrated frac-
tion η of the ions. It depends only on the minimum distance
d � 0 to the wall and the ion radius Rs of ion species s [68].
For a mixture of S species of ions, this becomes an array σs(d ),
s = 1, . . . , S. For a particular species of ion s we define this
function as σs(d ) = K+

s (1 − ηs)σ+
s (d ) − K−

s ηsσ
−
s (d ), with

positive functions σ+ (source: hydrophobic) and σ− (sink:
hydrophilic), both ranging between 0 and 1. The positive
constants K+/−

s represent the strength of source or sink s.
In our approach, we model a sink σ−(d ) with the spherical
cap function: σ−

s (d ) = (Rs − d )2(2Rs + d )/2R3
s for d � Rs,

and zero elsewhere. This is the fraction of a sphere of radius
Rs behind a plane at distance d from its center, and specifies
the penetration of an ion of type s into the ion channel wall.
Rehydration of dehydrated bare ions occurs ubiquitous and
constant with kinematic reaction constant K+

s . It is thus repre-
sented by the (implicit) source function σ+

s (d ) = 1 − σ−
s (d ).

Without the convective term it would lead to a dehydrated
zone alongside the walls.

The last term denotes the diffusion of aqua ions. Diffusion
of aqua ions is considered to be generally isotropic with
diffusivity δ0. However, near the ion channel walls it is con-
sidered to be orthropic, with preferred diffusion δ1 alongside
the surface. This is modeled with a mixed diffusion matrix
D(d ) = β(d )D0 + [1 − β(d )]D1. The scalar function β is a
function of the orthogonal distance d to the ion channel wall
and monotonically increases from β = 0 for d = 0 to β = 1
in the deep interior of the channel. Here we define β as
the above introduced spherical cap function: β(d ) ≡ σ−(d ).
Matrix D0 = δ0I is the constant global isotropic diffusion ma-
trix.6 The local orthotropic diffusion matrix D1 is defined as

5We chose unit vector ê‖1(r) to be co-incident in the (z, r) plane in
cylindrical coordinates.

6Here I stands for the identity matrix.
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D1 = δ1ê‖1 ⊗ êT
‖1 + δ1ê‖2 ⊗ êT

‖2 + δ0ê⊥ ⊗ êT
⊥, with diffusivity

δ1 in directions parallel to the wall, and δ0 orthogonal to the
wall; we assume that δ1 	 δ0. The orthogonal unit vectors
ê‖1(r), ê‖2(r), and ê⊥(r) are the two local tangent and one
normal unit vectors to the surface at position r as defined
above. Note that diffusion works in two opposite ways: it
transports freshly dehydrated ions into hydrated regions, but it
also dilutes dehydrated regions with inflowing hydrated ions.

2. Amphiphilic interactions and the entropic force

Amphiphilic, i.e., hydrophilic and hydrophobic, interac-
tions constitute a central role in the EAH paradigm and are
represented by various terms in Eqs. (2) and (3). Though
well understood qualitatively in a chemical and biological
context, in a strict physical sense they are poorly described
quantitatively [69–71]. The hydrophobic force is of particular
physical interest as it does not result from one of nature’s
four fundamental interactions, but an “entropic force,” i.e., a
statistical-physical effect resulting from the thermodynamic
tendency to maximize the system entropy [72,73]. In the case
of the ion channels, amphiphilic interactions take place near
the walls, i.e., inner “surface” and in the selectivity filter.
The strength of unwrapping decreases as one moves away
from the surface [74]. Consequently, there are net hydrophilic
gradients directed towards the surface of the channel and
axially towards the inlet of the channel. Eisenberg et al. [75]
introduced the mean helical hydrophobic moment to quantify
amphiphilicity, and Silverman [76] showed the importance
of first- and second-order hydrophobic moments [77]. The
hydrophilic interaction is modeled with a scalar function φA

[77]. The “amphiphilic potential” φA(r) denotes the ability to
de- or rehydrate an ion at position r [75–78]. It relates to the
gain or loss in entropy and internal energy per water molecule
in ion de- or rehydration. The energy �E released or required
in de- or rehydration is ion-species dependent [23], such that
for species s: �E = as�φA = as∇φA · u, where as can best
be described as the “amphiphilic charge” of species s. �φA

is the amphiphilic potential step involved in the de- or rehy-
dration and relates to the changes in entropy �S and internal
energy �U .

For an isolated amphiphilic source or sink, φA depends
on its orthogonal distance d to position r. Following Don-
aldson [74], the amphiphilic potential decays exponentially
with d as: φA(d ) = C0 · exp(−d/λA), where λA is the range
of the amphiphilic interaction, and C0 is, respectively, neg-
ative for hydrophilic, and positive for hydrophobic sources.
In our case there is not one single amphiphilic source
or sink, but the entire hydrophilic wall of the ion chan-
nel. Therefore, we parametrize the amphiphilic sources or
sinks with parameter(s) ξ , such that the amphiphilic strength
at ligand position x(ξ ) is CA(ξ ), and we obtain φA(r) =∫

CA(ξ )exp[−‖r − x(ξ )‖/λA] dξ . Here parameter ξ describes
the spatial parametrization of the 1D ligand position on
the α-subunits that constitute the wall of the ion channel.
Note that we assume that the decay length λA is ion-species
independent.

The amphiphilic potential φA acts as the cause for the am-
phiphilic force FA, namely. as the negative spatial gradient of
φA. It acts solely on hydrated ions, so the fraction η of the local

mixture of molecules, as a body force fA = FA/ρ = −η∇φA

that features in Eq. (2). Note that the amphiphilic potential
φA(r) is entirely different from the dehydration source and
sink functions σ±(r) used in Eq. (3). We do not include
higher-order tensorial terms in the EAH model, such as the
amphiphilic moment.

3. Electrostatic interactions

Equation (4) describes how the electric potential φE (r, t )
derives from Poisson’s formulation of Gauss’s law, with the
vacuum permittivity constant ε0 and local relative permittivity
εr (r, t ), and mean local electric charge density χ (r, t ). λE is
the time-independent surface charge density of the interior ion
channel wall, consisting of the α-subunits. As we focus on
charged ion interactions, we do not include the relative weak
Lennard-Jones potential.

The multi-ionic species mixture composes an electrolyte
which, due to Debye screening, effectively suppresses the
Coulomb potential of an individual ion by an exponential fac-
tor. This collective effect results from the combined attraction
of local counter-ions and repulsion of neighboring co-ions,
leading to a net counter charge density. In the EAH formalism,
Debye screening of the electrostatic potential is expressed
in Eqs. (4) and (8) by the spatiotemporal fields εr and χ .
Thus, the mixture of ions constitutes a dielectric medium,
with ambient induced charges screening the electric field. The
bound charge density consists of the hydrated ions, polarizing
the medium. This bound charge acts as a source for the electric
field, so the total charge density (per ion species) in Gauss’s
law reads χ = χbound + χfree = nηqA + n(1 − η)qB. Here qA

and qB are the effective electrical charges of an aqua ion and
a bare ion, respectively, and n is the local particle density.
This difference quantifies the effect of electrostatic screening
on hydrated ions by the envelope dipole water molecules on
short-range electrostatic interactions [79,80]. The electrostatic
potential is calculated concurrently with Eqs. (2) and (3)
by solving Poisson’s equation in the interior of the channel
with Dirichlet boundary conditions. The electric force follows
from φE as FE (r) = −χρ∇φE . This gives the body force
fE = FE/ρ = −χ∇φE in Eq. (2). Magnetic forces are not
included as they are magnitudes smaller than the electric and
amphiphilic forces in this setting.

4. Mixture of different species of ions

Let us now consider a mixture of S different species of
ions of different mass and charge, viz., Ca2+, Na+, Cl−, each
with a particle density ns. Let fs = ns/n with n = ∑

s ns,
(s = 0, . . . , S) be the (numerical) fraction of the species of
the total mixture. n0 denotes the nonionic rest of the mixture,
notably H2O. Now, the hydration levels of the aqua ions can
be represented by an array [η1, η2, . . . , ηS], where ηs is the
level of hydration of species s. All species in EAH equation
(2) share the same velocity vector field u, but each species
has its own particular dehydration dynamics as expressed
in EAH equation (3). It may happen that one species be-
comes predominantly dehydrated and others not, based on the
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setting of the EAH parameters. The ensemble averages are
given by

η =
S∑

s=1

fsηs, (6)

ν(η) =
S∑

s=1

fsνs(η), (7)

χ (η) =
S∑

s=1

[ fsηsqA,s + fs(1 − ηs)qB,s], (8)

a(η) =
S∑

s=1

fsasηs. (9)

Note that the density ρs per partially hydrated species s
depends on ηs but that for the entire ensemble a loss of
one aqua ion is the gain of one bare ion plus its number
of released shell water molecules, so the total density ρ =∑

s fsρs remains constant. The de- or rehydration depends
on the different physical properties of the species; its mass
ms, charges qA,s, qB,s (aqua and bare), amphility as, and their
interaction with the membrane: dehydration speed, and the
natural timescale of rehydration away from the ion channel,
defined by the source and sink functions σ+(d ) and σ−(d ).
The species interact indirectly through the dehydration dy-
namics at the ion chamber walls. The only direct interaction
between the different species is via their electrical charge:
the ions are subject to the electrical forces of the charged
mixture: ns[qAsηs + qBs(1 − ηs)]. Hydrated ions are attracted
to the wall, due to the entropic force −a∇φA.

Important for the ion channel dynamics is the effective
net ion flux through the channel. This flux follows from the
continuity equation: dns/dt = in

s Ain
s − out

s Aout
s + Bs, with

Ain/out the surface of the cross section of the in- or outlet of the
ion channel, in/out

s the associated flux, and Bs the creation or
annihilation of species s inside. Bs follows from Eq. (3). In the
EAH model, we assume that out

s is proportional to ns. Species
s that are very efficient in dehydration and with a high outflux
jet out

s will become rare inside the ion channel, depending on
their production Bs, and their influx in

s ns, which we assume
to be constant for all species; see Fig. 12 below.

5. Brownian dynamics framework

It seems attractive to augment this approach using the
framework of BD, as the stochastic fluctuations on the mi-
croscopic scale are immense. Indeed, it is fully justified to
insert Langevin terms in the EAH equations (2)–(5), as we
know the physical cause of the fluctuations [81]. However,
from standard theory [82,83] it is known, and confirmed by
our simulations, that this impedes and ultimately destroys the
formation and evolution of stable oscillations and vortices,
even for low levels of noise, due to the nonlinearity of
the hydrodynamic Navier-Stokes equation (2), caused by the
kinematical term (u · ∇)u [37]. For this reason, we do not
include stochastic fluctuations.

C. Particle densities and ionic transport in the EAH framework

The EAH equations describe the evolution of the flow ve-
locity field and spatiotemporal hydration. In order to analyze

the particle density flux and electric current, we augment
the classical PNP equations with additional velocity- and
hydration-related terms.

1. EAH-augmented particle flux

In order to find the evolution of the local particle den-
sities ns, we start from the conventional PNP equation (5)
in terms of the particle flux s of ion species s and aug-
ment it with terms caused by the fields {u, η}. This adds
an amphiphilic term to s. Moreover, the charge (and va-
lence K) now becomes hydration-dependent through electro-
static screening: qs(ηs) = ηsqA,s + (1 − ηs)qB,s and Ks(ηs) =
qs(ηs)/e. The augmented flux s of species s thus becomes7

s = nsu − Ds(∇ns − αKsns∇φE − βasηsns∇φA), (10)

where Ds denotes the ion species-dependent local 3 × 3
anisotropic diffusion tensor. Here we postulate the same
diffusion tensor Ds for particle and hydration transport, i.e.,
Eqs. (3) and (10). The constants α = e/kBT and β = 1/kBT
gauge the electric and amphiphilic potentials to the density
flux. The amphiphilic charge as was introduced in Sec. II B 2.
Note that the convective derivative term u · ∇ns in the LHS of
Eq. (5) cancels, due to the assumption of an incompressible
fluid: ∇ · u = 0. The modified PNP flux s now explicitly
contains the fields u and η, and thus relates to the geometry of
the ion channel. This augmented PNP equation is processed
simultaneously with the EAH equations (2)–(5) and gives the
concurrent evolution of the spatiotemporal concentrations
ns(r, t ) and fields u(r, t ) and ηs(r, t ). This can be employed,
e.g., to determine electrical currents across the channel, and
express the particle flux of dehydrated ions js = (1 − ηs)nsu.

2. The augmented GHK equation and ionic permeability

The (absolute) permeability ps of an ion species s is a mea-
sure for the degree to which ion s is permeant through a given
ion channel. The permeability is experimentally determined
by determining the reversal potential, a.k.a. Nernst potential,
VN across the cell membrane. VN is described by the Goldman-
Hodgkin-Katz (GHK) voltage equation that defines the cross-
channel potential V that makes the total outward current Itot

zero. The relative permeability of a mixture of different ionic
species is the ratio of their absolute permeabilities [135].

It must be noted that the question has been raised as to the
reliability of reversal potential measurements for determining
permeability ratios, particularly given the use of an equation
such as the GHK equation, which is often used to calculate
such ratios [84].

In order to find VN for our model, we consider a mixture
of S ionic species where ns is the particle density and Ks the
valence of species s. Also, assume that the diffusion constant
differs per species and has a value Ds for species s. For a
given rotational-symmetric ion channel, the particle flux s

of species s along the central z axis is given by combining the

7We assume that the contribution of the magnetic vector potential,
∂A/∂t , is magnitudes smaller (namely, 1/c2) and can be ignored.
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Stokes-Einstein equation with Fick’s law of diffusion:

s(z) = αKs psl
dVE

dz
ns(z) − psl

dns(z)

dz

with constant α = F/RT and the ionic permeability ps ≡
Ds/l . VE (z) is the electric potential inside the channel, l = 2L
its length, T is the absolute temperature, R the molar gas
constant, and F Faraday’s constant.

This can be solved as a differential equation in ns(z) for
assumed constant s, with boundary conditions at z = −L
(inside the cell): ns(−L) = ni

s, and z = L (outside): ns(L) =
no

s , yielding the “classical” Goldman equation:

s = αKs psVE
no

s − ni
se

αKsVE

1 − eαKsVE
, (11)

where VE now denotes the entire cross-channel electric po-
tential. In the mixture of S ionic species, each with specific
electrical charge qs = Kse, the total outward electric flux Itot

as function of the electric potential difference V , a.k.a. the
Goldman curve, becomes

Itot(V ) =
S∑

s=1

qss.

The Nernst potential VN can then be found by solving

Itot(VN ) = 0 (12)

in terms of the electric potential V . This defines the GHK
equation. In the framework of EAH we also involve the degree
of hydration η, the amphiphilic potential VA, and the (axial)
velocity field u, so that Eq. (10) for the 1D axial particle flux
becomes (per ion species)

(z) = −pl
dn

dz
+ αK pn

dVE

dz
+ βapηn

dVA

dz
+ nu,

where VA indicates the average amphiphilic potential8 at axial
position z and nu is the convective particle flux. a is the
amphiphilic charge of the ion. In a similar derivation as above,
this leads to an augmented Goldman equation:

 = f o − f iQ

1 − Q
(13)

with f o = pno(αKoVE + βaηoVA + uo), f i = pni(αKiVE +
βaηiVA + ui ), Q = exp(αKiVE + βaηiVA + ui ), and “o”
refers to extracellular entry of the channel (outlet), and “i” to
its intracellular exit (inlet), so Ki = K (ηi ), etc. Here VE and
VA are, respectively, the full electric and amphiphilic potential
across the entire channel: V{E ,A} = V{E ,A}(L) − V{E ,A}(−L).
In our approach, we assume full hydration at the entry,
so ηo = 1. In the ideal case, the hydration is zero at the
exit, ηi = 0. In practical cases, we can define the efficiency
of hydration of the channel as: ε ≡ 1 − ηi/ηo. The total
current Itot for the mixture of S ion species entering the cell

8VA(Z ) is the amphiphilic potential averaged over the vertical plane
z = Z in cylindrical coordinates.

becomes

Itot (VE ,VA) =
S∑

s=1

qin
s s

now with screened charges qin
s = ηin

s qA,s + (1 − ηin
s )qB,s. The

augmented Nernst potential VN again follows from solving the
GHK equation (12) in terms of VE .

Note that including the hydration shifts the Nernst poten-
tial (and the isolated singularity for resp. VE = 0 or Q = 1)
relative to the “classical” case.

D. The EAH framework in different spatial dimensions

Though the EAH equations (2)–(5) are expressed
dimension-free, their physical realization and effects vary in
different spatial dimensions. Here we separately describe 1D,
two-dimensional (2D), and 3D systems.

1. 1D EAH systems

The narrow noncurved SFs observed in numerous ion
channel architectures, viz., KcsA, are essentially thin tubes
of only one spatial dimension; the axial coordinate z [85,86].
In case of a pure 1D system, the incomprehensibility of the
fluid, duz/dz = 0, dictates that the axial velocity uz must be
constant along the axis z. Fluctuations in uz cause density
waves that propagate with the velocity of sound c = √

∂P/∂ρ,
which is higher than the flow speed uz. A more realistic
approach is to model narrow nanoscale tubes as cylinders
with small diameter and study only the axial dynamics. This
means that we take only the z component of the Navier-Stokes
equation (2). Note that the total dimension of the EAH-space
is DEAH = 2S + 2, namely, describing S different ion species,
the flow velocity u(z), and the electric field φE (z). As DEAH >

3, the system may still exhibit complex dynamics, despite its
D = 1 spatial dimension9

2. 2D EAH systems

The dynamics in two spatial dimensions exhibits the emer-
gence of vortices and eddies in the flow in the fluid, as
is well-known experimentally observed and mathematically
described, e.g., in the Navier-Stokes equation. The complexity
of such flows is adequately studied and analyzed, e.g., in
the seminal work of Landau and Lifschitz [82,83]. It must
be noted that in rotation-symmetric systems, the vortices can
form 3D coaxial toroids, which, however, are azimuthally
segmented10 and strictly not connected. As such, they do not
allow the different 2D structures to interact in the azimuthal
dimension or exchange energy and information (viz., entropy).
In a real physical system, embedded in ambient noise, sym-
metry breaking will swiftly connect these cycles into left- or
right-handed rotating toroidal vortices, subject to the physical
conservation laws, notably angular momentum and energy.

9In continuous dynamical systems, the Poincaré-Bendixson the-
orem shows that chaotic behavior can arise only in three or
more dimensions. See E. A. Coddington and N. Levinson, The
Poincaré-Bendixson Theory of Two-Dimensional Autonomous Sys-
tems (McGraw-Hill, New York, 1955), pp. 389–403.

10That is, in the direction of the cylindrical θ coordinate.
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The rotational energy in these structures can be converted
into internal energy, viz., heat and chemical energy, and thus
provides a powerful source for dehydration.

3. 3D EAH systems and rotations in the flow

In 3D systems the ensuing dynamics becomes more com-
plicated if rotation is involved. Rotation can be caused by
residual angular momentum in the incoming fluid, internal he-
lically skewed walls, or by rotation of the ion channel itself. If
the ion channel is fully rotation-symmetric, the mathematical
description can be reduced to 2D, assuming that the angular
momentum is conserved. In this case, rather than the isolated
not-connected structures in two dimensions, rotational trans-
port is around the symmetry axis and the vortices and eddies
are full 3D objects.

Rotation introduces new terms in the EAH equations,
namely, by including bulk centrifugal and Coriolis forces
exerted on the flow. Thus, with angular velocity vector �

this augments the EAH main equation (2) with two rotational
kinematic terms:

Du
Dt

= ν∇2u − ∇P/ρ − χ∇φE − η∇φA

−� × (� × r) − 2� × u.

Introduction of these terms result in strong vortices that spin
fast around the central symmetry z axis. The rotational forces
only apply inside the ionchannel. They are proportional to
the mass density. An individual aqua ion has a higher mass
than a bare ion, due to its shell of nH water molecules. This
difference does, however, not cause centrifugal separation
of aqua and bare ions, as the contribution of the rotational
forces is mass-dependent, but as mass acts on both LHS
and RHS of Newton’s second law—the microscopic basis
of the NSE—it cancels exactly. However, the combination
of hydration-dependent viscosity and hydration-independent
rotational forces will cause centrifugal separation of ions
causing more hydrated ions farther away from the rotational
axis, pushing hydrated ions to the amphiphilic walls of the ion
channel.11 An interesting new hypothesis for understanding
ion transport in ion channels is introduced by Shaw with the
concept of spinning ion channels [11]. According to this idea,
ion channels in the open state spin with ultrahigh frequencies
of 10–100 kHz. The EAH equations, augmented with above
rotational terms, can adequately describe this paradigm, and
they result in powerful turbulent phenomena. However, even
without the rotational terms, i.e., � = 0, turbulence appears
for high enough Reynolds number Re, and in this way the
EAH model does not depend on external rotation and the
spinning ion channel paradigm.

11The kinematic viscosity ν(η) relates to the molecular mass. The
Stokes-Einstein equation [121] relates kinematic viscosity to the
microscopic diffusion coefficient D as ν ∝ 1/D, while D itself is
mass dependent: D ∝ (

∑
sM

−1
s )1/2 [123], with Ms the molecular

mass of species s in the mixture (s = 1, . . . , NS). This mass depends
on the fractions ns and ηs of hydrated molecules for species s:
Ms(ηs ) = Ms,0 + ηsnH,sMH2O. Here Ms,0 is the mass of the bare ion
of species s, nH,s its maximum aqua-shell number, and MH2O is the
mass of a water molecule.

4. Physical markers for the existence
of microturbulence in EAH dynamics

In the EAH framework, the fields u and η define self-
organized oscillations that for high Reynolds numbers can
be very small [136]. Here we quantify the lowest admissible
length-scales for our case, the Debye length for the range
of the electrostatic field, and the Kolmogorov length for the
smallest hydrodynamic length scale in a turbulent flow. More
detailed calculations in Appendix A.

(1) The Debye length λD measures how far the elec-
trostatic effect of a charge in an electrolytic solution or
plasma persists. In electrohydrodynamics, it measures the
lower bound where the theory applies. For our context inside
an ion channel, we find a Debye length of λD ≈ 0.34 Å. This
is less than the grid size of the EAH model of approximately
1 Å, so allows for the level of detail exhibited. Note that this
is substantial smaller than the values of Corry et al. [49] of
5.6–7.9 Å.

(2) The Kolmogorov length κ is the smallest hydrody-
namic length scale in turbulent flows. The Kolmogorov length
implicitly defines Re, namely as the scale at which the Re
becomes equal to 1, so the onset of turbulence. For our context
of EAH inside an ion channel, we find κ ≈ 0.025 Å. This is
substantially less to the EAH grid size of 1 Å.

Both markers indicate that the ionchannel environment
is in the appropriate turbulent regime, and thus support the
validity of the macroscopic mean-field EAH framework for
exhibiting meaningful microvortices in the streamlines at
scales of approximately 1 Å.

III. NUMERICAL EXPERIMENTS AND COMPARISON
WITH EMPIRICAL RESULTS

A. Computational model of the ion channel

Our interest is in the underlying mechanism of self-
organized selectivity of the ion channel, and therefore we
focus mainly on the relation between turbulence formation
and ion dehydration, especially near the interior walls [87].
In our simulations we represent the ion channel in cylindrical
coordinates (r, z, θ ), as we assume that it is axially symmetric.
The axial coordinate z is aligned with the symmetry axis
of the ion channel. The extracellular entrance of the ion
channel is positioned at z = L, and the intracellular exit at the
origin z = −L, where l = 2L is the length of the ion channel.
Consequently, the flow through the channel has a negative
sign.

For our physical model we used published data on the crys-
tal structure of ion channels, notably represented as the pore
radius. The pore radius also indicates whether the structure
represents an open or a closed state of the ion channel. This
provides data for the EAH model for z as function of r in
cylindrical coordinates. As prototypes we selected published
data on x-ray crystal structures of prokaryotic homologs of
ligand-gated ion channels from Erwinia chrysanthemi (ELIC)
[88], and three structures of a proton-activated channel from
Gloebacter violaceus (GLIC1, GLIC2, and GLIC1M) [89]
from Song and Corry [13]. ELIC, depicted in Fig. 1, exhibits
a minimum pore radius of 1.2 Å, located near the extracellular
side of the membrane, which implies that it is a closed state
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structure. A schematic representation of the GLIC ion chanel
in the open state (GLIC1) and closed state (GLIC2) is depicted
in Fig. 2, excluding the subunit appendices and the protein
α subunits envelope. GLIC1M is the E221A mutation of
GLIC1, and it mirrors the open state GLIC1. For studying the
essentially 1D transport of a single file of ions in a narrow
SF, we selected the x-ray crystal structure of the prokaryotic
KcsA ion channel [85,90].

Besides the mathematical conditions and assumptions
mentioned in Sec. II A, we make the following assumptions
on, and limitations to, the geometry and architecture of the
computational model of the ion channel. The most relevant
are that we assume:

(1) A mean-field continuous model in space and time,
describing the statistical average dynamics at scales above the
quantum level. The benefits and disadvantages of macroscopic
models are discussed in Sec. I F, and its validity is justified in
Sec. II D 4. The required ergodicity is discussed in Sec. I F 1.

(2) Cylindrical symmetry along the central axis of the ion
channel, and therefore apply cylindrical coordinates z and r,
reducing the computational complexity to two dimensions by
ignoring θ dependence.

(3) The linear charge density and amphiphlic coding on
the α subunits to be constant, independent of the ligand
position. Thus they make that φA, and the fraction of φE

caused by the contribution of linear or surface charge density
λE , are time-independent and depend only on the orthogonal
distance d in Eqs. (2)–(5).

(4) We assume a constant relative permitivity, and follow-
ing [49] take εr = 80 inside the boundary water, and 2 outside,
which is representative of proteins forming ion channels.

(5) We assume that the ion channel walls are nonsolid, and
that colliding ions bounce off fully elastically.

(6) We generally not assume rotating ion channels. Nor do
we take into account the intrinsic ion spin, and we average the
ion-ion interaction terms as a mean field, not including the
Lennard-Jones potential.

B. Implementation and experimental design

The EAH equations are implemented in MATLAB, us-
ing the open-source linear algebra-based NSE algorithms of
Seibold [91]. This efficiently iterates over time the spatially
discretized and then vectorized representations of the field
variables u, η, φE , and P, all in column vector shape. In the
same way, the operators that act on these field quantities are
discretized, with appropriate boundary conditions, in corre-
sponding system matrices.

The pressure is only given implicitly. It is obtained by
solving a linear system using sparse Cholesky decomposition
to compute the pressure correction. In the same way, the
Poisson equations for the pressure P and electric field φE

are solved as linear systems, together with their prescribed
homogeneous Neumann boundary conditions and with
no-slip boundary conditions assumed for the velocity field u.
The incompressibility condition ∇ · u = 0 is treated, not as
a time evolution equation, but as an algebraic condition by
using a projection approach by Strang [92]. By iterating the
momentum Eq. (2) while ignoring the pressure, it is projected
onto the subspace of divergence-free velocity fields.

The viscosity terms are treated implicitly and expressed in
terms of the dimensionless Reynolds number Re ∝ 1/ν.

The results are visualized as graphs of streamlines: the
trajectories of the u(r) field, or flow lines: the trajectories of
the unit vector û(r)-field. Flow lines exhibit vortices more
clearly; see Fig. 11(a) below. Gray scales are employed to
indicate the hydration field η(r) or pressure field P(r).

C. Observed phenomena in 1D EAH dynamics

First, we study the dynamics generated by the EAH model
in a 1D system in order to understand its implications for
the narrow tubelike SFs found in various ion channels, like
the bacterial KcsA depicted in Fig. 4. Our starting point are
the EAH equations restricted to D = 1 spatial dimension. As
described in Sec. II D 1, this means the axial coordinate z
of an open cylinder of dimensions L and R, with entry at
z = 0 and exit at z = L. To fit this with the SF of KcsA we
choose L = 12 Å, and R = 2 Å, as estimated from Fig. 4(a).
We observe that, under the right conditions, this gives rise to
oscillating pressure waves, fitting to the the length of the tube,
that can act as driving force for a 1D DDHO mechanism.

1. 1D EAH model

The equations for the 1D EAH follow directly from
Eqs. (2)–(5) by considering only the axial coordinate z of
a cylinder with small diameter. As the equations for the
hydration η and particle density n of the NS ion species are
not coupled, we can for simplicity just consider one single
species with electric charges {qA, qB} and amphiphilic charge
a. Moreover, we assume a constant amphiphilic force along
the channel, represented by its potential gradient gA and
constant particle density n. With these simplifications, the
1D spatial EAH equations represent a 3D dynamical system
{u, η, φE }:

∂t u + u∂zu = ν∂2
zzu − gPE − gEAη, (14)

∂tη + u∂zη = Ds∂
2
zzη + σ+

s − σsηs, (15)

ε∂2
zzφE = −[λE + ηnqA + (1 − η)nqB] (16)

with the combined electrostatic-pressure gradient body force
gPE = gP + qBgE and likewise electrostatic-amphiphilic body
force gEA = (qA − qB)gE + agA, with electrostatic gradient
gE = −∂zφE . Note that the sink and source σ functions still
vary over z. Therefore, the equilibrium value ηEQ1 = σ+/σ

also varies over z. On the other hand, a constant speed u
is feasible only if ηEQ2 = −gPE/gEA. This is the case only
if ηEQ1 = ηEQ2, and the pressure gradient settles to a value
gP = −qBgE + [(qA − qB)gE + agA](σ+/σ ).

2. Oscillating particle-density waves caused
by period-doubling bifurcations

For suitable high values of Re = ν−1, the particle density
of the 1D EAH system exhibits persistent oscillating waves
that strongly enhance ion dehydration. The origin of these os-
cillations lies in complexity theory and follows Landau’s de-
scription of the transition to turbulence [93]. It is well known
in fluid mechanics that pressure-driven flow in a pipe becomes
turbulent in a subsequent cascade of instabilities that results in
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FIG. 4. Pore radius profile of the KcsA ion channel, derived from
backbone atoms of channel states. (a) Comparison of the profiles
(dashed lines) formed by the closed, intermediate, and open crystal
structures. From Fig. 2(b) in Linder et al. [90], reproduced by
courtesy of the authors. (b) Particle density in KcsA after 150 msec
reveals the formation of a train of oscillating density waves in the
Selectivity Filter with wavelength λ ≈ 3.1 Å.

ever more complicated dynamics; see Fig. 5. This bifurcation
diagram of the flow energy versus Re in a two-sided open pipe
exhibits a periodic doubling 2k cascade that ends with a crisis
bifurcation [94]. In our case, this periodic doubling cascade is

FIG. 5. Bifurcation diagram for the flow energy in a two-sided
open pipe for increasing Re that exhibits period doubling cascade
between a Hopf bifurcation at Re = 166 till a boundary crisis at
Re = 188, from Kreilos and Eckardt [94], reproduced by courtesy
of the authors with the permission of AIP Publishing.

the cause for the oscillations of the particle density and flow
velocity. Numerical analysis of the 1D EAH equations (14)–
(16) with realistic initial conditions for different values of Re,
shows the set of bifurcations and the transition to chaos. The
most interesting for us are the stable oscillatory 2k cycles en
route to the chaotic regime. Examples are depicted in Figs. 6
and 7 that show the concurrent evolution of flow velocity and
ion dehydration in a “spacetime” diagram (z, t ) for, respec-
tively, low and high Re. The associated electric potentials
follow from Eq. (16) with initial conditions: φE (0) = 0 [V]
and ∂zφE (0) = −5.65 [V/m]12 and are shown in Fig. 8.

For low Re, depicted in Fig. 6, the system is in the laminar
regime, and the flow builds up speed gradually from the
entrance onward, and the fluid slowly dehydrates starting from
the middle only after 400 msec.

For high Re, depicted in Fig. 7, the system is in the
period-doubling regime, and the flow becomes unstable after
± 150 msec, and a series of undulations of small wavelengths
emerge that represent density-pressure waves in the motion of
the ions. After 250 msec, these undulations slowly disperse.
Note that the concurrent dehydration is much faster and effi-
cient, resulting in the complete dehydration of the right part
of the channel after ± 150 msec. This is caused by the longer
exposure to the dehydration term −ση, due to the undulation
that impedes the motion. Figure 4(b) shows how also the 3D
EAH equations exhibit the emergence of undulations inside
the narrow tubular SF of the KcsA channel, for Re = 1E4
after 150 msec.

12The coaxial electric field strength Ez(d ) of an open cylinder
(R, L) with linear charge density λE at distance d from its entrance
is Ez(d ) = λE

2πεR2
L√

R2+L2
. For the SF of KcsA we take L ≈ 12 Å,

R ≈ 2 Å. The charge density λE inside the SF of KcsA follows from
Lincong Wang’s data [137] for surface charges of various protein
solvents and estimates λE = −1.27E−09 [C/m]. Combined, for
d = 0, we thus find Ez(0) = −5.6453 [V/m]. The particle density
n for N ions inside a cylinder (R, L) is n = N/πR2L. Follow-
ing Kopec et al. [23], we assume N = 3 ions inside. This gives
n = 1.99E + 28 m−3.
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FIG. 6. Solutions of the 1D EAH model inside the SF of KcsA ion channel with low Re = 0.44, (a) Solution for axial velocity u(z, t ).
(b) Solution for hydration η(z, t ). Coordinate z denotes the axial coordinate along the SF of KCsA, from its entrance set at z = 0 to its exit at
z ≈ 12 Å.

In Sec. IV we will show that this efficient dehydration
can be explained by the 1D DDHO mechanism, where the
oscillating density waves act as the driving force.

D. Observed phenomena in 2D and 3D EAH dynamics

In 2D and 3D dynamics, for suitable Re, vortices and
eddies emerge, either isolated (2D) or connected (3D). These
vortices efficiently drive ionic dehydration and transport.

1. Vortex dynamic enhance efficient dehydration

The model leads to efficient dehydration in the outward
flux, varying with the setting of the model parameters. The

initially entirely hydrated and motionless fluid naturally de-
hydrates near the walls of the ion channel due to the sink term
σ−(d ). The amphiphilic force attracts new hydrated ions but
does not act on the freshly dehydrated ions. This causes a flow
towards the ion channel walls.

Moreover, the recently dehydrated bare ions have a larger
effective electric charge qB than the aqua ions qA, due to elec-
trostatic screening. Therefore, the electric charge density χ

is larger in these regions: χ = ηqA + (1 − η)qB (per species),
as described above. This effect affects the higher electrostatic
potential in the dehydrated regions, so, near the ion channel
walls, as ∇2φE = χ/ε0. The electrostatic (body) force com-
ponent in the NSE equation (2) therefore is doubly affected,

FIG. 7. Solutions of the 1D EAH model inside the SF of KcsA ion channel with high Re = 1E4 reveals the formation of oscillating density
waves with short wavelength. (a) Solution for axial velocity u(z, t ). (b) Solution for hydration η(z, t ).
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FIG. 8. Solutions of the electric potential φE (z, t ) of the 1D EAH model inside the SF of the KcsA ion channel, starting from φE (0) = 0
and: ∂zφE (0) = −5.6453 [V/m]. (a) Low Re = 0.44. (b) High Re = 1E04.

namely as: fE = −χ∇φE. The resulting higher electrostatic
pressure drives dehydrated ions out of the dehydrated regions,
so to the exit of the ion channel.

In a similar way, in case of rotation, centrifugal separation,
described in Sec. II D 3, naturally supports dehydration by
segregating bare from aqua ions, as it forces aqua ions towards
the channel wall and so pushes bare ions away from it,
ultimately towards the channel exit.

2. Vortex dynamics and chaos

The complexity of the flow pattern increases with the
Reynolds number (Re), i.e., with decreasing viscosity ν. This

is a well-known and intensely studied characteristic of the
NSE [83,95,96,130,131], and therefore naturally holds, and
is observed, for the EAH system. Examples of evolving
flow patterns can be found in Figs. 9, 10, and 11, and the
Supplemental Material [97]. At low Re, the flow in the EAH
system is laminar. With increasing Re, the nonlinearities in
the EAH equations start to dominate and cause complex
cascades of toroidal vortices and eddies to emerge, including
vortex rings. This phenomenon is strongly enhanced in case
of external rotation. The formation and evolution of vortices
strongly influences the progress of dehydration, and vice
versa.

FIG. 9. Toroidal vortices and mixing visible through streamlines and hydration. (a) Strong central toroidal vortices in the ELIC ion channel,
Re = 700, after 250 K iterations. (b) Toroidal vortices and mixing near the walls of the GLIC1 ion channel, Re = 400, after 450 K iterations.
Time step: dt = 1E − 6. Gray scale depicts hydration η. Different horizontal and vertical scales.
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FIG. 10. Solutions to the EAH equations (2)–(5) for the GLIC ion channel as depicted in Fig. 2. (a) Closed state GLIC1 with toroidal
vortices dehydrating the ions. (b) Open state GLIC2 flushing the dehydrated ions into the intracellular space. Depicted are the stream lines of
the vector field u and the degree of hydration η: light (color: yellow): fully hydrated η = 1, dark (color: blue): fully dehydrated η = 0. Note
the different scales on horizontal and vertical axes.

In the turbulent regime, the system does not attain a steady
state but exhibits ever-changing complex dynamics. The flow
field u and hydration field η strongly interact and influence
each other in nonperiodic oscillations. Consequently, the vor-
tices and dehydrated regions, are constantly changing over
time. This favors the hydration of that type of ions which
is most suited and fitting to the time schedule of the vortex
evolution. Control of this scheme allows for optimizing the
yield of the ion channel.

Note that the 1D oscillating pressure waves in the SF of
KcsA, mentioned in Sec. III C 2, can also be caused by the
back effect of rolling vortices in the central cavity.

3. Open versus closed state ion channels

The ion channels GLIC1 and GLIC2 offer an opportunity
to compare the open and closed state of the same channel. The
latter is one of the few crystal structures that are confirmed as

FIG. 11. Mutant GLIC1M in the open state, showing turbulent-free passage of ionic flow. (a) Pressure (gray and color scales) and flow
lines. Channel wall depicted as solid line. (b) Hydration (gray and color scales) and streamlines. Both panels: Re = 500, 400 K iterations
(different scales on horizontal and vertical axes)
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FIG. 12. (a) Patch clamp data of single ELIC ion channel from Ref. [18], Fig. S4B, reproduced by courtesy of the authors. (b) One typical
run of the EAH model outflux data for the ELIC ion channel. (c) EAH model outflux data of ELIC, averaged over five runs (disk, error bars
represent two standard errors, n = 5), compared with the averaged patch clamp data of (a) (star), n = 2 (all currents normalized to maximum
value).

being in the open state. Figure 10(a) depicts the closed state
GLIC1 after 400 K iterations with time step of dt = 1E−6.
It exhibits strong vortices that drive hydration inside the
channel, but hardly affect the intracellular hydration depicted
left of the channel. Though some dehydrated ions leak through
the outlet. The extracellular environment, depicted right of the
channel, is nearly fully hydrated, besides some retrograde flow
of dehydrated ions from the channel. Figure 10(b) depicts the
open state GLIC2, starting directly from the situation—i.e.,
from the values of the u and η fields—of Fig. 10(a), after
another 100 K steps of 1E−6. It shows that the vortices have
dissolved, and a mostly laminar flow has established that now
largely dehydrates the intracellur space left of the channel.
Note that still then miniature vortices persist in the grooves
of the walls.

4. Why mutations in ion channels are detrimental

Various observations indicate that mutations that affect the
geometric shape of the ion channel are detrimental to ion
selectivity in particular [12,98]. For this reason, we studied
the E221A mutation that changes GLIC1 into GLIC1M and
increases the minimum pore radius from less than 0.5 Å to
2.3 Å [99]. This showed that GLIC1M cannot sustain a stable

closed state and continuously “leaks” hydrated ions into the
intracellular environment, depicted in Fig. 11. This shows a
flow pattern reminiscent of the open state GLIC2, depicted in
Fig. 10(b).

5. Implicit interaction and competition between the species

The different species in the mixture do not interact directly
in the (de)hydration reaction 3. Rather, they interact indirectly
in Eq. (2), via the flow field u that contains the ensemble
averages (η, ν, χ ), defined in Eqs. (6)–(8). This causes a
competition among species which one is most efficient in
optimizing its outward flux of dehydrated ions. All this results
in different outflux performances for different ions, because of
their different dehydration, mass, and charge characteristics;
see Fig. 12.

E. Comparison between experimental data and theoretical EAH
predictions of ion transport in the ELIC channel

In order to assess the consistency of the EAH model,
its theoretical predictions are compared to empirical data.
For this purpose we draw on the experimental data
by Zimmermann and Dutzler [18], who studied ligand
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activation and electric conductance of the ELIC ion channel
from Erwinia chrysanthemi, our prototype model ion chan-
nel.13 First, we compare measured patch clamp data with
predicted outward electric current. Second, we compare ob-
served and predicted conductance and reversal potential of a
single ELIC channel. Next, we compare the current-voltage
(I-V) relationships of single ELIC channels at different cation
concentrations, and finally, the I-V relationships of binary
mixtures of monovalent and divalent cations. Various exper-
iments described below were measured from single ELIC
channels embedded in planar lipid bilayers and not in the cell
membrane. In these cases “i” and “o” refer to the correspond-
ing “intracellular” and “extracellular” side.

1. Particle outflux and electrical current: Comparison of EAH
predictions with empirical patch clamp data

Let us focus on the transport of monovalent cations through
ELIC ion channel. Consider a mixture of monovalent bare and
aqua ions of only one species, Na+, and predict the outward
electrical flux and compare this to patch clamp data.

Let us assume a rotation-symmetric model of the ELIC
channel and apply cylindrical coordinates (z, r, θ ). The elec-
trical current at any axial position z is determined by the fluxes
of the charged particles. We focus on the symmetry axial
coordinate z, running from the extracellular entry z = L to the
intracellular exit z = −L. Using our definitions of hydration
field η(z, t ) and the effective charges qA and qB, we can write
the current I (z, t ) as

I (z, t ) =
∫ R(z)

0
(ηqA + (1 − η)qB)nu2πr dr, (17)

where n(z, r, θ ) is the particle density and u(z, r, θ ) the hor-
izontal component of the velocity vector field. R(z) is the
pore radius at position z, such as in Fig. 2. The theoretical
value of I can be directly computed from Eq. (17), assuming
a realistic estimate of the particle density n. The values
for I are evaluated for z values at z = L (inward flux from
environment) and z = −L (outward flux into cell)14 of the ion
channel and logged during a run from initial state (t = 0) to
final state (t = 1 sec) with steps of dt = 5E−6 sec.

With this approach we obtain results for the outward and
inward fluxes that vary strongly for different parameter set-
tings, notably contrasting fixed versus rotating ion channels.
Examples of inward and outward ion flux through the channel
for a variety of system parameter settings can be found in
Fig. 12 and the Supplemental Material [97]. A typical result
(of a nonspinning channel), depicted in Fig. 12(b), shows that
the (normalized) outflowing current I initially rises steeply
and then converges almost exponentially to a value I∗. It is
observed that the oscillations in this curve are principally

13Other suitable experimental data is available for the GLIC chan-
nel from Tillman et al. [100], Fig. 2(a), and from Yue et al. [125] for
various bacterial ion channels.

14The fluxes are actually computed at axial positions z = −12 Å
and z = +35 Å, as depicted in Fig. 3, i.e., respectively at the exit and
entry of the central cavity. This is to avoid numerical artifacts at the
boundary of the channel itself.

caused by the rolling motion and amplification of the vortices
in the ionic flow. Figure 12(c) shows the average value of the
outflow current 〈I〉 for five different runs of the EAH model
for the ELIC ion channel with the same parameter setting as
Fig. 12(b). This graph allows for direct calculation of peak
value of Iout. We estimate the particle density of the throughput
as n = 1.9E − 3 ions/Å3 (see Appendix A), and the screened
charges qA = 0.1e and qB = 0.9e [101]. This parameter set-
ting provides a theoretical peak value I∗

theor = (431 ± 109) pA
per ELIC ion channel. The exponential decay time of I (t )
to its asymptotic value I∗ is estimated using an exponential
fit as τtheor = (329 ± 55) msec. These predicted values can
be compared to the empirical results obtained in Ref. [18],
shown in Fig. 12(a). The patch clamp data in Fig 12(a) show
a good qualitative correspondence to the theoretical EAH
model data in Fig 12(b), and both are jointly represented in
Fig. 12(c).

Analysis of the patch clamp data gives a value for the
(negative) peak current of Iemp = (423 ± 19) pA, and an ex-
ponential decay time τemp = (337 ± 80) msec. The theoretical
and empirical data show a strong qualitative similarity. This
comparison shows that there is a good qualitative and quan-
titative correspondence between the theoretical predictions
and empirical data of the outward flux of the ELIC ion
channel.

2. Conductance and reversal potential of a single ELIC channel

It is also interesting to study the predicted conductance of
a single ELIC channel by EAH with empirical data. Zimmer-
mann and Dutzler experimentally examined the conductance
of single ELIC channels, including the current voltage rela-
tionships in asymmetric concentrations of NaCl, that exhibit a
current reversal at the Nernst potential of Na+; see Ref. [18],
Fig. 5(d).

These settings were simulated with the EAH model; a
steady state15 (after ±400 msec) was found with the required
intracellular and extracellular concentrations of Na+, and,
using this, the theoretical augmented Goldman curve from
Eq. (13) was computed. Figure 13(a) compares the theoretical
IV curve with the experimental data. Here, and in all following
comparisons, the empirical single channel main conductance
level g = 96 pS found by Zimmermann and Dutzler was used
to gauge the theoretical channel output current. The Nernst-
potential values are shown in Table I and Fig. 13(a). The
comparison shows a good qualitative correspondence.

3. Current-voltage relations of single ELIC channels at different
concentrations of Na+ and its permeability for Na+

Zimmermann and Dutzler also studied current voltage rela-
tionships of single ELIC channel currents at different concen-
trations of NaCl, with [Na+]in = [Na+]out. They found that
the single channel conductance linearly increases with the ion
concentration and does not show any saturation at high con-
centrations (Fig. 5(f) of Ref. [18]). Note that in the classical
Goldman equation (11), for ni = no ≡ n, the term (1 − eαV )

15Defined as the (near) vanishing of all time derivatives.
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FIG. 13. (a) Asymmetric IV plot of ELIC for two different intracellular and extracellular concentration gaps of Na+. Lines: theoretical
data, markers plus error bars: experimental data from Ref. [18], Fig. 5(d). Upper line and disk markers (red): 300 mM Na+ intracellular with
60 mM Na+ extracellular; lower line and asterisk markers (blue): similar for 300 mM and 100 mM. (b) Asymmetric IV plot of ELIC for a
binary mixture of 150 mM Na+ extracellular and 25-50-100 or 150 mM Ca2+ intracellular from Ref. [18], Fig. 5(g).

cancels exactly, so that I depends linearly on VE .16 Similar
for the augmented Goldman equation (13), if fi = fo. In this
case, therefore, for VE �= 0, I becomes linear in n and VE as
I ≈ αnpqVE . This relation allows for estimating the absolute
permeability pNa of Na, when given experimental values for
I and V . In Fig. 14(a) the empirical I-V values (of Fig. 5(f)
of Ref. [18]) are compared with the predicted EAH values.
The latter were obtained by changing the boundary conditions
of the EAH system such, that the extracellular concentration
was fixed at nout and equal to the intracellular value nin. Under
these restrictions, the EAH system is propagated to the steady
state (after ≈ 0.4 sec), and the augmented Goldman equation
(13) is applied to determine the I-V relation, shown in the
figure. This gives a good qualitative correspondence, in that
both curves exhibit a monotonic increase of the I-V line with
higher concentrations n. Figure 14(b) shows the slope of the
I-V curve for various concentrations [Na+]. The experimental
data clearly show that the current does not saturate, in line
with the prediction of the Goldman equation.

Note from Fig. 14(b) that the experimental data in fact does
not increase linearly with [Na+], while the predicted EAH
relation (dotted line) following above approximation, strictly
does. It appears that the EAH-Goldman prediction acts as a
limit curve for high concentrations [Na+]. Alternatively, this
relation can also be explained by assuming that the permeabil-
ity pNa depends on the concentration no = ni=[Na+]. Using
the above linear approximation for I (V ) and a linear least
squares fit of the experimental and theoretical I-V data, we

16With an isolated singularity for VE = 0 V.

can estimate the permeability pNa. The results are shown in
Table II.

This table exhibits a strong correlation between the theo-
retical and experimental values, both showing a decrease of
pNa with increasing [Na].

4. IV relationships of binary mixture
of monovalent and divalent cations

A similar approach as above is possible for determining the
relative permeability of a binary mixture of a monovalent and
a divalent cation. Consider a mixture of Na+ and Ca2+ with
given extra- and intracellular densities [Ca2+]in and [Na+]out.
This experimental setting for the ELIC channel was studied
in Ref. [18], Fig. 5(g). They determined the current-voltage
relationships in asymmetric salt conditions, where the extra-
cellular side contains 150 mM NaCl, and the intracellular side
contains different concentrations of CaCl2 (25–150 mM). The
theoretical expected I-V relation of this mixture is described
by the augmented Goldman formula (13). A comparison of
experimental values and the predicted I-V curve is presented
in Fig. 13(b). Theoretical values for I-V are obtained from

TABLE I. Experimental and theoretical values for the Nernst
potential for current reversal in ELIC ion channel. Experimental
value determined from least-squares fit, theoretical value by the
augmented GHK equation. Sample size n in brackets.

Source 300[Nai]/60[Nao] (n) 300[Nai]/100[Nao] (n)

Emperical [18] −48.6 ± 3.3 mV (6) −31.8 ± 2.3 mV (9)
EAH model −42.5 ± 2.1 mV −29.0 ± 1.4 mV
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FIG. 14. (a) Current-voltage relations of single ELIC channels at different concentrations of Na+: 130 mM (red), 300 mM (magenta),
450 mM (blue), and 600 mM (black). Lines: theoretical values of EAH model. Markers and error bars: experimental data of Ref. [18],
Fig. 5(f). (b): Slopes of the I-V curves in panel (a) for various concentrations of Na+, showing that the current I increases monotonically, but
not saturates. Disk markers (red): experimental data of Ref. [18], asterisk: EAH model.

a run of EAH with boundary conditions fixing [Na+] and
[Ca2+] to the experimental values; namely, [Na+]outside =
150 mM and [Na+]inside = 0 mM fixed during the run, and
[Ca2+]outside = 0 mM, while [Ca2+]inside varies as a series:
{25 mM, 50 mM, 100 mM, 150 mM}. After reaching the
steady state and the time derivatives vanish, typically after
0.4 sec, we find the hydration levels ηout

Na and ηout
Ca and flow

velocities uout and uin. These values now can be entertained
in the augmented Goldman equation (13), giving the total
predicted current of the mixture. The predicted total current
of the mixture is Itheor = pNaINa + pCaICa, where INa and ICa

are the predicted currents with the given settings of the known
particle densities in and out, and pNa and pCa are the unknown
absolute permeabilities.

Comparison with the observed current Iexp allows for the
estimation of the permeabilities pNa and pCa. With minimum
norm least-squares estimation and data randomization we find
values for means and errors of the absolute and relative per-

TABLE II. Experimental and theoretical values for absolute per-
meabilities p[Na +] in ELIC ion channel for various concentrations
of Na+. Experimental data from Ref. [18], Fig. 5(f), sample size
n = 15 in all cases. Theoretical values from EAH model. Both
values determined from linear least-squares fit from Goldman curves
[Fig. 14(a)].

[Na+] [mM] EXP p[Na+] THEOR p[Na+]

130 0.63 ± 0.27 0.74 ± 0.72
300 0.24 ± 0.10 0.13 ± 0.13
450 0.23 ± 0.09 0.06 ± 0.06
600 0.12 ± 0.05 0.03 ± 0.03

meabilities as presented in Table III. The relative permeability
of Na to Ca is: pEAH

rel ≡ pNa/pCa.
The theoretical and experimental I-V curves in Fig. 13(b)

exhibit a strong qualitative correspondence.
The thus obtained EAH-predicted values pEAH

rel can be
compared with the expected relative permeabilities by apply-
ing the GHK equation on the experimental setting. For the
“classical” GHK equation this gives17

pGHK
rel = 2

[Ca2+]in

[Na+]out
.

Values for the roots of the augmented GHK equation, called
pAUG

rel , are determined numerically. The obtained expected
values pGHK

rel and pAUG
rel are listed in the last two columns of

Table III, showing good qualitative correspondences.
We conclude this section with the remark that the (relative)

permeability differs substantially from the (relative) particle
penetration in the ion channel [102]. The latter is defined as
the fraction of the particle concentrations: nrel = nNa/nCa at
the intracellular side of the ion channel. Figure 15 shows the
surplus of Na+ over Ca2+ at t = 0.5 sec simulation of EAH
for the ELIC channel and the associated ion penetration.

F. EAH and the mechanism behind ion channel selectivity

Do the EAH equations directly expose the mechanism
behind ion channel selectivity? The key to this is the specific
amphiphilic charge as of an ion species s, which depends
on the extent η of its water shell. In addition, the energy

17Obtained by solving Itot(VNernst ) = 0, and observing in Fig. 13(b)
that this occurs at VNernst = 0.
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TABLE III. Theoretical values for absolute and relative perme-
abilities in ELIC ion channel for various concentrations of Ca2+

“inside,” and fixed 150 mM Na+ “outside.” Experimental data from
Ref. [18], Fig. 5(g), sample size n = 15 in all cases.

∗[Ca2+]i p[Na+] p[Ca2+] pEAH
rel pGHK

rel pAUG
rel

25 0.86 ± 0.20 1.81 ± 0.21 0.48 0.33 0.45
50 1.12 ± 0.21 1.50 ± 0.23 0.75 0.67 0.69
100 1.49 ± 0.19 0.98 ± 0.22 1.50 1.33 1.45
150 1.79 ± 0.21 0.86 ± 0.20 2.09 2.00 2.21

required to strip or gain a water molecule depends sensi-
tively on the detailed amphiphilic coding of the proteins that
constitute the wall. Thus, the amphiphilic potential step near
the channel wall: �φA = ∇φA · u in the EAH main equation
(2), poses an energy threshold to de- or rehydration in the
flow: �Es = as(η)�φA, which differs for different species,
and thus “selects” the ion type. Note that this selection is
independent of the size of the ion, e.g., a larger ion with a
higher amphiphilic charge may slip easier through a channel
than a smaller ion with less amphiphilic charge. This is similar
to the explanation of Kopec et al. [23], mentioned in Sec. I D,
proposing a higher energy threshold for dehydrating Na+ then
to K+ at the entrance of the channel, causing it to be more
permeant to K+ than to Na+, despite its larger size. However,
the higher amphiphilic charge of a species would hold for all
ion channels, so would not contribute to the ion selectivity
of that channel. In Kopec et al.’s explanation, the energy
threshold is channel-specific, and therefore selectivity is also
channel-specific.

This inadequacy of EAH to explain ion selectivity can be
easily mended by adding higher-order amphiphilic tensorial
terms to its equations. Such terms are legitimatized by the
hydrophobic moments proposed by Eisenberg and Silverman

[75,76]. Near the channel walls, these new terms would cause
tidal forces on the ion, subject to dipole moments induced by
the specific distribution of amphiphilic and electric charges on
the protein subunits—and to its proper amphiphilic and elec-
trical charges as and qs. This is reminiscent to the explanation
of Hille [103] of the dehydration of an aqua ion, namely, that
while it rolls along the channel wall, the hydrophilic moments
successively “peel off” its water molecules.

Though this shows that an augmented EAH model alone
can—in principle—explain ion selectivity, here we pursue
a different route, one that is purely based on the DDHO
framework presented in the next section, where EAH merely
contributes the harmonic driving force.

IV. ION CHANNEL SELECTIVITY BY THE DRIVEN
DAMPED HARMONIC OSCILLATOR MECHANISM

A. The resonance-driven damped harmonic oscillator

The EAH continuum model for the transport and (de- or
re-)hydration of ions through an ion channel demonstrates
the emergence of strong and stable turbulent structures in
the dehydrating flow of ions, each with its specific natural
frequency. These structures are manifest as undulating pres-
sure waves in one dimension and toroidal vortices in two
and three dimensions. As an overarching term, we denote all
these 1D, 2D, and 3D turbulent structures as “turbulences.”
These turbulences emerge and disappear, depending on the
local degree of hydration indicated by the hydration field η,
which vice versa strongly influence the fluid velocity field u
through the channel. In three dimensions, this phenomenon
is even enhanced in the case of high-frequency rotating ion
channels [11].

However, turbulence-engendered dehydration alone is not
sufficient to explain ion selectivity. In a mixture of various

FIG. 15. Binary mixture of Na+ and Ca2+ in the ELIC channel after 400 msec. (a) Surplus of Na+ over Ca2+ ions. (b) Penetration of Na+

and Ca2+ ions alongside the central ionic axis in the central cavity. Dotted (red): Ca2+, solid line (blue): Na+. In panel (b) the intracellular side
is at z = 0, the extracellular at z = 90 Å.
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species, all ions experience exactly the same oscillatory mo-
tion. So what determines the winning ion type that can de-
hydrate fastest and dominate the out-flux of dehydrated ions,
and thus determine the ion channel type? We propose that the
dominant frequencies associated with these turbulences act
as driving force in a harmonic oscillator system, and cause
resonances depending on ion-specific parameters, especially
their mass and electric charge.

For these reasons, let us consider the dehydration process
inside a stable attractive turbulent structure in a dehydration
zone of an ion channel; the selection filter or the central
cavity. We assume that the efficiency of dehydration depends
on the duration τ that an average aqua ion spends inside
this structure: the longer it spends inside—the higher the
probability it becomes dehydrated. Now consider undulating
perturbations around the steady-state solutions, as for three
dimensions depicted in Fig. 18 below. If x(t ) is a measure for
the 1D quasiperiodic spatial perturbation to the steady state
attractor, then τ is in first order proportional to the length of
the perturbation, hence in first order proportional to x(t ). Let
us assume that the motion inside this trajectory is governed
by Newton’s laws and the dynamics near the equilibrium is
attractive, ergodic, and dissipative. The derivation below is
independent of the spatial dimension D, so holds for both the
1D undulations mentioned in Sec. III C 2 and stable vortices
of Sec. III D alike. We propose the following contributions to
the dynamics of x:

(1) An elastic mean field force FMF that drives the ion
back to the stable attractor, caused by the mean field of all
combined hydrophilic and electric interactions. Padhi [15]
showed that the hydrophilic force is directly proportional to
the charge q of the ion. This also holds for the Coulomb
force. Thus, the elastic force is in first order proportional to
the linear deviation x to the attractor: Felast ∝ −κqx, where κ

is some constant of proportionality. We assume that this force
is isotropic, and so also κ .

(2) A damping force FV resulting from the average inter-
actions and collisions between the ions. These cause viscous
friction that impedes general ion motion. In first order, this is
proportional to the ion velocity: FV ∝ −γ ẋ. The constant γ

of this proportionality acts as an implicit viscosity of the ion
fluid, and is assumed independent of the mass m.

(3) The motion inside the turbulent structure is driven by
its set of natural frequencies �n. This gives rise to periodic
forces on the ion: FDF = ∑

n Fnei(�nt+n ), where Fn is a mea-
sure for the strength of the nth mode of the turbulent structure,
and n its phase. For instance, the two dominant modes in a
toroidal vortex are the transverse mode �T around the z axis
and the longitudinal mode �L of the helical orbit wrapped
around the toroidal hull of the vortex, as in Fig. 18.

Combining all these contributions into Newton’s second
law we obtain the well-known DDHO equation with one (in
one and two dimensions) or two (in three dimensions) driv-
ing frequencies. Specifically, in three dimensions the driving
frequencies are �T (transverse) and �L (longitudinal), with
phase difference , and we obtain

m(η)ẍ + κq(η)x + γ (η)ẋ = FT ei�T t + FLei(�Lt+), (18)

where m and q represent the mass and effective electric charge
of the ion, and γ the damping (viscosity) of the environment.

TABLE IV. Properties of the species of cations used in the
numerical simulations. Mass in daltons [Da].

Cation nH dnH M0 [Da] dM0 [Da] MA [Da] dMA [Da]

Na+ 5.68 1.21 22.99 2E-8 125.32 21.80
K+ 6.25 0.43 39.10 1E-4 151.69 7.75
Ca2+ 12.0 0.8 40.08 1E-3 256.26 14.41

Note that Eq. (18) is derived from perturbations of ion
trajectories from the standard streamlines, dictated by velocity
field u. Therefore, they are manifest as local particle density
fluctuations and will propagate with the local speed of sound
c = √

∂P/∂ρ, which is higher than the local flow speed
u. These sound waves are driven by the driving force and
transfer energy into those ions that resonate with the driving
frequency.

Most of the parameters in the DDHO equation depend
on the degree of hydration η of the ion. For an individual
ion the mass depends on the aqua-shell number nH , i.e. the
number of bound water molecules: m = m0 + nH mH2O, with
m0 is the mass of the bare ion and mH2O the mass of one
water molecule. Tables IV and V list some values of average
aqua-shell numbers nH . So, for an average hydrated ion the
mass, we take m(η) = m0 + ηnH mH2O. The effective electric
charge q of an aqua ion decreases with hydration level η, due
to the effect of electrostatic screening, as the envelope dipole
water molecules impede short range electrostatic interactions
[79,80]. Thus, the effective charge becomes q(η) = ηqA +
(1 − η)qB, with qA and qB the electrical charges of an aqua
ion and a bare ion, respectively. Also the damping γ increases
with higher hydration η.

We are looking for the longest possible duration of aqua
ions in the vortex and hence, as we argued above, to the largest
deviations from the stable cycle. These occur when the cycle
x(t ) resonates with a driving frequency � (T or L). As the
the DDHO equation (18) is linear in x(t ) we can study the
solutions to the two modes separately: x(t ) = xT (t ) + xL(t ).
In one and two dimensions there is but one driving fre-
quency. Thus, for each mode separately we obtain the famil-
iar DDHO steady-state solution: x(t ) = X (ω∗)F ∗ exp[iω∗t +
(ω∗)], with F ∗ and ω∗ referring to either T or L mode. The
variables X (ω) and (ω) apply to both modes:

X (ω) = 1

m
√(

ω2
N − ω2

)2 + (ωγ /m)2
(19)

and tan  = γω/m(ω2
N − ω2). Here, ωN ≡ √

κq/m is the nat-
ural frequency of the nondriven, free oscillator. ωR is the

TABLE V. Properties of four species of anions used in the
numerical simulations. Mass in daltons [Da].

Anion nH dnH M0 [Da] dM0 [Da] MA [Da] dMA [Da]

Cl− 15.6 1.65 35.45 1E−2 316.56 29.73
I− 22.1 2.10 126.9 3E−5 525.15 37.84
CO2−

3 78 29 60.00 8E−3 2484.0 522.0
OH− 10.5 2.78 17.01 4E−4 206.22 50.10
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actual resonance frequency of the system. The resonance peak
occurs at a frequency ωR given by

ωR =
√(

ω2
N − γ 2

2m2

)
. (20)

Note that in three dimensions the frequencies ωN and ωR are
valid for both the T and L mode, as this is entirely defined by
the DDHO parameters {m, q, κ, γ }. The resonance frequency
ωR clearly depends on the physical properties of the ion: its
charge q, its mass m, and the friction parameter γ that depends
on the size and shape of the toroidal vortex. The maximum
value of amplitude X occurs at the resonance peak ωR:

X ∗ = X (ωR) = 2Q2

mω2
N

√
4Q2 − 1

, (21)

where we use the dimensionless parameter Q for “oscillator
quality”: Q ≡ mωN/γ . Q counts the decay time for the oscil-
lator energy by the number of oscillations. In atomic systems
it is not unusual to observe high Q values in the range of
108. Similarly, a dimensionless frequency is defined as ξ ≡
ω/ωN. From Eq. (20) it appears that resonance can occur only
when κq � γ 2/2m, i.e., the damping is not too large. This
means that there is a maximum value γ ∗ = √

2κqm for which
resonance can occur, so a minimum value for the oscillator
quality Q∗ = 1/

√
2. This value Q∗ also minimizes X ∗. Note

that Eq. (21) requires Q > 1/2, but this is automatically
satisfied by the minimum requirement Q > Q∗ � 1/

√
2.

The width �ω of the peak is defined as the width at half of
the height at resonance:

�ω = ωN

Q
(22)

or, similarly, �ξ = 1/Q.
The elastic constant κq determines the energy stored in the

oscillator. For instance in three dimensions, the total stored
energy E combines the transverse mode ξT and lateral mode
ξL:

E = Epot,max = 1
2κq

[
F 2

T X (ξT )2 + F 2
L X (ξL )2

]
. (23)

Optimal resonance curves E (ξ ) have well-separated high and
sharp peaks with high quality factors Q and hence small
widths �ξ . Plots of stored energy E versus frequency ξ in
Figs. 19 and 22 show exactly these desired properties.

Note, as argued above, that these results depend on the de-
gree of hydration η, and so will change during the dehydration
of the ionic flow in the channel.

The DDHO equation (18) can also be derived in the context
of the Brownian dynamics (BD) framework; see Appendix B.
However, BD is not able to account for the required external
harmonic driving forces.

B. Consequences of the DDHO mechanism for physical systems
of N spatial dimensions

DDHO is a powerful and ubiquitous mathematical princi-
ple that is not bound to the spatial dimension of the acting
physical system. For this reason it applies equally well to the
1D narrow linear selection filters found in various ion channel
architectures, e.g., KcsA, as to the 3D spacious helically

TABLE VI. Mahalanobis distances of intercation (upper) and
interanion (lower) resonance peaks for qA/qB = 1.

Species-to-species Mahalanobis distance

�[Na+, Na+·(H2O)n] 30.54
�[Na+, K+] 10.90
�[Na+, K+ · (H2O)n] 32.74
�[Na+, Ca2+] 3.35
�[Na+, Ca2+ · (H2O)n] 31.14
�[Na+ · (H2O)n, K+] 29.96
�[Na+ · (H2O)n, K+ · (H2O)n] 9.17
�[Na+ · (H2O)n, Ca2+] 58.49
�[Na+ · (H2O)n, Ca2+ · (H2O)n] 1.31
�[K+, K+ · (H2O)n] 33.76
�[K+, Ca2+] 20.17
�[K+, Ca2+ · (H2O)n] 31.35
�[K+ · (H2O)n, Ca2+] 62.72
�[K+ · (H2O)n, Ca2+ · (H2O)n] 10.66
�[Ca2+, Ca2+ · (H2O)n] 60.91
�[OH−, OH− · (H2O)n] 33.07
�[OH−, Cl−] 12.89
�[OH−, Cl− · (H2O)n] 35.68
�[OH−, I−] 29.26
�[OH−, I− · (H2O)n] 38.12
�[OH−, CO−2

3 ] 11.06
�[OH−, CO−2

3 · (H2O)n] 40.45
�[OH− · (H2O)n, Cl−] 38.71
�[OH− · (H2O)n, Cl− · (H2O)n] 24.79
�[OH− · (H2O)n, I−] 24.11
�[OH− · (H2O)n, I− · (H2O)n] 52.93
�[OH− · (H2O)n, CO−2

3 ] 73.54
�[OH− · (H2O)n, CO−2

3 · (H2O)n] 88.12
�[Cl−, Cl− · (H2O)n] 44.22
�[Cl−, I−] 30.54
�[Cl−, I− · (H2O)n] 49.40
�[Cl−, CO−2

3 ] 5.03
�[Cl−, CO−2

3 · (H2O)n] 54.37
�[Cl− · (H2O)n, I−] 43.41
�[Cl− · (H2O)n, I− · (H2O)n] 30.21
�[Cl− · (H2O)n, CO−2

3 ] 83.49
�[Cl− · (H2O)n, CO−2

3 · (H2O)n] 71.58
�[I−, I− · (H2O)n] 63.16
�[I−, CO−2

3 ] 57.86
�[I−, CO−2

3 · (H2O)n] 84.61
�[I− · (H2O)n, CO−2

3 ] 92.86
�[I− · (H2O)n, CO−2

3 · (H2O)n] 46.75
�[CO−2

3 , CO−2
3 · (H2O)n] 102.11

twisted ELIC and GLIC channels. All the resonance charac-
teristics presented in Figs. 20–22 and Tables IV–VI therefore
apply equally to these systems, as they are independent of
the dimension and any physical characteristic—besides the
DDHO parameters—of the underlying system. More dimen-
sions of the system only offer more options for resonance,
not more resonance peaks. In this section we explore how
the DDHO mechanism manifests itself in physical channel
structures of different spatial dimension.
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1. Resonance-driven selection in 1D ion channels

First, let us study how the DDHO mechanism operates
in 1D selection filters, e.g., the tubelike SF of KcsA in
Fig. 4. For this purpose, we compare these narrow tubes to a
two-sided open-ended cylinder, and approximate its dynamics
with the 1D EAH equations (14)–(16), defined in Sec. III C.
Applying the DDHO framework requires a stable 1D driving
force mechanism. Otherwise, energy dissipation perturbs the
system and the modes decay in time, known as quasinormal
modes [104]. We propose that this stability is provided by
the oscillating particle density waves, observed in Sec. III C 2.
We note that a tubelike SF acts as the ideal setting for the
classical case of standing waves in a two-sided open-ended
cylinder. The medium for these waves can be either particle
density waves in the metaphor of microscopic perspective,
or longitudinal pressure waves in the macroscopic picture of
the ionic fluid. In the classical two-side open-ended cylinder,
the wavelength λ for a standing wave must relate to the tube
length L such that nλ/2 = L, for some integer n = 1, 2, . . . .
This gives rise to a spectrum of possible resonance frequen-
cies, �n = nπc/L, where c is the wave velocity (not equal
to the particle speed u). The first five eigen-resonances are
depicted in Fig. 16. These pressure waves act as driving force
for a DDHO mechanism, so resonance occurs if for some n
the resonance frequency ωR of Eq. (20) equals the driving
frequency �n; so: ωR = �n, and therefore

κq

m
− γ 2

2m2
= π2c2

L2
n2. (24)

This defines a set of spectral-resonance curves in the mass-
charge plane (m, q), indexed by the spectral mode number
n = 1, 2, . . . . Each spectral-resonance curve represents a case
where a standing wave of frequency �n fits with the resonance
frequency ωR for a particle of mass m and charge q. Figure 17
depicts some spectral-resonance curves, namely, for n =
1, 2, . . . , 16. In the same figure, three cations and four anions
are shown, both free and hydrated. The plot clearly shows that
the ions are well separated, specifically, the hydrated and the
free ions form distinct well-separated subclusters. Moreover,
all the hydrated ions are located on different spectral curves,
i.e., with distinct spectral mode number. This implies that a 1D
DDHO would be able to distinguish, hence uniquely select,
each ion species. Thus, by selecting a specific mode number
n, a specific hydrated ion can be targeted and selected. Also
note that this affects especially the hydrated ions and not the
bare not-hydrated ions, which favors the dehydration process.

2. Vortex-driven selection in 2D systems

In two spatial dimensions, planar vortices, strictly isolated
in an azimuthal plane, act as engine for the DDHO mecha-
nism; see, e.g., Fig. 3. The rotational frequency � of the vortex
dictates the driving frequency in the DDHO. Thus, only those
aqua ions with the right combination of mass and charge will
resonate with—and adhere to—the vortex, until they dissolve
their water shell in the dehydration zone, are released, and
following the flow exit the ion channel.

FIG. 16. Stacked series of resonances λn = 2L/n in a two side
open-ended pipe of length L for mode number n = 0, . . . , 5.

3. Toroidal vortices as driving engines in 3D systems

In three spatial dimensions, stable 3D connected toroidal
vortices may appear, as depicted in various figures, e.g.,
Figs. 9 and 10(a), and in the Supplemental Material [97].
These vortices act as the driving engine for the 3D DDHO
mechanism. This means that there are now two independent
driving frequencies; the transverse T mode, caused by uni-
form rotation about the z axis, and the longitudinal L mode,
caused by the helically winding motion about the torus of
the vortex; see Fig. 18. As noted before, the two independent
driving frequencies �T and �L do not offer more resonance
peaks, but more options for resonance to occur. Thus, they
cover a broader spectrum simultaneously, comprising high
and low frequencies.

C. Application of the resonance-driven resonance
model to real ion data

Let us now apply the DDHO selectivity model to real
data of cations and anions. These results hold for any spatial
dimension of the physical system.

1. Resonance peak separation based
on average hydration numbers

We selected published data that matches the environmental
setting inside an ion channel as close as possible. Table IV
lists information [105–108] for three species of cations: {Na+,
K+, Ca2+}, namely, the average hydration number nH with
error dnH , the atomic weight M0 and error dM0, and the
average mass of a hydrated ion MA = M0 + nH MH2O, and
its error dMA. Information for four anions: {Cl−, I−, CO2−

3 ,
OH−} is listed in Table V [108–110]. We will study the ion
selectivity for mixtures of these anions and cations. For H2O
we used an atomic weight of MH2O = (18.02 ±1E−8) Da.
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FIG. 17. Spectrum of mass-charge resonance curves for standing particle density waves in 1D two-side open-end tube; n is the mode
number. Markers indicate various bare or aqua ions. DDHO parameters of Eq. (24): κ = 1.60 pN/eÅ, γ = 1.3E−14 kg/s, L = 12.0 Å,
c = 10.00 m/s, q = e = 1.6E − 19 C. Mode number of the curves increases upward from n = 1 to n = 16.

All experiments were performed in the dimensionless DDHO
variables ξ and Q, with constant parameters κ = 2, γ = 1,
amplitude F = 5, and phase  = 0.

We ignore complexities involved with real aqua-shell
topologies, such as multiple hydration layers; see Ref. [112].

FIG. 18. 3D motion of ions in a toroidal vortex: T: transverse
mode, i.e., converging to uniform rotation about the z axis, and L:
longitudinal mode as converging to helical-winding motion about
the torus of the vortex.

Note also that in the nanoscale domain the values of the
physical parameters, including diffusion coefficient, viscosity,
and conductivity, may differ from the bulk values we used
here.

Using these data we plot the ion energy Emax from Eq. (23)
versus the driving frequency �. Note that this holds for both
the T and the L mode. The resulting graph, for the bare and
aqua anions and cations with their corresponding average shell
number nH , is plotted in Fig 19.

We observe that the resonance peaks for different ions are
clearly separated. We define the separation between two peaks
with centers ω1 and ω2 and widths �ω1 and �ω2 respectively
as the dimensionless normalized Mahalanobis distance [111]:
�ω12 = |ω2 − ω1|/

√
(�ω2

1 + �ω2
2 ). A peak separation �ω12

larger than 1 means that the peaks are well separated, for
values less than 1 they partly overlap, for �ω12 = 0 they
coincide. Table VI lists the Mahalanobis separations between
resonance peaks of various aqua- and bare cations and anions
for the DDHO model as depicted in Fig. 19. This table
shows that all these separations (for our data) are larger than
1, most being significantly larger. The average Mahalanobis
separation is, for cations only, � = 28.5 ± 20.1, for anions
only, � = 48.7 ± 25.8, and for a mixture of all ions in our
data set combined, � = 42.1 ± 29.1.

Electrostatic screening is not included in any of these
calculations, i.e., qA = qB, as no reliable data on the effective
charge of an aqua ion in our context were found. The inter-ion
Mahalanobis separation increases with decreasing effective
charge qA/qB as shown in Fig. 20. Thus, any amount of
screening of the dipole water molecule envelope will only
strengthen the ion type selectivity.
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FIG. 19. Resonance peaks of various bare (nH = 0) and averagely hydrated (nH = nH ) cations and anions, without electrostatic screening:
qA = qB. At higher resolution the seemingly overlapping peaks of Ca2+ · (H2O)n, Na+ · (H2O)n, and I− become separated.

2. Resonance peaks of the full hydration series

Rather than considering the resonance peaks for the aver-
age hydration number nH , we can study the resonance peaks

FIG. 20. Mahalanobis separation as function of the effective
charge qA/qB (solid line). Dotted lines give upper and lower 1σ error
boundaries.

for the entire series of hydration of an ion, i.e., the series of
peaks for hydration numbers nH = 0 (i.e., fully dehydrated,
η = 0) to nH = 12 (fully hydrated, η = 1). This is depicted
for the three cations Na+, K+, and Ca2+ in Fig. 22 below,
again assuming qA = qB. This figure clearly shows that the
hydration series of one species are clearly separated, though
occasionally they can overlap with a peak of another species.
Due to this cluttering of the peaks, the average Mahalanobis
distance of the entire resonance series of the seven ions in
our data set drops considerably. For a series of 13 hydrations
(nH = 0, . . . , 12) for the seven ions we obtain 91 partly
overlapping peaks, giving 4095 pairs of peaks with average
� = 1.11 ± 0.53, i.e., barely separated. However, this result
should be corrected for the average hydration number nH ±
δnH per ion species. Weighing the Mahalanobis distance with
a normal distribution N (nH , σ ), favors the resonance peaks
near the average hydration. This leads to � = 5.1 ± 6.1, for
σ = 3δnH . This means that a mixture of various anions and
cations still exhibits well-separated resonance peaks.18 Note
that this decrease in � stems mostly from the intraspecies
cluttering, while the interspecies separation is not affected,
and remains high: the unweighted average species-to-species
resonance series separation is � = 29.7 ± 16.8.

The 91 narrow and high peaks of the full resonance series
display a high oscillator quality Q, defined above, namely,
Q = 3029 ± 970; see Fig. 21. The dynamical evolution of
the resonances—their location, magnitude, and angular fre-
quency, observed in the EAH model—can drive the fully

18We always used qA = qB in all these calculations.
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FIG. 21. Histogram of oscillator quality Q for the hydration
series: nH = 0, . . .,12 of the six ions of the data set, with qA = qB.

hydrated ions through these cascade of resonance peaks until
the last one is reached, and the ion is fully dehydrated.
Figures 19 and 22 and Table VI show that the proposed
resonance-driven resonance mechanism for ion specificity
indeed allows for targeted selection of ions, reminiscent of
the LC circuit as basis for the channel selectivity of classical
analog radio receivers.

V. DISCUSSION

The classical physical mechanism of the damped harmonic
oscillator, driven by the natural frequencies inside a stable
turbulent structure in the dehydrating ionic flow through an
ion-channel, proves to be extremely efficient in uniquely
selecting one specific type of ion. This mechanism requires
a strong harmonic driving force which current frameworks
for ion channel transport cannot offer. Therefore, we have
proposed the continuum EAH model for the transport—and
specifically the (de- or re-)hydration—of ions through an ion
channel. The EAH model provides numerical support that ion
transport is accompanied by strong and dynamic turbulences,
each with its specific natural frequency. These turbulent struc-
tures appear and disappear depending on the local degree of
hydration, and vice versa strongly influence the distribution
of hydration throughout the channel. New in our framework
is that this also depends sensitively on the geometry of the
channel; this defines the location of the standing pressure
wave or the position of the toroidal vortices.

Analysis of experimental patch-clamp data and current-
voltage relations in ELIC with the theoretical predictions
of the EAH framework in Sec. III E revealed statistically
significant correlations. EAH can also successfully predict
current-voltage relationships of single ELIC channels at dif-

ferent input and output cation concentrations, and of binary
mixtures of monovalent and divalent cations. Similarly, it
can be employed to compute absolute and relative cation
permeabilities and the Nernst reversal potential. The wide
variety of patch clamp morphologies produced by EAH for
different parameter settings offers perspective on elucidating
microscopic mechanisms, viz., spinning versus fixed ion chan-
nels.

The EAH formalism contributes to understanding ion se-
lectivity, as discussed in Sec. III F, by assuming different
amphiphilic charges to different cations, and so different
energies for releasing water molecules. This holds even more
when augmented by higher-order tensorial terms, representing
hydrophilic moments.

Cyclic motion inside a turbulence alone cannot distinguish
between ion species as it affects all ions captured in its
current equally. However, in a mixture of various species,
those ions that can dehydrate fastest dominate the outflux
of dehydrated ions and thus determine the ion channel type.
This gives leverage for the DDHO mechanism. The EAH
model provides all the required ingredients of the mechanism
of the DDHO: an elastic restoring force, a damping and a
harmonic driving force and driving frequency. The turbulence
itself provides only the harmonic driving force and frequency;
the other ingredients depend on ion mass, charge, and de-
gree of hydration. These fundamental parameters make that
the resonance peaks are substantially different for different
ions.

The DDHO equation (18) describes perturbations on the
regular flow pattern, resulting in fluctuations in the local
particle density, hence pressure, that will propagate with the
local speed of sound, which is higher than the local flow
speed. These sound waves are driven by the driving force and
efficiently transfer their energy into those ions that resonate
with the driving frequency. Consequently, these energized
aqua ions instantly shed off their aqua shell and, as bare ions,
subject to the electric forces and dominant currents, quickly
exit the ion channel into the cell interior.

The response curves, the relation between energy transfer
and driving frequency as in Figs. 19 and 22, prove to have
small half-width �ω and a high oscillator quality Q. Numeri-
cal experiments with seven different ions, cations and anions,
yielded response curves with sharp resonance peaks that were
widely separated with average Mahalanobis separation � =
42.1 ± 29.1. The response curves also exhibited high oscilla-
tor quality Q = 3029 ± 970, indicative of a strongly persistent
oscillator.

In narrow tubelike selection filters, the 1D EAH equations
predict a Hopf bifurcation and a cascade of period-doubling
bifurcations en route to a chaotic regime. Modeled as a
two-sided open pipe, the energy inside will show resonances
associated with eigen-frequencies related to the length of
the pipe. These can act as driving forces in a 1D DDHO
mechanism, provided they match the resonance frequency of
an aqua ion. Consequently, this aqua-ion type has a higher
probability to hydrate.

In more spacious segments of the ion channel, e.g., the
central cavity of ELIC and GLIC, vortices in the ionic flow
can act as engines of the 2D and 3D DDHO and promote
dehydration.
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FIG. 22. Resonance peaks of the dehydration stages for the cations Na, K, and Ca respectively. n is the hydration number, assuming an
effective charge qA/qB = 1. In these dimensionless units the required driving frequency � of the series of Na and K converges to 0.0142 for
n → ∞, and for Ca it converges to 0.0201.

The magnitude of the dehydrated ionic outward flux varies
with the setting of the model parameters, and the experiments
show that the parameter space consists of various local max-
ima. The EAH-DDHO model provides insight in the effect
of genetic-induced damage, as these easily destroy the subtle
balance between geometric shape, force magnitudes, and flow
parameters—and thus destroy or impede the formation and
evolution of the self-organizing oscillations, and so the driving
engine at the basis of the selection mechanism. This matches
the recent observation in the Propane study [12,97] that point
mutations (SNPs) that affect the architecture, especially the
grooves of the interior walls, can potentially be severe. Also
observed is that these SNPs can be remarkably isolated on
the DNA; some ligand positions on the protein subunits may
cause severe phenotypic effects while neighboring ligands
have no measurable effect. In our simulations we find that
indeed changing the geometry of the wall, including remov-
ing existing or introducing novel grooves in the wall, gives
entirely different flow patterns and resulting vortices.

Our framework adds support to the hypothesis of spinning
ion channels [11], as fast rotation induces strong vortices
and therefore strong resonances and consequently fast and
effective target-ion yield. Similarly, the observation that
smoothing the interior walls impedes vortex formation, and
thus removes the driving force in the DDHO mechanism, adds
more support, as these grooves act as the fulcrum on which the
ion flow acts as the lever for the mechanical torque that drives
the rotation. Yet note that our model does not depend on this

hypothesis, because even without rotation it predicts vortices
in the ionic flow.

An essential element in our approach is the application
of a macroscopic continuum model rather than one based on
microscopic and discrete events. The main motivation herein
is to detect and identify spatiotemporal turbulences that can
act as driving force of a DDHO mechanism. This triggers two
questions. First, ergodicity breaking questions the validity of
the continuum assumption vital to a mean-field derivation as
phase space becomes locked to the subspace of its attractor.
However, this concerns the evolution of one specific run,
and does not violate the derivation of the EAH equations
itself over the grand ensemble of all possible configurations.
Second, the high degree of stochastic fluctuations and low
density inside the ion channel challenges the existence of tur-
bulent structures on the nanoscale scale. Boiteux et al. [112]
argue that there are typically only 20–40 water molecules
inside the hydrophobic cavity at a time, and that dehydrated
ions move in a concerted single file through the selectivity
filter. However, the fore-mentioned high rate of transport
through an ion channel, exceeding 107 ions per second, fully
legitimizes a macroscopic 3D mean field model over real-
istic timescales. In this respect, the Navier-Stokes equations
provides an established physical model, mathematically well
founded on the underlying microscopic dynamics [60–66].
The single file transport also does not pose a problem, as this
is covered by the 1D EAH equations, and reveals pressure
oscillations in the SF of KcsA. The turbulences—standing
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waves and toroidal vortices—in this view are more related to
pressure and density waves and do not manifest themselves in
the individual particle trajectories. This is also why they pass
unnoticed in MD, PNP, and BD, as these do not include fields
to represent pressure P and velocity u. Finally, a macroscopic
continuum approach is also consistent with computational
physics that shows that consistency with continuum theories
emerges quickly, viz., the ideal gas law appears for a few
dozen hard core molecules.

The most common type of ion channel has a long and
narrow tubular selectivity filter, viz., in KcsA. In such struc-
tures particles move in a single file [16,23,113–115]. For this
type, EAH predicts self-organizing standing pressure waves
in the SF. These oscillations act as driving engine for 1D
DDHO selection. Other types of ion channels exhibit spacious
selectivity filters, such as in the ELIC and GLIC. Here the
EAH equations predict stable vortices, not in the SF, but in
the central cavity, as depicted in Fig. 3. These vortices act
as harmonic driving forces of a 2D and 3D DDHO selection
mechanism.

The role of water molecules has been shown to be a crucial
factor in the de- and re-hydration process [86]. Some authors
explain molecular selectivity with adsorption properties in
nanotubes [115,116]. In our study, water acts as a background
continuum, implicit in the EAH-equations in the conservation
of the mass density, momentum and energy. The energy step
required for (de- or re-)hydration is represented by the term
a∇φA in EAH equation (3), as described in Sec. II B 2. This
term alone already selects for ion type and so defines the
selectivity-type of the channel. This is similar to the explana-
tion of K+ selectivity in certain ion channels by Kopec et al.
[23] as described in Sec. III F.

A final question concerns the exact subject of the reso-
nance; is it the bare ion or the aqua ion? “Aqua ion,” however,
is a collective term that encompasses a whole sequence of
different amounts of water molecules captured in its shell,
as depicted in Fig. 22. Only on average it contains nH water
molecules with a wide standard deviation δnH . We propose
that it is the average aqua ion that is targeted. Firstly, the res-
onance peaks are very sharp and high, and therefore the aqua
ion is vastly injected with an enormous amount of energy that
instantly kicks off all of its water shell molecules. The then
free and more electrically charged bare ion moves promptly,
subject to the forces in the fluid—or statistical collective—out
of the ion channel and into the cell. Second, the variation
in solvation shell number n is a statistical steady-state dis-
tribution PEQ(n, T ) with average at nH . Rather than Eq. (1)
suggests, only one water molecule at a time is lost or gained.
This means that a loss at n = nH is quickly compensated from
the interval of n’s directly adjacent to nH in the distribution,
so, by aqua ions not affected by the resonance due to the
sharpness of its peak.

The proposed EAH DDHO mechanism for ion selectivity
has consequences for computational cell models. The outflow
of ion channels is namely not an on or off switch, as the EAH
DDHO system has to build up till the moment that it is ready
to produce the requested ions, causing a certain dead time
before the maximum output can be reached. This, however, is
very fast and possibly unnoticeable for the typical timescales
of current cell models. Furthermore, our simulations show that

the pressure gradient ∇P in Eq. (2) strongly determines the
onset of turbulence and thus the resulting ion selectivity. This
is relevant especially for cardiac myocyte models as these are
substantially contracted during the cardiac cycle, causing high
pressure gradients over the cell wall.

In future work we will incorporate the model in existing
myocyte and neuron cell models [3,12] to explore its effects
on multiscale dynamical systems from cell to whole organ.
Furthermore, the EAH and DDHO models allow experimen-
tal tests to compare theoretical predictions with empirical
data. The key experimental target here is to confirm that,
in bulk transport, ions collectively behave as a physical
fluid.

VI. CONCLUSIONS

We have presented a simple yet adequate model for ex-
plaining ion channel selectivity. The model explains selec-
tivity in terms of the resonance frequencies generated by
a mechanism of the damped harmonic oscillator driven by
periodic forces provided by strong persistent turbulent struc-
tures in the dehydrating ion currents through the ion channel.
These turbulences are manifest as standing pressure waves in
1D linear tubular selection filters and toroidal vortices in 2D
and 3D spacious cavities. Their characteristics and dynamics
depend sensitively on the geometry and the electrostatic and
amphiphilic coding of the ion channel interior walls. As these
are directly transcribed from the genes involved, it offers
natural selection leverage to adapt to the animal’s lifestyle—
but it also causes susceptibility to harmful SNP mutations.

The turbulences are modeled in a novel macroscopic ionic
transport framework that includes spatiotemporal fields for
velocity and hydration. This theory correlates statistically
significant with experimental patch clamp data of prokaryotic
ELIC ion channels.

The resulting resonance frequencies are functions of the
ion mass, charge, and hydration level, and therefore allow
for uniquely differentiating ion species. Numerical analysis
with empirical ion data show that the resonances are indeed
well separated and that they persist over many thousands of
oscillation cycles.

In effect, our theory provides an explanation in purely
physical terms for the remarkable precise ion selectivity
that evolved in ion channels, a feat where all living organ-
isms heavily rely on in their daily struggle for survival and
procreation.
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APPENDIX A: COMPUTATION
OF TURBULENCE MARKERS

Here we compute various markers for the onset of turbu-
lence for the environment inside the ion channels of our study:
ELIC and GLIC. We model the ion channel as a cylinder and
assume the following values for the physical parameters:

Ion channel length: L = 1E−08 [m]

Ion channel radius: R = 5E−10 [m]

No. ions inside at any time: N = 30, namely:

No. cations: 15 [ions]

No. anions: 15 [ions]

No. H2O: 30 [molecules]

Throughput rate: tr = 1E + 08 [particles/sec].

Following Boiteux et al. [114], we assume about 20–40
ions in the cavity at any time. We take Ntot = 30 ± 10 =
15 ± 5 Na + 15 ± 5 Cl. In addition we assume 30 H2O
molecules. As model we take the values of our prototype ion
channels ELIC and GLIC, and model the central cavity as
a cylinder of radius R = 5 Å, and length L = 100 Å, so vol-
ume V ≈ πR2L = 7.9E−27 m3, and particle density n[Na] =
n[Cl] ≈ 1.91E + 27 m−3. For the other variables, we choose
T = 310 K (organic temperature), q = +1E (cation, Na+),
q = −1E (anion, Cl−). The average ion speed thus becomes
u = tr × L/Ntot ≈ 0.017 m/sec.

This ELIC-CLIC environment setting gives the following
values for the turbulence-markers:

Debye length = 3.41E−11 m

Kolmogorov scale = 2.51E−12 m

Reynolds number = 6052.

The detailed calculations are provided below.

1. Debye length inside an ion channel

For an electrolyte or plasma at temperature T , with—per
charge carrier no. k—particle density nk , and charge qk , the
Debye length λD is

λD =
√

ε0εrkBT∑
k nkq2

k

.

We follow the approach from Corry et al. [49] and assume
the dielectric constant is εr ≈ 80 inside the boundary water
and 2 outside, which is representative of proteins forming ion
channels. Applying these values in above equation, we find
λD ≈ 3.41E−11 m ≈ 0.34 Å, inside the central cavity.

2. Kolmogorov length inside an ion channel

The Kolmogorov length scale κ is defined as

κ =
(

ν3

ε

)1/4

with ν the kinematic viscosity of the ionic fluid and ε the
average dissipation of turbulent kinetic energy per unit mass.
A microscopic theory for computing the kinematic viscosity
is provided by the Einstein-Helfand theory and is expressed
by the Green-Kubo relations [117,118]:

ν = V

kBT
lim

τ→∞

∫ τ

0
dt〈σ (t )σ (0)〉.

This involves the average autocorrelation of the microscopic
shear stress tensor σαβ (t ). This has two contributions due
to momentum transport: (1) a kinetic term through particle
motion and dissipated momentum due to inelastic collisions
and (2) an interaction part caused by electromagnetic and
chemical interactions:

σαβ =
N∑

i=1

pα
i pβ

i

mi
−

N∑
i> j

(
xα

i − xα
j

)∂i j

∂xβ
j

,

where pα
i is a momentum component, i j is the symmetric

interaction potential, mi is a mass, xα is a component of the
radius vector, and i and j are particle indices.

We assume that the autocorrelation 〈σ (t )σ (0)〉 decays
exponentially with half-time τC from starting value σ 2

0 ≡∑
αβ σ αβ (0)2. This estimates the viscosity as

ν ≈ V

kBT

∫ ∞

0
3σ 2

0 exp(−t/τC ) dt = 3σ 2
0 τCV

kBT
.

In order to estimate σ 2
0 , we note that the off-diagonal elements

of the stress tensor σαβ consist of two parts: an ensemble sum
of the kinetic term, and an ensemble sum over the distance-
weighted gradient of the interaction potential. The kinetic part
either cancels if the momentum components are uncorrelated,
or, if not, at most sums to 2N〈Ekin〉. With 30 ± 10 ions moving
on average 1 cm/sec this gives approximately 1E−28 J,
which we can ignore. The interaction part relates to the av-
erage particle distance: δ ≈ (V/N )

1
3 ≈ 1.3E−10 m. At these

small distances the interaction forces are colossal. Yet on aver-
age the interaction part is zero, because the antisymmetric fac-
tors (xα

i − xα
j ) ∂i j

∂xβ
j

in the integrand on average cancel out, but

with a huge variance (in numerical simulations StDev/mean
≈ 400). Because of this uncertainty we overestimate σ0 to 1.
The relaxation time τC of the autocorrelation on atomic scale
can be small. In the case of simple point-charge (SPC) water
models [119] extremely small autocorrelation times are found
on the order of 1 ps. We overestimate τC = 10 ns. Thus, for
our setting using above values and expressions, we obtain:

ν = 3τCσ 2
0 V

kBT ≈ 2.8E−12 m2/sec for the kinematic viscosity.
We roughly estimate the cumulative dissipation of turbulence
kinetic energy to 1 eV as a typical atomic scale energy value
and take a sodium bare ion with mass 23 Da. In this way,
we find ε = 4.2E6 J/kg. Applying all these values, we find a
Kolmogorov length κ = ( ν2

ε
)

1
4 ≈ 2.5E−12 m = 0.025 Å.
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3. Reynolds number inside an ion channel

For a flow in a cylindrical pipe of length L, with kinematic
viscosity ν and flow velocity u, the dimensionless Reynolds
number Re is defined as Re = uL/ν. Using the ELIC-GLIC
ion channel parameter setting and the value for ν obtained
above, we find Re = 6052.

APPENDIX B: THE DDHO IN THE BROWNIAN
DYNAMICS FRAMEWORK

In this study, we focus on 3D hydrodynamics models for
ion channel transport that exhibit persistent vortices that act
as driving force in the DDHO model. However, the DDHO
is a template that fits all physical settings where there is
(1) a quadratic potential energy minimum plus (2) a dissipa-
tive force plus (3) a harmonic driving force, in any spatial
dimension nD. In this way, the DDHO model also applies
to theoretical frameworks such as deterministic continuum
permeation models, many-particle system molecular dynam-
ics, and stochastic Brownian dynamics that contain these
ingredients. For instance, in the context of a single file of co-
and counterions interspersed with water molecules, moving
inside a narrow tubelike selectivity filter, as in the KcsA ion
channel [86,113,114], the DDHO template could also apply—
provided the trio of DDHO ingredients are present. For ion
transport through a uniform cylindrical channel, the solution
to the PNP equation displays a sigmoid dielectric self-energy
barrier [20], but for more realistic, variable cross sections,
the self- and Coulomb energy profiles of an ion can exhibit
local quadratic minima. We may safely assume that the elastic
restoring force is isotropic and first-order charge-dependent,
so Felastic ∝ −κqx for small perturbations x from the potential
minimum. A damping force, first-order proportional to ẋ, is
provided by the Langevin term. Thus, i f harmonic driving
forces are present, we obtain the familiar stochastic driven
damped harmonic oscillator [120]:

m
d2x

dt2
= −κqx − γ

dx

dt
+

∑
k

Fk exp(�kt ) +
√

2Cν(t )

using the notation from above, with −γ ẋ being the Langevin
damping force and parameter C being Einstein’s term
γ kBT/m. The random white noise term ν(t ) covers all
unknown interactions between the ion and the rest of the
system. This equation is essentially identical to Eq. (18) and

so leads to the same conclusions on the resonance peaks as
selection mechanism for ion species.

However, the BD framework is not able to account
for the required external harmonic driving forces. In the
electro-amphiphilic hydrodynamic framework of the EAH
model that we build on here, vortices do appear sponta-
neously, providing adequate harmonic driving, and so offer
a natural setting for the DDHO.

APPENDIX C: CONVERTING DIMENSIONLESS UNITS
TO FREQUENCIES IN Hz

Exact values for the frequencies of the resonance peaks
are difficult to assess, accounting for representing Figs. 20–22
in the dimensionless units. This is caused by the difficulty to
directly obtain experimental data on the required parameters
γ and κ in Eq. (20). Let us try to estimate these values.

Following Ref. [126], a typical force F in the molecular
mechanics of ion channels is about 4 picoNewtons (pN).
We estimate a typical amplitude A of ionic oscillation to be
a few Å. From Eq. (18), this gives a value κ = F/eAK ≈
1.6 pN/eÅ ≈ 1E17 [N/Cm] for ion valence K = 1. For a
hydrated sodium ion Na+ · (H2O)nH , with mass M (Table IV):
M = 125.32 [Da], this gives a natural resonance frequency
ωN = √

κe/M ≈ 2.77 E + 11 [rad/s].
According to Ref. [24], in most ion channels, the timescale

of ion permeation ranges from tens of nanoseconds (porins)
to microseconds and even milliseconds (in active trans-
port). Let us take a timescale τ = 1E−07 sec, giving a
resonance frequency ωR = 2π/τ ≈ 6.28E07 [rad/s]. Rewrit-

ing Eq. (18) to γ = M
√

2(ω2
N − ω2

R) thus produces a value
γ ≈ 1.93E−15 [kg/s].

With these values we can convert the dimensionless units
in Figs. 20 and 22 to dimensional units [rad/s] or [Hz]: 1
[dimensionless unit] � 6.74E07 [rad/s] � 1.1E07 [Hz]. Note
that the thus calculated ionic resonance values are magnitudes
smaller than the harmonic frequencies of thermal molecular
vibrations. For instance, using the above conversion, the res-
onance peak for dehydrating hydrated sodium Na+ · (H2O)nH

occurs at 4.32 MHz, while typical molecular resonance peaks
occur in the THz regime, e.g., 46.8 THz for a single water
molecule [127]. Thus, regular thermal vibrations of aqua
ions will not cause spontaneous dehydration and subsequent
selection.
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