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Importance of being cross-linked for the bacterial cell wall
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The bacterial cell wall is primarily composed of a mesh of glycan strands cross-linked by peptide bridges
and is essential for safeguarding the cell. The structure of the cell wall has to be stiff enough to bear the high
turgor pressure and sufficiently tough to ensure protection against failure. Here we explore the role of various
design features of the cell in enhancing the toughness of the cell wall. We explain how the glycan strand length
distribution, the degree of cross-linking and the placement of the cross-links on the glycan strands can act in
tandem to ensure that the cell wall offers sufficient resistance to propagation of cracks. Further, we suggest a
possible mechanism by which peptide bond hydrolysis, via judicious cleaving of peptide cross-links, can act to
mitigate this risk of failure. We also study the reinforcing effect of MreB cytoskeleton, which can offer a degree
of safety to the cell wall. However, we show that the cross-linked structure of the cell wall is its primary line of
defense against mechanical failure.
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I. INTRODUCTION

Understanding the design features of bacterial cells has
long been a fundamental topic of research and a key de-
sign feature of bacteria is the cell wall. The bacterial cell
wall is primarily composed of a sturdy mesh of glycan
strands, consisting of chain of alternating amino sugars N-
acetylglucosamine (NAG) and N-acetylmuramic acid (NAM),
cross-linked by peptide bonds, known as the peptidoglycan
network. The cell wall plays multiple roles, including pro-
tecting the cell against external threats and providing the
cell its characteristic shape [1–4]. It has traditionally been an
important target of antibiotics like penicillin and its deriva-
tives. However, as several strains of bacteria are becoming
resistant to antibiotics [5,6], understanding the structure of
the bacterial cell wall assumes renewed significance, so that
newer antibacterial agents that target the cell wall can be
designed.

Toughness, or resistance to propagation of cracks, is an
immensely desirable materials property [7]. A common prob-
lem encountered when materials are engineered is to ensure
not only strength, specifically stiffness, but also toughness,
which can be difficult as these two requirements are often
at odds [8]. Biological materials in particular have to be
structurally strong enough to resist high tension forces and
sufficiently tough to prevent failure due to cracking. Indeed,
several biological materials like wood, bones, and nacre serve
as some of the best examples satisfying this requirement,
with their specific design principles being well studied in this
context [9–11]. For the bacterial cell wall, it is imperative to
be stiff enough to bear the high turgor pressure and maintain
shape as well as being adequately tough. While the stiffness
of the bacterial cell wall has been well studied [12–15], our
aim here is to understand its toughness. The cell wall, which
is under high turgor pressure, can have cracks on its surface

as a consequence of its design [16], and these can play an
important role in ensuring passage of nutrients and waste
products through the peptidoglycan layer. In fact, permeability
of cell walls of bacteria has been much studied [17–19], and
pores of size as large as 10 nm in diameter have also been ob-
served [20]. On the other hand, in bacteria like Staphylococcus
aureus, mechanical crack propagation has been shown to drive
daughter cell separation [21], which indicates that bacterial
cells are adapted to be able to tune mechanical failure modes.
However, the relation of the molecular level architecture of
the cell wall to its toughness remained to be elucidated.

In this paper, we study the role of various design com-
ponents of the cell in securing the cell wall by ensuring
sufficient resistance to propagation of cracks. In particular,
we examine the role of the geometry of the cell, the cross-
linked polymeric structure of the cell wall and the role of the
MreB cytoskeleton [22,23] in ensuring stabilization of the cell
wall against crack propagation. Our model, specifically, stud-
ies the Gram-negative rod-shaped bacteria (e.g., Escherichia
coli), with a single layer of the peptidoglycan mesh. In short
timescales relevant to the problem, the behavior of the cell
wall is perfectly elastic [24,25]. The peptidoglycan mesh in
this case consists of glycan strands oriented on an average
in the circumferential direction, cross-linked intermittently by
peptide bonds [26]. Modelling the cell both as an elastic plate
and cylindrical shell, we estimate the critical crack lengths
under stress due to turgor pressure. We show that cross-linking
is crucial for maintaining the integrity of the cell wall, since
the minimum energy needed for crack propagation, called the
tearing energy, is largely controlled by the degree of cross-
linking. We exhibit the important role that appropriately cross-
linked shorter length glycan strands can play in enhancing
the tearing energy, which gives an explanation of striking
experimental observations on the extensive presence of short
length glycan strands in the peptidoglycan mesh [27] and the
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FIG. 1. The bacterial cell wall modeled as a pressurised cylin-
drical shell of radius R, thickness h and with the length denoted
L. Glycan strands of variable lengths, aligned on an average in the
circumferential direction, are cross-linked intermittently by peptide
bonds.

strong propensity of the glycan strands to be cross-linked
at the terminating units [28,29]. Our analysis suggests that
peptide bond hydrolysis can be used by the cell as a defense
mechanism against cracking, since such hydrolysis can act to
increase the tearing energy. Finally, we probe the role of the
MreB cytoskeleton which can promote cell wall toughness
by exerting an inward directed pressure countering the turgor
pressure. Our results indicate that the cross-linked structure of
the cell wall plays the more important role in safeguarding the
cell against failure due to crack propagation.

II. CELL WALL MODEL

We model the cell wall as a pressurized, linear elastic,
thin cylindrical shell, as depicted in Fig. 1. We assume for
simplicity that the shell is isotropic with elastic modulus
denoted E . One can consider an orthotropic cell wall model
[26] by modifying the strain energy release term (see Sec. III)
for which additional elastic constants are required (as detailed
in Appendix B). The radius of the shell is R and its thickness
h. Since h/R is small (relevant parameter values are listed
in Table I), we can treat the cell wall as effectively two
dimensional, describing it by its central (neutral) surface. We
use the thin shell “membrane” approximation, neglecting all
moment expressions [34]. The turgor pressure is denoted P.
Using force balance, the hoop stress is

σφ = PR

h
, (1)

while the axial stress is

σz = PR

2h
. (2)

Hence a stress anisotropy exists in the cylindrical case, with
σφ/σz = 2.

TABLE I. Parameter values for E. coli.

Parameters Values References

Cell wall parameters:
Radius of cell (R) ∼0.5 μm [30]
Thickness of the cell wall (h) ∼5 nm [31]
Turgor pressure (P) 1 atm [24]
Elastic modulus of cell wall (E ) 30 MPa [13]
Glycan interstrand spacing (d) 2 nm [26]
MreB parameters:
Number of MreB molecules/cell (N) 17 000–40 000 [32]
Elastic modulus of MreB (EMreB) (similar to actin) [33]

2 GPa
MreB monomer diameter (2r0) 5.1 nm [22]

III. CELL WALL CRACK ENERGETICS

Since stress in the hoop direction is twice the stress in
the axial direction, longitudinal cracks are subject to a larger
stress, as they are aligned perpendicular to the hoop direction.
Indeed, cylindrical pressure vessels predominantly display
longitudinal cracks, for this reason, including well-known
examples occurring in daily life like sausages and pipes
cracking longitudinally [35]. For rod-shaped bacteria, like E.
coli, which is under high turgor pressure, a corresponding
stress anisotropy indicates the possibility of similar failure due
to cracking in the longitudinal direction. Our aim here is to un-
derstand the structural features of the cell wall which protect it
from such failure along the axial direction. We model a crack
on the cell wall in two ways: (1) by considering a centrally
placed crack on an infinite plate, thus neglecting curvature
effects and (2) considering a longitudinally aligned crack on a
pressurized shell, thus accounting for cell curvature.

In the first case, we begin with a thin plate of thickness h
placed in the Y Z plane, with a tensile load σ = PR/h applied
in the Y direction. A crack of total length 2c is introduced,
along the Z axis, as shown in Fig. 2(a). The crack lengths
of interest to us are considerably smaller than the radius
and length of the cell wall. We can thus treat the plate as
infinite. To calculate the critical crack length, beyond which
crack propagation becomes energetically favorable, we use
an energy balance criterion, pioneered by Griffith [36] which
compares the energy required to break atomic bonds, thus
leading to new surfaces, to the strain energy released as the
crack enlarges (assuming that no energy dissipation occurs).
The strain energy released in this case is given by

Ep = σ 2

E
hπc2. (3)

In the case of an orthotropic model of the cell wall, this
term has to be modified with additional elastic constants
incorporated into the expression (in Appendix B, we show
that under reasonable assumptions, the strain energy released
in the anisotropic model is comparable to the isotropic model
used here).

The critical crack length is given by

c f = G0Eh2

πP2R2
, (4)
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FIG. 2. (a) A crack of length 2c on a thin plate of thickness h with
a remote load σ acting on it, perpendicular to the line of crack. (b) A
longitudinally aligned crack on the cell wall. Near the tip, the crack
comes up against a glycan strand, here illustrated having a length
of 10 disaccharide units, with average number of glycosidic bonds
connecting the disaccharides between adjacent cross-links calculated
as n = 4. Each disaccharide unit consists of alternating sugars NAG
and NAM connected by a glycosidic bond. Note that the depiction
of the peptidoglycan sacculus here is illustrative, in general, the
meshwork might exhibit high amount of disorder.

where G0 denotes the minimum tearing energy (see Ap-
pendix A). We note that this paradigm of modeling curved
objects by flat surfaces has been utilized widely, in the case of
both bacteria [37] and other cells [38].

In the second case, we incorporate the cell curvature into
our calculation. We consider a longitudinally aligned crack of
length 2c on a thin, pressurized, cylindrical shell as shown in
Fig. 2(b). In this case, the effect of geometry and the internal
pressure results in an out-of-plane deformation of the shell in
the periphery of the crack, due to which an additional strain
energy is released, as compared to crack on a plate [39–41].
The total strain energy released in this case is

Ei � Ep

(
1 + c2

Rh

)
(5)

(see Appendix C for more details). We can now calculate the
critical crack length c f using energy balance criterion, as the
unique (positive) real root of the cubic equation

2c3 + cRh − G0ERh

πσ 2
= 0, (6)

where σ = σφ = PR/h.
To understand the effect of geometry of the cell wall, a

comparison of these two cases needs to made. For this, we
first need to compute the minimum tearing energy G0, which
we do in the following section.

A. Tearing energy: Role of cross links

A crack typically propagates by rupturing the bonds lying
across its plane [42]. The tearing energy is conventionally
calculated by estimating the energy cost for disrupting the

bonds lying across the plane of the crack. However, in a
cross-linked polymer, as the crack propagates, it encounters
chains of monomers lying between adjacent cross-links. The
forces involved are transmitted through the cross-links. So,
in order to break the chain, each bond in the chain has to
be supplied energy almost equaling the energy required to
rupture them even though one of the bonds might eventually
rupture [43,44]. Thus, the cross-linked polymeric structure of
the peptidoglycan mesh can safeguard the cell against me-
chanical failure by resisting crack propagation in this manner.

For an axially aligned crack on the cell wall to propagate, it
must cross a number of glycan strands cross-linked by peptide
bridges. Glycan strands are made up of repeating disaccharide
units of N-acetylglucosamine (NAG) and N-acetylmuramic
acid (NAM). A peptide stem of few amino acids is attached
to NAM. The glycosidic bonds between the alternating sugars
NAG and NAM form the backbone of the glycan chain [45].
So, if there are on an average m such bonds between adjacent
cross-links, then total energy needed to disrupt the chain will
be ≈mEc, where Ec denotes the dissociation energy of the
bond. Let � denote the number of glycan strands crossing per
unit area in the fracture plane. We then have

G0 ≈ mEc�. (7)

To relate m to the average length of the glycan chain
between adjacent cross-links (say, lavg), we define n to be
the average number of glycosidic bonds connecting the dis-
accharide units between adjacent cross-links [see Fig. 2(b)]. It
follows then that m = 2n and lavg = (n + 1) disaccharides.

We estimate G0 as follows: the average dissociation energy
of a glycosidic bond, specifically, a C-O bond, is of the order
of Ec ≈ 6 × 10−19 J. The thickness of the cell wall is ≈5 nm
and the glycan interstrand spacing is ≈2 nm (see Table I).
We then get � ≈ (6 × 1016/m2). Next we estimate n across a
given glycan strand. We have

n = c − 1

i − 1
, (8)

where c denotes the total number of disaccharide units be-
tween the two extreme cross-links in the glycan strand and i
denotes the total number of cross-linked peptide stems across
the length of the strand. In the limit of long glycan strands
spanning the circumference of the cell, we have n ∼ 1/k,
where k denotes the degree of cross-linking across the glycan
strand, as is detailed in Appendix D. In the case of E. coli,
peptide stems rotate around the glycan backbone by roughly
90◦ per disaccharide [4], so only 50% of the peptide stems
are available for cross-linking and it has been observed that
the degree of cross-linking is around 30% [28], so n ∼ 3.
However, placing of the cross-links at the terminating units
can increase the value of n for shorter length glycan strands
substantially. In particular, for glycan strands which are cross-
linked at the ends, the value of the numerator in Eq. (8) is
maximized. For any glycan strand satisfying this property and
allowing for at least two cross-links across the strand, we
get n ∼ 3–6, with strands of length 7–8 disaccharides being
optimal in this regard, having n ∼ 5–6, while in the limit
of long glycan strands, we have n ∼ 3 (see Appendix D for
more details). This in particular can explain the following
remarkable experimental observations: (1) in Ref. [27], where
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HPLC analysis of glycan strand length distribution detected a
substantial presence of short length glycan strands, with the
length distribution having a mean value of ∼8 disaccharides
for about 70% of the strands, and (2) in Refs. [1,28,29],
which concluded that � 80% of the 1,6 anhydroMurNAc
terminal muropeptides are cross-linked and suggested similar
proportions of cross-linking at the GlcNAc termini as inferred
from peptidoglycan labeled with galactosyl transferase. Our
analysis underlines the significance of terminally cross-linked
short length glycan strands and in particular, gives an illustra-
tion of how design features of the cell wall that underpin the
disorder in its structure can affect its mechanical properties in
a significant manner.

Glycan strands are initially polymerized in longer lengths
of up to 50 disaccharide units and are thereafter shortened
by the action of appropriate lytic transglycosylases (LTs), to
tailor fit into the PG mesh [46]. Although the exact algorithm
that the cell follows to cleave glycan strands is not clear, it is
pertinent to note that by appropriate cutting of these strands,
the cell can increase the value of n. For instance, n increases
when glycan strands are cut in between adjacent in-plane
cross-linked peptide stems and interestingly, the preference of
glycan strands to maintain terminal cross-links does seem to
indicate that LTs which cleave glycan strands subsequent to
polymerization, frequently act on them in this manner.

The extent of cross-linking also plays a key role in our
analysis. A high degree of cross-linking increases the stiffness
of the cell wall [12]. However, it follows from Eq. (7) and
Eq. (8) that in this case, the tearing energy is lower, thus
making the structure vulnerable to cracks. On the other hand,
while a lower degree of cross-linking increases the tearing
energy, it also makes the cell wall less stiff [14]. Thus, the
extent of cross-linking has to be delicately balanced to ensure
optimal levels of stiffness and toughness.

A key mechanism of the cell wall is that of hydrolysis or
the cleavage of preexisting peptide and glycosidic bonds in the
peptidoglycan mesh. Experiments indicate that E. coli mutants
which are deficient in hydrolysis enzymes undergo rapid lysis,
proving the essential role it plays in ensuring cell viability
[47]. Our analysis suggests that peptide bond cleavage due
to hydrolysis can secure the cell by increasing resistance to
crack propagation: For the crack to propagate, it has to stretch
all glycosidic bonds between adjacent cross-links before one
of them ruptures. A possible way to arrest the progress of the
crack is thus to cleave a peptide bond, so that the number of
bonds between adjacent cross-links increases, in other words
the value of n increases. This is analogous to the common trick
employed by mechanics to arrest the progress of a crack by
drilling a small hole at the tip of the crack [48]. The timescale
involved in peptide bond cleavage can, however, impose an
upper limit on the crack speed, below which bond cleavage
action to inhibit crack propagation is feasible—assuming that
hydrolases diffuse sufficiently fast to act uniformly across
the cell wall and that the mechanical stress on the peptide
bonds is only due to the turgor pressure, we first calculate the
rate of peptide bond cleavage. In one cell cycle, with time
τ = 20 min, a turnover of 40%–50% of the cell wall material
takes place [4] and between two adjacent circumferential
cross section of the cell, there are ≈500 cross-links (with 30%
cross-linking and ∼2πR disaccharides comprising all glycan

strands in a cross section). So peptide cross-links between
two adjacent cross sections are excised at a rate of k1 ∼
10–12 min−1. Now, since a peptide bond has to be cleaved in
the time that the crack front traverses the interstrand distance
d , the speed is thus limited to ∼18–24 nm min−1 or slower.
However, higher stresses on the cross-linkers in the vicinity of
the crack tip can potentially lead to a surge in the hydrolytic
activity locally. While the exact effect of mechanical stress on
the rate of severing of cross-linkers is not clear, it has been
hypothesized that increasing stress results in lowering of the
energy barrier to hydrolysis, thus resulting in a higher rate
of breakage of cross-linkers [3]. Nonetheless, for fast moving
cracks, cross-link cleavage is likely to be not fast enough
to act. For instance, in the case of S. aureus, daughter cell
separation, for which mechanical crack propagation has been
implicated, happens at speed around 1 μm/s [21]. For crack
speed of this order, peptide hydrolysis is unlikely to be able to
play a mitigating role.

As we discussed, cross-linked glycan chains in the cell wall
ensure that crack propagation in the longitudinal direction is
effectively resisted. A natural question then is what is the pref-
erential direction for failure under stress. It has been observed
in experiments that rupturing of E.coli sacculi tends to occur
in the hoop direction, with selective disruption of peptide
cross-links between glycan chains [49]. This is particularly
intriguing since the bond energies of glycosidic bonds and
peptide bonds are very similar [4,49]. A plausible explanation
follows from our model: for a longitudinally oriented crack
on the cell wall, cross-linked glycan chains crossing the
fracture plane have to be taken into account for calculating
the tearing energy, as explained above. On the other hand,
for a crack aligned in the hoop direction to propagate, only
the short peptide cross-links lying in the fracture plane have
to be severed. So, the tearing energy in this case is only a
fraction of the longitudinal tearing energy, which can lead to a
preferential rupturing in the hoop direction. A detailed study
of circumferential tears in the cell wall will be carried out in a
future work.

Finally, we also mention that here we are neglecting energy
dissipation processes as the length of the dissipative zone,
which is region around the crack tip where the material is
no longer linear elastic and where the bulk of the energy
dissipation occurs [9], is very small, ∼5 Å (see Appendix E).

B. Critical crack length

We now calculate critical crack lengths in the planar case as
well as the cylindrical case. In Fig. 3 we plot the total energy
(Et ), defined as the difference of the strain energy released
and the surface energy (see Appendix A), against the crack
length, in these two cases, varying the value of n. The critical
crack length is obtained at the maxima of the energy curve,
which we observe, increases as the value of n increases. For
the cylindrical case, the critical crack length is smaller than
the planar case, with this difference increasing with increase
in value of n. Thus at lower crack length values, the planar
case provides a good approximation to the case of a crack
on the cell wall under turgor pressure. However, at higher
crack lengths, curvature becomes important and the planar
approximation starts to break down. In the case n = 1, which
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FIG. 3. Total energy Et against crack length c, for different
degrees of effect of cross-linking. The solid lines represent the plane
case, while dotted lines represent the cylinder case. The cross (×)
represent the critical crack lengths c f . For values of the elastic
modulus E , the cylinder radius R, and the thickness h, see Table I.

corresponds to a 100% cross-linked sacculi, the critical crack
length is small, with c ≈ 6 nm. When the effect of cross-
linking is completely ignored, that is when a very thin crack
propagates by disrupting the bonds lying across the fracture
plane [so m = 1 in Eq. (7)], then critical crack length is even
smaller. This underlines the significance of appropriate levels
of cross-linking in maintaining the integrity of the cell wall.

Here we use the energy balance criterion to calculate the
critical crack length, which is accurately applicable for very
thin cracks. For the cell wall, due to the cross-linked structure,
the unstrained tip width is approximately the length between
two adjacent cross-links, so the length to width ratio in our
case will be ∼10–20, which ensures a degree of accuracy.
More accurately, this estimate is in fact a lower bound for
the critical crack length which well illustrates the reinforcing
effect of the cross-linked structure of the cell wall in pre-
venting failure due to cracking (more precise estimates can
be obtained by taking the exact geometry into consideration).
Interestingly, critical crack total length for the Gram positive
bacteria S. aureus has been suggested to be around 40 nm [21],
which is commensurate to these estimates. Though S. aureus
has a spherical geometry and its cell wall has a multilayered
structure, the composition of the Gram-positive and Gram-
negative cell walls remain conserved [50], which suggests that
the critical crack length in both cases can be comparable.

A natural question now is whether the role of cross-linking
in maintaining the integrity of the cell can be supplanted
by other design components of the cell, for instance the
cytoskeleton MreB. In the next section, we explore the role
of the cytoskeleton in strengthening the cell wall against
failure from crack propagation. In particular, we probe if
the cytoskeleton can effectively reinforce the cell against
crack propagation, even when the effect of cross-linking is
discounted.

IV. CYTOSKELETAL REINFORCEMENT

The actin-homologue MreB in bacteria [22,23] is a key
component of the bacterial cell. It plays an important role

FIG. 4. MreB cytoskeleton modeled as disconnected filament
assemblies aligned in the hoop direction, with filament bundle having
bundle radius a and preferred radius r. The filament bundle consists
of monomers modeled as spheres of radius r0.

in the growth of the cell and in maintenance of the shape
in rod-shaped bacteria [51,52]. In this section, we study the
effect of MreB on the toughness of the cell wall, in particular
examining the reinforcement of the cell wall by MreB and its
effects on the critical crack length.

Several early papers suggested, based on in vivo obser-
vations, that MreB formed as a cell-spanning helix [23,53].
However, more recent work using high resolution light mi-
cropscopy have shown that MreB forms disconnected assem-
blies in the cell that move processively in the hoop direction
[54–56] (Fig. 4). Here we model MreB as a collection of dis-
connected bent cylindrical rods oriented in the hoop direction
of the cell.

MreB binds directly to the cytoplasmic side of the inner
membrane [57]. While the in vivo ultrastructure of MreB
is not clear, it has been observed in vitro that MreB forms
bundles in solutions [58] and binds as filaments to membrane
[59]. Biophysical modeling has shown that the orientation of
MreB along the direction of maximal curvature is determined
by the trade-off between the energetics of filament bending,
membrane deformation and the work done against the turgor
pressure [60]. For the bacterial cell, the presence of high
turgor pressure can ensure that the MreB filaments deform to
the cell membrane. In this case, the configuration of MreB
is distorted from its preferred shape. In vitro studies have
shown that MreB filaments are highly curved (with width
>200 nm), so the preferred curvature is greater than the
typical curvature of the bacterial cell [59]. Therefore, with
the preferred radius being smaller than the cell radius, an
inward directed pressure is exerted, which we calculate below.
It should be noted that for high values of the cross-sectional
radius, the energy cost of filament bending increases and it
is possible that it becomes energetically favorable for the
membrane to deform to the filament [60]. Here, since we are
interested in only calculating the inward pressure exerted, we
take as an input a configuration of the MreB modeled as bent
cylindrical rods of given cross-sectional radius, denoted a,
which is deformed from its preferred orientation onto a given
orientation determined by the cell radius. We then calculate
the pressure exerted for a wide range of values of a, ranging
from 3.2 nm [59] to 40 nm [61]. We also note that although
MreB has been observed to move persistently around the long
axis of the cell over long timescales [54,56], since we are
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estimating the average pressure exerted, we will assume that
it is localized.

We express the energy functional as an integral over its
center line, which is constrained on the cell wall. For such a
curve constrained to a surface, given the Darboux frame (see
Appendix F for more details), the general energy functional
reads [62]

E = 1

2

∫ Lfil

0
ds[Ii j (κi − ci )(κ j − c j ) + β(τ − ct )

2], (9)

where κi and κ j are from the set {κg, κn} of geodesic and
normal curvature, and the terms ci, c j belong to the set {cg, cn}
of preferred curvatures. The tensor Ii j is the inertia tensor.
Finally, ct denotes the preferred twist and β denotes the twist
modulus.

We assume that the cross section of MreB complex is
circular. The inertia tensor I is thus isotropic and can be writ-
ten as I = αδi j , where α = EMreBπa4/4, denotes the bending
modulus, a denotes the cross section radius and EMreB the
elastic modulus. We note that β = α/(1 + νm) [63], where νm

denotes the Poisson ratio. We make the simplifying assump-
tion that the Poisson ratio νm = 0 for MreB, since this does
not qualitatively change our results. So we have β = α.

Also, it follows from the analysis below that for a wide
range of values of the radius a, the elastic energy is several
orders of magnitude greater than kBT , hence we ignore the
effect of thermal fluctuations.

A. MreB model

MreB is modeled as several disconnected cylindrical rods,
bent and oriented in the hoop direction of the cell, as shown
schematically in Fig. 4(b). We will refer to these cylindrical
rods as MreB bundles. We assume that the preferred shape
of MreB is a bent cylindrical rod, whose centerline can be
visualised as an arc of a circle of radius r. In the final config-
uration, this radius changes to R. Using Eq. (9), together with
κg = cg = τ = ct = 0, κn = 1/R and cn = 1/r, we obtain the
total energy for n f bundles as

E f = n f Lfilα

2

(
1

R
− 1

r

)2

. (10)

As we shall see below, the inward pressure exerted by MreB
bundles is independent of their length. We thus make the
simplifying assumption that the length of all the bundles is
the same.

We now estimate the number of MreB bundles of a given
radius and length in a typical cell. This depends on the total
number of MreB monomers constituting all the MreB bundles
in the cell and the number of monomers in a single bundle. We
take the volume occupied by the monomers in a single bundle
to be in the range (Vf /2, 3Vf /4), where Vf denotes the volume
of the bundle. The lower bound of the packing is determined
by the substantial elastic modulus of MreB (Table I), which
suggests that the monomers will have to be packed reasonably
tightly, while the upper bound is determined by the well
known Kepler upper bound, given by the recently proved
Kepler’s conjecture, of ≈0.74 [64]. Using this, we estimate
the total number of MreB bundles in the cell (Table II) (as
detailed in Appendix G).

TABLE II. Range of computed number of disconnected filament
bundles in the cell for various observed values of bundle radius and
lengths of filament.

Length

Radius 250 nm 500 nm 1500 nm

3.2 nm 437–656 218–328 73–109
10 nm 45–67 22–33 7–11
20 nm 11–17 6–9 2–4
40 nm 3–5 1–2 ∼ 1

The radial force is then given by

Ff = ∂E f

∂R

∣∣∣∣
R

, (11)

and the average pressure exerted is

Pf = n f Lfilα

2πR3L

(
1

r
− 1

R

)
, (12)

where L denotes the length of the cylinder. The effective
turgor pressure acting on the cell wall is then given by

Peff = P − Pf . (13)

Experiments have reported shorter length MreB assemblies
(∼250 nm) as well as long ones nearly covering half of the
cell’s circumference (∼1500 nm) [60,61,65]. However, the
pressure exerted by MreB is independent of the length of a
bundle. This results from fixing the total number of MreB
molecules in the cell, which effectively subsumes the role of
the length of the bundles (see Appendix G for more details).
This also holds when we choose the lengths of bundles to be
variable in the cell, present with varying proportions. To illus-
trate this, we plot the pressure exerted by the MreB against
the preferred radius for different values of bundle length and
fixed value of bundle radius, taken as 20 nm (left) in Fig. 5.
In Fig. 5 (right), we plot the pressure against preferred radius
with fixed bundle length taken 250 nm and different values of
bundle radius. We observe that for a wide range of preferred
radius (0.2–0.4 μm), the pressure exerted even for very large
bundle radius is much less than the turgor pressure.
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FIG. 5. (Left) Average pressure Pf exerted by MreB vs preferred
radius r, for varying filament lengths as given in the inset, with
bundle radius fixed at 20 nm. The length independence of the
pressure exerted can be observed here. (Right) The pressure exerted
against the preferred radius, with fixed bundle length taken 250 nm
for different values of bundle radius as in the inset.
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FIG. 6. (Left) Average inward pressure Pf exerted by MreB with
preferred radius r = 0.3 μm and bundle radius a = 40 nm as the
radius of the cell Rcell varies, in the case length of the cell is fixed
(red) and in the case volume of the cell is fixed (black). Note that the
pressure exerted in the fixed volume case decays slowly as compared
to the fixed length case. (Right) Critical crack length vs Bundle
radius for MreB. Lines indicate the planar case, while dotted lines
indicate the cylindrical case. In both cases, the degree of effect of
cross-linking is taken as indicated, from bottom to top, n = 1 and
n = 3, 4, 5, 6, depending on the length of the glycan strand.

We next explore the variation of the pressure exerted by
MreB assemblies as the radius of the cell varies, in particular
to understand whether an appropriate change in the dimen-
sions of the cell can result in a significant increase in the
pressure exerted by MreB. Fixing h, we plot the pressure
exerted against the radius of the cell (Fig. 6, left) in the case
that length of the cell L is kept fixed and in the case that
volume of the cell V = πR2L, is kept fixed. We infer that
as Rcell increases, the inward pressure exerted by MreB will
become negligible, though as we can deduce from Eq. (12),
the decay is much slower in the case when volume is fixed. We
observe that interestingly, in both cases, with r = 0.3 μm, the
pressure exerted attains maxima when Rcell ≈ 0.5 μm, with
similar maxima values, indicating that the pressure exerted
will not be significant even if the cell radius is changed.
In general, dimensions of the cell may be regulated by a
combination of multiple factors, for instance cell width of
Bacillus subtilis has been suggested to be determined by a del-
icate balance between the Rod system and class A penicillin
binding proteins [66]. In the following, we fix the preferred
radius r of MreB to 0.3 μm, noting that our results hold
qualitatively over a wide range of values of r (0.2–0.4 μm).

B. Effect on crack length

We now quantify the role of MreB as a determinant of the
critical crack length and compare its effect to that of the cross-
linked structure of the cell wall. As explained previously,
pressure is exerted by MreB in the inward direction. This
acts to counter the turgor pressure, resulting in a lowering of
the effective pressure on the cell wall. We now examine the
effect of this lowering of the pressure, on the critical crack
length of the cell wall. We plot the critical crack length against
the bundle radius [Fig. 6 (right)]. We take into account the
planar case and the cylindrical case, besides incorporating the
effect of the cross-linking (with n as in Sec. III A). We note
that when the bundle radius is zero, the effect of MreB is
negated. So, the critical crack length in this case, is the same
as the critical crack length as calculated in the first part, where

the effect of MreB was not under consideration. We observe
that in all degrees of cross-linking, the critical crack length
does not change much even for very large values of bundle
radius. This underlines the significance of cross-linking in the
protection of the cell wall against cracking.

Recent work has revealed that the outer membrane of
E. coli, acting in tandem with the cell wall, is the primary
mechanical unit of the cell, guarding it against various per-
turbations [67]. Since MreB, on the other hand, acts on the
plasma membrane, this, in conjunction with our analysis,
suggests that MreB is unlikely to have a significant direct
mechanical contribution in affecting the tearing of the cell
wall. It is however possible that MreB indirectly affects the
toughness of the cell wall. For instance, a higher concentration
of MreB might increase the cross-linking density [12], which
can be deleterious for the toughness of the cell wall even as
the stiffness of the cell wall will increase.

V. DISCUSSION AND CONCLUSIONS

In this work, we studied the role of the cross-linked
structure of the cell wall in ensuring sufficient resistance to
crack propagation. We deduced that the tearing energy varies
inversely with the degree of cross-linking. We also showed
that terminally cross-linked short length glycan strands can
dramatically enhance the tearing energy. In particular, we
showed that for about 30% cross-linking of the cell wall,
as has been observed for E. coli [28], the optimal length
of the glycan strands for maximizing the tearing energy, are
shorter length glycan strands with length ∼7–8 disaccharides,
cross-linked at the ends. This provides a possible explanation
for surprising experimental observations, which have demon-
strated an abundance of shorter length filaments in the pepti-
doglycan mesh [27] and of the strong preference of glycan
strands to cross-link to each other at the termini [28,29].
We estimated the critical crack length for different degrees
of cross-linking. Finally, we investigated the effect of MreB
reinforcement of the cell wall, modeling MreB as several
disconnected bent cylinders and estimated the inward pressure
exerted for a wide range of parameters. We concluded that the
effect of the cross-linked structure of the cell wall plays the
primary role in ensuring the integrity of the cell wall.

In this study, we have computed an average value of the
tearing energy G0 across the sacculus. However, the specific
local geometry of the peptidoglycan mesh near the tip of a
crack can play an important role in its propagation. Indeed,
coarse grained simulations of the peptidoglycan sacculus
have indicated the possibility of peptide bonds under stress,
like those near the crack tip, ending up aligned even in the
circumferential direction [68]. This, for instance, can lead to
a local increase in the value of the tearing energy, resulting
in higher resistance to propagation of the crack. Detailed
numerical simulations are required to delineate the effect of
local geometry of the peptidoglycan mesh on the tearing
energy, leading upto a more precise calculation of its value and
will be undertaken in subsequent work. Nevertheless, since
the tearing energy may vary for distinct local geometries near
the tip of specific cracks, our study of the average tearing
energy across the sacculus assumes significance and paves the
way for more exhaustive investigation.
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An interesting feature of our analysis is the illustration of
a standard dilemma faced when engineering materials, which
is to to ensure optimal levels of stiffness and toughness, as
the two requirements usually are at cross purposes [8]; in
this case, we showed lower degrees of cross-linking result in
higher tearing energies, thus offering better protection to the
cell wall. On the other hand, a higher degree of cross-linking
results in stiffer cell walls [12,14], allowing the cell wall
to bear turgor pressure and to preserve its shape. Similarly,
longer glycan strands results in enhanced stiffness [26], while
shorter length glycan strands can amplify the toughness of
the cell wall, as we exhibited. A natural question now is to
understand how bacteria maintain an optimal degree of cross-
linking, appropriate glycan strand length distribution and pre-
cise placing of the cross-links along the strand lengths, fine
tuning their structure to ensure the right mix of mechanical
properties under a variety of conditions. It will be particularly
interesting here to probe the role of hydrolysis, which can
affect both the degree of cross-linking and the glycan strand
length distribution [15] and which, as we discussed, can miti-
gate the danger of failure due to crack propagation by cleaving
appropriate peptide bridges. Interestingly, treatment of certain
strains of E. coli with antibiotics like vancomysin [68], which
acts by inhibiting formation of new cross-links, often results
in bulging of the cell, leading to cell lysis. It has been hypoth-
esised that a build-up of cross-linking defects in a small region
under the effect of the antibiotic, leads to formation of a pore
in the cell wall, which when it exceeds a critical size, results
in irreversible bulging of the plasma membrane through it.
Intriguingly, bulge formation does not seem to lead to large-
scale cracking of the cell wall, which suggests that the ge-
ometry of the pore is such that the critical size for membrane
bulging is attained before it becomes energetically favorable
for cracking to occur. The precise geometry of such pores
formed by the effect of antibiotics is unclear, however under
the assumption of a circular pore, a critical pore radius of ∼20
nm has been calculated, beyond which irreversible membrane
bulging will occur [69]. On the other hand, our calculation
indicate critical crack length, denoted c f , for the cell wall
of �20 nm for axially aligned narrow cracks, it is possible that
criticality for membrane bulging is achieved before criticality
for large scale cracking, particularly if the pores formed by
the effect of antibiotics have a higher radius of curvature at
the tips, resulting in lower stress concentrations [42].

The overarching theme of our study was to understand
the molecular mechanistic underpinnings of the mechanical
properties of the cell wall, in particular its toughness. More
experiments are necessary to get a complete understanding of
the problem, for instance analogous to those carried out for
other biocomposites like nacre, which has an interesting
sawtooth-shaped force extension curve, explaining its
remarkable toughness [70]. Further, experimental study of the
behavior of cracks on the cell wall under varying conditions
can elucidate not just the mechanical properties of the cell, but
also its growth process, as demostrated in recent experiments
using laser nano-ablation, where cuts were introduced on
C. elegans cell surfaces and were probed to study embryo
elongation [38]. An outstanding question in this regard is to
probe the self-repair mechanism of the bacterial cell and its
ability to heal cracks on the cell wall. Computer simulation,

based on the glycan strand length distribution, have indicated
the presence of small cracks aligned in the axial direction
[16]. Such small cracks, which can play an important role
in ensuring passage of nutrients and waste products, can
nonetheless develop into critical flaws eventually under the
effect of turgor pressure. Hence, these must be regulated by a
process of self-repair, a stand out feature of biological systems
which is often key to the their remarkable sustainability [71],
allowing for design features which are not feasible in
human-made structures. Experimentally inducing cuts on the
cell wall and studying the healing process will undoubtedly
shed more light on this. A plausible method for healing of
cracks in this case is that initially, perhaps counterintuitively,
peptide cross-links in the vicinity of the crack tip are cleaved
by hydrolysis, which as our model explained, can act to
locally hike the tearing energy and arrest the progress of the
crack. Then wall material is inserted to repair the crack or
to apply a mechanical force to close the crack. Since MreB
directs peptidoglycan insertion [52], it naturally will play
an important role in the crack repair process. In fact, it has
been proposed that the observed MreB patch propagation in
the circumferential direction is due to stable circumferential
propagation of small gaps in the anisotropic sacculus [72].
Our model paves the way for more detailed work, leading up
to a precise study of the mechanism by which cracks on the
cell surface are healed even as the cell is growing. Such a
mechanism will be fundamental to the survival of the cell and
an understanding of this will require a comprehensive blend
of experimental, computational and theoretical techniques,
which can then be leveraged to design new-age antibacterials.
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APPENDIX A: ENERGETICS OF CRACK PROPAGATION

The foundation stone for fracture mechanics was laid by
the work of Griffith [36], who studied the energetics of crack
propagation. We first consider the case of a centrally placed
thin crack of length 2c in the infinite plate with uniform
thickness h, with the plate represented by the Y -Z plane. The
crack is placed on the Z axis, aligned in the Z direction with
the middle point of the crack at the origin and a remote load
σ applied in the positive and negative Y direction. When an
increment in the length of the crack occurs, there is a release
of strain energy and crack propagation becomes energetically
favorable when this release of strain energy, due to increment
in crack length, is greater than the surface energy which
is needed to break the bonds of the specimen. The critical
point is reached when both are balanced, which we write
mathematically as

0 = −dEp

dc
+ dEa

dc
= d (−Ep + Ea)

dc
. (A1)
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Here Ep is the strain energy released, Ea is the surface
energy, dc denotes the crack length increment and we have
that the total energy, denoted Et , is given as Et = −Ep + Ea.
So, the critical crack length is the length at which the total
energy attains its maxima. It is assumed that the thickness of
the material is constant and that the crack growth is slow (qua-
sistatic case). Further, it is assumed that energy dissipation,
due to friction and plastic deformations, is negligible.

We note that the strain energy released associated to the
crack formation is the same as the work done by the applica-
tion of a tensile load σ along the crack surfaces in the opening
up of the crack. Thus, we have

Ep = 2h
∫ c

−c

1

2
σuy dz = 2hσ

∫ c

−c

1

2
uy dz. (A2)

Here the factor 2 accounts for the two (upper and lower) crack
surfaces and uy denotes the displacement of the upper crack
surface, given in the case of plane stress for a thin centrally
placed crack as [42]

uy = 2σ

E

√
c2 − z2. (A3)

Substituting this in Eq. (A2) and noting that the rightmost
integral simply gives the area of an ellipse with semimajor
axis c and semiminor axis cσ/E , we get

Ep = σ 2

E
hπc2. (A4)

Now, for the crack to propagate, the bonds in the plate have to
be broken and hence, an amount of work equal to bond energy
must be performed. Let G0 represent the minimum tearing
energy (J/m2), required for the crack to propagate by breaking
bonds in its path. Then, for a crack of length 2c, we have

Ea = 2G0ch. (A5)

Substituting Ep and Ea in Eq. (A1) appropriately, we get

c f = G0E

πσ 2
, (A6)

which is the critical crack length, interpreted as the length
above which a crack will grow uncontrollably.

APPENDIX B: CRACK ON ORTHOTROPIC CELL WALL

Here we calculate the strain energy released for a crack
in orthotropic model of the cell wall and compare it with
the isotropic case. For plane stress in the orthotropic case, by
Hooke’s law, we have⎡

⎣ ε1

ε2

ε12

⎤
⎦ =

⎡
⎢⎣

1
E1

−ν21
E2

0
−ν12

E1

1
E2

0

0 0 1
μ12

⎤
⎥⎦

⎡
⎣ σ1

σ2

σ12

⎤
⎦, (B1)

where E1, E2 denote the elastic modulus, ν12, ν21 denote the
Poisson’s ratio, and μ12 denotes the shear modulus.

We consider an infinite orthotropic plate of thickness h
placed in the Y Z plane, with a crack of length 2c placed in
the plate, centered at the origin and along the Z axis. Fixing
Z = 1 and Y = 2, we get the strain energy released in this case

[73] as

Eorth = σ 2πc2h√
2E1E2

√√√√{√
E1

E2
+

[
(E1/μ12 − ν21E1/E2)

2

]}
,

which we rewrite as [cf. Eq. (A4)]

Eorth = σ 2πc2h

λE0
, (B2)

where

E0 = √
E1E2,

λ =
√

2

{√
E1

E2
+

[
(E1/μ12 − ν21E1/E2)

2

]}−1/2

.

In our case, we have E1 ≈ 25 MPa, E2 ≈ 45 MPa, ν21 ≈ 0.46,
ν12 ≈ 0.2 [24]. However, the shear modulus μ12 of the cell
wall is not clear. So, we assume that the cell wall is “specially”
orthotropic, which gives μ12 =

√
E1E2

2(1+√
ν12ν21 ) . In this case, we

have λE0 ≈ 36 MPa, comparable to the value of E = 30 MPa
that is used to model the cell wall as an isotropic material
implying that the strain energy released are quantitatively
similar in both cases. So our model framework and the main
conclusion of our paper on the role of the cross-linked struc-
ture of peptidoglycan mesh in increasing the tearing energy of
the cell wall does not change with the inclusion of anisotropy
in the model.

APPENDIX C: CURVATURE EFFECT ON STRAIN ENERGY

We now calculate the effect of geometry on the strain
energy released due to a through the thickness crack of length
2c, aligned longitudinally on a pressurized thin cylindrical
shell. In this case, apart from in-plane deformations, there
is an additional out-of-plane deformation in a small region
around the crack resulting from the action of normal force due
to internal pressure which is directed through the shell.

The deflection δ in the normal direction, which in this case
is the radial direction, varies over the distance l . The bending
energy per unit area is given by eb ∼ κb

δ2

l4 , where we have
used that the curvature change is of the order δ

l2 [63]. The total
bending contribution (ignoring all coefficients) concentrated
over the area l2 is then given by

Eb ∼ κbδ
2

l2
, (C1)

where κb ≈ Eh3 is the bending rigidity.
The strain tensor for the stretching energy is of the order

of δ
R , that is, ε ∼ δ

R , where R is the radius of the cylinder. The
corresponding stress is then σ ∼ E δ

R and the stretching energy

per unit area is given by es = Ehδ2

R2 . Thus, the total stretching
energy contribution is (ignoring all coefficients)

Es ∼ Y δ2

R2
l2, (C2)

where, Y = Eh is the 2D Young’s modulus for the case of
plane stress.
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The curvature correction energy term Ecyl is therefore
given by

Ecyl ∼ Eh3δ2

l2
+ Ehδ2

R2
l2. (C3)

Minimizing the total energy in Eq. (C3), dEcyl

dl = 0 ⇒ l =
lm = √

Rh, which gives us a new elastic length scale for
localization of deformation.

Plugging in the value of lm obtained above, we get

Ecyl ∼ Eh2δ2

R
. (C4)

We denote the force acting on the crack periphery, due to
internal pressure, by f . Varying Ecyl with respect to δ and
equating it to the work done by the force f , we get

f ∼ Eh2δ

R
. (C5)

The force acts along the line of the crack, and hence, the area
over which normal stress is applied is of the order of c2, where
2c is the crack length. It follows then that the force acting
is of the order of f ∼ Pc2, where P is the internal pressure.
Substituting this value of f in Eq. (C5), we get the normal
deflection δ ∼ Pc2R

Eh2 . Therefore, using Eq. (C4), we get

Ecyl = K1
Eh2δ2

R
= K1

P2R2

Eh

c4

Rh
= K1

σ 2c2h

E

c2

Rh
, (C6)

where K1 is a dimensionless constant. This constant K1 ∼
π [0.317

√
12(1 − ν2)] [39], where ν denotes the Poisson’s

ratio of the shell material. Since 0 � ν � 1/2 [24], we have
that K1 ≈ π . Therefore, we get that the total strain energy
released is given by

Ei � Ep + Ecyl = Ep

(
1 + c2

Rh

)
. (C7)

APPENDIX D: GLYCAN STRAND LENGTH
AND TEARING ENERGY

In this Appendix, we relate the glycan strand lengths to the
tearing energy of the cell wall. Our objective here is to esti-
mate n, the average number of glycosidic bonds connecting
disaccharides units between adjacent cross-links, as defined
in Sec. III A, which we relate here to the glycan strand length.
For any glycan strand denoted g, this value is given by

n(g) = c − 1

i − 1
, (D1)

where c(g) denotes the total number of disaccharide units
between the two extreme cross-links of g (in other words, we
are counting those disaccharide units in the glycan strand that
lie between any pair of adjacent cross-links) and i(g) denotes
the total number of cross-linked peptide stems on the glycan
strand g.

We first consider the case when glycan strand lengths
span the circumference of the cell wall. In this case, due to
periodicity, c(g) = l (g), where l (g) denotes the total number
of disaccharide units for glycan strand g. Since l is large, it fol-
lows that n ∼ 1/k where k denotes the fraction of cross-linked
peptides. In the case of E. coli, k ∼ 0.3 [74], so then n ∼ 3.

This also illustrates how a lower degree of cross-linking can
enhance the toughness of the cell wall.

However, we now show how smaller length glycan strands
cross-linked at the ends, can considerably increase value of
n. Let us consider a glycan strand g of length l disaccharide
units. It follows from Eq. (D1) that the value of n for a strand
of fixed length will be maximized when the peptide stems at
the end of the glycan strands are cross-linked. In this case,
c(g) ∼ l . Also, for the degree of cross-linking denoted k, we
will have i ∼ kl . Therefore,

n(l ) ∼ l − 1

kl − 1
. (D2)

Taking k = 0.3 and allowing for at least two cross-links
across the length of the strand, we get n ∼ 3–6. The value of
n decreases as the length of the glycan strand increases and
for length of glycan strand l (g) ∼ 7–8, the value of n ∼ 5–6.
Now, given a glycan strand length distribution p, the average
value of n across the cell wall is

navg =
∑

n(l )p(l ), (D3)

where p(l ) denotes the proportion of glycan strand lengths of
length l . It is clear that a higher proportion of glycan strands
of strand lengths ∼7–8 disaccharide units will enhance the
average value of n across the cell wall. For very short strands
with length four disaccharides or fewer, only one peptide stem
will be cross-linked with cross-linking degree around 30%
[74], so a similar analysis is not possible.

APPENDIX E: DISSIPATIVE ZONE

The length of the dissipative zone, denoted by ld , is given
by

ld = K2
I

2πσ 2
t

, (E1)

where KI is the stress intensity factor and σt is the tensile
strength, which is the maximum tensile stress a body can take
before failure [42]. We have the strain energy release rate
G = 1

2h
dEi
dc and the stress intensity factor is related to the strain

energy release rate as [42]

G = K2
I

E
. (E2)

Now, denoting by �yt the maximum stretching of glycan
strands, it follows from force balance that

σt = kg�yt�, (E3)

where kg denotes the spring constant of the glycan strands,
which is given by

kg = E

Ly�
, (E4)

where Ly denotes the length of the glycan strands between
adjacent cross-links.

Also, minimum tearing energy, G0 can be written in terms
of kg as

G0 = 1
2 kg�y2

t �h. (E5)
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So it now follows from Eqs. (E1)–(E5) that

ld = Ly

4π
. (E6)

Since the typical length of the glycan strand between adja-
cent cross-links is ∼3–6 disaccharides, we have that ld ≈ 5Å.

APPENDIX F: CURVES ON SURFACES AND THE
DARBOUX FRAME

Let S = S(x, y) be a surface in R3. We denote the tangent
vectors Sx and Sy, which span the tangent plane to the surface
at the S(x, y). Suppose now that we have a curve on the
surface, given by the mapping

φ : t �→ S(x(t ), y(t )).

The tangent to the curve at the point S(x(t ), y(t )) is then
given by T = x′Sx + y′Sy. We now define a frame for the
curve φ (which is thought of as the centerline of the filament
bundles under consideration in this work). In this case, we
want to use frame to incorporate the information that the curve
lies on a surface, thus we will be using the Darboux frame and
not the usual Frenet-Serret frame.

Let T denote the tangent to the curve at S(x(t ), y(t )) as
before. Let N denote the normal to the surface at S(x(t ), y(t )).
We also further define another unit vector B as B = T × N .
Together, the vectors (T ,N ,B) define the darboux frame for
the curve φ, lying on the surface S .

It is easy to see, since T ,N ,B are orthonormal, we have
that T ′ · T = N ′ · N = B′ · B = 0 and further

(T · N )′ = (B · N )′ = (T · B)′ = 0. (F1)

This implies the existence of scalar functions κn, κg, and τ

such that we have

T ′ = κnN + κgB, (F2)

N ′ = −κnT + τB, (F3)

B′ = −κgT − τN . (F4)

Here κn is the normal curvature of the curve, κg is the geodesic
curvature of the curve, and τ is the twist of the curve.

κn

T

N

κg

FIG. 7. The Darboux frame describing curves on surfaces, with
T being the tangent to the curve, N the surface normal. The Darboux
frame is (T ,N ,B), where B = T × N .

We can now define the Darboux vector

� = τT − κgN + κnB,

and thus, we will have

T ′ = � × T , N ′ = � × N , B′ = � × B. (F5)

The Darboux frame for a curve on a surface is illustrated in
Fig. 7.

APPENDIX G: MreB FILAMENT BUNDLES IN THE CELL

We estimate the number of MreB filament bundles in
a typical cell. The number of MreB monomers has been
estimated to lie in the range 17 000–40 000 (see Table I). The
number of filament bundles will depend on the number of
MreB monomers in a single bundle, which in turn will depend
on the radius of the bundle, its length and the packing of the
monomers in the bundle. Since the bundle is modeled as a
cylinder of length Lfil = l f and radius a, and monomers are
modeled as balls of fixed radius r0 (see Fig. 4), the number of
monomers in the filament bundle will be a fraction of number
nm ≈ πa2l f

4
3 πr3

0
. This is effectively a problem of packing of balls

of uniform radius in a cylinder of given dimensions. It is
obvious that not all the volume of the cylinder can be occupied
by the balls. Following the resolution of Kepler’s conjecture,
it is now known that for sufficiently large containers, the
volume fraction occupied by balls of a uniform small radius
is bounded above by π

3
√

2
≈ 0.74, which is achieved by cubic

close packing or hexagonal close packing [64]. In other words,
the densest packings occupy about 0.74 of the volume of the
container.

Another possible configuration can be described as fol-
lows: we can think of each filament bundle as an aggregation
of filaments with each filament having the same number of
monomers ∼l f /2r0. Calculating the number of filaments will
thus give us the total number of monomers in this config-
uration. This is given approximately by dividing the area
of cross-sectional circle of the cylindrical container by the
area of the equatorial circle of the monomer, giving us the
number ρ0 = ( a

r0
)2. Here we are assuming that the arrange-

ment is such that the equatorial circles of the monomers on
the top cover almost the whole area of the cross-sectional
circle of the cylinder and that the monomers are arranged
in collection of straight lines, piled below the monomers on
the top. Thus, the number of monomers in this arrangement
is given by l f ρ0

2r0
and it is straightforward to see that in this

case, the monomer balls occupy ∼2/3 of the volume of the
cylinder.

Now, since the filaments have a robust elastic modulus of
around 2 GPa, it is fair to assume to that the packing of the
monomers has to be sufficiently dense. On the other hand,
since the monomers are much smaller than the cylindrical fil-
ament, the upper bound for the volume has to be around 0.74,
as explained above. So, we assume that the volume fraction
of the monomers in the cylindrical container is ∼0.5–0.75.
So, with bundle radius denoted a and length denoted l f , and
with total number of MreB monomers denoted N , we have
that the number of filaments n f lies in the range 28N

a2l f
to 42N

a2l f
,

062408-11



GARIMA RANI AND ISSAN PATRI PHYSICAL REVIEW E 100, 062408 (2019)

with a and l f given in nanometers and where we have used
the value r0 = 2.5 nm (Table I). We tabulate (Table II) the
number of filament bundles, where the length of such filament
bundles taken as 250 nm, 500 nm and 1500 nm, and bundle
radius taken as 3.2 nm, 10 nm, 20 nm, and 40 nm. We have

assumed here, for simplicity, that all the MreB monomers in
the cell are part of some MreB bundle. However, there can
be several MreB monomers in the cell cytoplasm, so that the
values in Table II give us an upper bound for the number of
MreB bundles present in the cell.
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