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Origin of lipid tilt in flat monolayers and bilayers
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This paper continues the series of our works devoted to the liquid-gel phase transition in lipid membranes.
Previously we described a variation of area per lipid, membrane thickness, and diffusion coefficient at the
temperature-driven liquid-gel phase transition in bilayers. Here we expand the application of our analytic
model approach to include a description of the lipid tilt and also extend the investigation to include Langmuir
and self-assembled monolayers. The theory describes tilt formation at the temperature-driven liquid-gel phase
transition in bilayers and the pressure-driven phase transition in Langmuir monolayers. Neither uniform tilt nor
liquid-gel phase transition is found in self-assembled monolayers chemically bonded to the substrate.
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I. INTRODUCTION

Twenty-five years have passed between the introduction of
the fluid mosaic model [1] that considered the lipid bilayer
of the cell membrane as merely holding the proteins and
the discovery of the lipid-protein domains [2], indicating
that lipids sometimes play a more active role in biochemical
functions. It took even longer to realize the role played by
lipid tilt (with respect to the membrane’s normal) in the elastic
energy of the lipid membrane, starting from the application of
elasticity theory to the membranes [3] and generalizing the
elastic energy functional to include the tilt deformation [4,5].
Currently, lipid tilt is recognized to play an important role for
fusion [6,7], fission [8,9] of lipid bilayers, defines membrane
dynamics at short wavelengths [10], and generally helps to
relax the stress induced by membrane inclusion [11–14] and
the domains boundary [15,16].

Physiologically relevant single-component liquid lipid bi-
layers usually exhibit no tilt in the ground state. The latter
is observed experimentally for both lipid bilayers in gel
phase [17] and lipid monolayers under lateral pressure in the
Langmuir setup [18,19]. The physical origin of the uniform
tilt in lipid membranes has been suggested several times in
the literature [17,20–23]: the lipid glycerol group which links
the hydrophilic head-group and hydrophobic tails limit the
compression of lipids in a membrane. If the cross section
of the lipid tails is smaller than the size of the glycerol
“neck,” tails can potentially lower the lipid free energy via
the van der Waals attraction by tilting the tails together (see
Fig. 1). For example, Dipalmitoylphosphatidylethanolamine
phospholipid (DPPE) lipid differs from Dipalmitoylphos-
phatidylcholine phospholipid (DPPC) lipid only by a smaller
head-group; however, there is no tilt at room temperature
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in bilayers composed of DPPE lipids [21], while bilayers
composed of DPPC lipids do have a uniform tilt at room
temperature, even though the temperature of transition to gel
phase for a DPPE bilayer is higher compared to the transition
to gel-phase temperature for a DPPC bilayer.

To the best of our knowledge, no attempt has been made
to verify this explanation with molecular-level calculations,
which could be useful for clarifying the details of the ex-
planation of uniform tilt. The main subject of this paper is
the calculation of the tilt in various single-component lipid
membranes: bilayers, Langmuir monolayers, and monolayers
chemically bonded to the substrate.

Throughout the paper, DPPC is used as a reference lipid,
as it is the most characterized one. As there is no tilt in DPPC
lipids in the liquid-disordered state [20], that is, at temper-
atures above 314 K, we start with a review of our previous
derivation of liquid-gel phase transition [24], also called the
main transition. For the convenience of the reader calculation
of the liquid-gel phase transition is briefly reviewed below.
This is followed by a calculation of the tilt angle for the
lipid bilayer and monolayer, as well as the tilt angle of the
monolayer with lipids chemically bonded to the substrate (see,
e.g., [25,26]). Finally, we discuss calculation approaches that
did not succeed and give arguments in favor of the approach
used below in calculation of the tilt angle.

A. Flexible strings model

We treat the lipid membrane in the framework of the
previously introduced flexible strings model [24,27–31], a
mean-field theory that considers lipid in a self-consistent
entropic repulsion field of other lipids in the same monolayer.
Leaflets of a bilayer membrane are assumed to slide freely
with respect to each other. Lipid in a single monolayer is mod-
eled as an effective flexible string with a given incompressible
area and finite bending rigidity (see Fig. 2), subjected to the
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FIG. 1. Origin of the tilt. The lipid can lower its free energy by getting tails closer to each other, thereby increasing van der Waals attraction.
However, if the area per tails is sufficiently small, due to the glycerol “neck” this is possible only by tilting the tails together.

self-consistent confining parabolic potential. The latter mod-
els a repulsive entropic force induced between the neighboring
lipid molecules in the same monolayer due to the excluded
volume effect (see Fig. 3). Interaction between head-groups
is effectively included in surface tension in the hydrophobic
region. The energy functional of the string consists of ki-
netic energy and bending energy of a given dynamical string
conformation, as well as potential energy in the confining
potential induced by collisions with the neighboring strings:

Et =
∫ L

0

[
ρṘ2

2
+ Kf

2

(
∂2R
∂z2

)2

+ BR2

2

]
dz , (1)

where ρ is a string linear density, R(z) = {Rx(z), Ry(z)} is
a vector in the plane of the membrane, giving deviation of

a string from the straight line as a function of coordinate z
along the axis normal to the membrane plane (see Fig. 2),
and B is a parameter of the confining potential determined
self-consistently. The self-consistent parabolic potential has
been used previously to model a polymer chain in confined
geometry [32]. That approach is conceptually close to the
statistical kink model [33,34], which was used to find the
probability distribution function of chain conformations and
macroscopic membrane characteristics by minimizing the free
energy of the membrane. In contrast to that model, we use the
continuous description of the bending fluctuations of a lipid
chain and include an option of the direct self-assembly of
lipids in a membrane.

Boundary conditions for a model flexible string take into
account the following physical assumptions [the same is as-
sumed also for component Ry(z)]:

R′
x(0) = 0 a chain terminates perpendicularly to the membrane surface

R′′′
x (0) = 0 net force acting on a head is zero

R′′
x (L) = 0 net torque acting at a chain’s free end is zero

R′′′
x (L) = 0 net force acting at a chain free end is zero (2)

The first boundary condition reflects the orientational
asymmetry of the monolayer due to the water-lipid interface,
which is clearly seen from data on the molecules orientational
order parameter [35,36]: lipid tails are more ordered in the
vicinity of head-groups constrained by the hydrophobic ten-
sion. Yet, the chains are not permanently perpendicular to the
membrane surface, and boundary conditions are approximate
and necessary to keep the model analytically solvable. The
other boundary conditions reflect the freely moving lipid
head-group and hydrocarbon tail end: zero force acting on the
head-group and zero momentum and force acting on the lipid
tail end.

Assuming membrane to be locally isotropic in the lateral
plane, we split partition function into a product of two equal
components, Z = ZxZy = Z2

x , and thus the free energy of the
lateral oscillations of the chain equals

Ft = −2kBT log Zx . (3)

The partition function Zx could be written as a path integral
over all chain conformations:

Zx =
∫∫

e− E{Rx (z),Ṙx (z)}
kBT DRxDṘx. (4)

Under the boundary conditions Eq. (2), the potential energy
part of the functional Eq. (1) can be equivalently rewritten in
terms of the linear Hermitian operator Ĥ = B + Kf

∂
∂z4 in the

form

Et (pot) =
∑
α=x,y

EαEα ≡
∫ L

0
[Rα (z)ĤRα (z)] dz. (5)

Then an arbitrary conformation of the chain is expressed as
the deviation of the centers of the string Rx,y(z) from the
straight vertical line (see Fig. 2) and is parameterized by
an infinite set of coefficients Cn of the linear decomposition
of the function Rx,y(z) over the eigenfunctions Rn(z) of the
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FIG. 2. Hydrocarbon tails of the lipid molecule are modeled as a
flexible string. Schematic representation.

operator Ĥ :

Rα=x,y(z) =
∑

n

Cn,αRn(z), ĤRn(z) = EnRn(z). (6)

Substituting Eq. (6) into Eq. (1) and using the standard
orthogonality property of the eigenfunctions of operator Ĥ
enables a simple decomposition of the energy functional into
the series

Et =
∑

n

1

2

{
ρĊ2

n + EnC
2
n

}
. (7)

We thus see that energy of a fluctuating string in parabolic
potential maps on the sum of energies of harmonic oscillators
with rigidities En. Hence, the Boltzmann’s probability of
the state of a string in an arbitrary conformation Rx,y(z),
P({Rx,y(z)}), is proportional to the infinite product of the
Boltzmann probabilities of the states of these oscillators due
to the following obvious relation:

P({Rx,y(z)}) ∝ exp

{
− Et

kBT

}
∼

∏
n

exp

{
− εn

kBT

}

εn ≡ 1

2

{
ρĊ2

n + EnC
2
n

}
. (8)

FIG. 3. Collisions with neighboring lipids are modeled by self-
consistent confining potential. Potential is a parabolic function of the
string deviation amplitude from axis z (arrow sizes mimic local force
strength).

Therefore distribution of the coefficients Cn proves to be
just a Gaussian Boltzmann distribution, which makes the
whole thermodynamic theory of the lipid membrane analyt-
ically tractable. The corresponding eigenvalues En and eigen-
functions Rn(z) of the operator Ĥ = B + Kf

∂4

∂z4 are [27]

n=0 ⇒
{

E0 = B

R0(z) =
√

1
L

n∈N ⇒

⎧⎪⎪⎨
⎪⎪⎩

cn = πn − π
4

En = B + c4
n

Kf

L4

Rn(z) =
√

2
L

[
cos

(
cn

z
L

) + cos(cn )
cosh(cn ) cosh

(
cn

z
L

)]
.

(9)

This gives the following product of the Gaussian integrals
for the partition function:

Zx =
∫ +∞

−∞

∏
n

e− (ρĊn )2

2ρkBT − C2
n En

2kBT
d (ρĊn)dCn

2π h̄
=

∏
n

kBT

h̄

√
ρ

En
.

(10)

To derive the dependence of the monolayer thickness on
the temperature we relate it to the contour length of the lipid
chain LR proportional to the number of CH2 groups in the lipid
tail:

LR =
∫ L

0

√√√√1 +
〈(

∂ 	R
∂z

)2〉
dz. (11)

Expanding this finally yields an equation which might be
solved numerically:

LR = L + 2kBT L2

Kf

∑
n=1

c2
n

∫ 1
0

(
sin(cnx)− cos cn

cosh cn
sinh(cnx)

)2
dx

B + c4
n

Kf

L4

(12)

(for derivation see Appendix A in [31]).
To derive the self-consistency equation for the so far un-

known parameter B, we differentiate both sides of Eq. (3) with
respect to B and readily obtain the self-consistency equation
for this parameter:

∂Ft

∂B
= L

〈
R2

x

〉
, (13)

where brackets denote the thermodynamic (Boltzmann) aver-
age over chain conformations. The right-hand side of Eq. (13)
is directly expressed via the thermodynamic average area per
lipid A in the membrane plane and effective incompressible
area of lipid chain An:

π
〈
R2

x + R2
y

〉 = 2π
〈
R2

x

〉 = (
√

A − √
An)2, (14)

where we utilized the isotropy of the membrane in the plane.
Using this relation and exploiting Eq. (10), one can rewrite
Eq. (13) in the explicit form

∑
n=0

1

B L4

Kf
+ c4

n

= Kf An

πkBT L3

(√
A

An
− 1

)2

. (15)
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This is the self-consistency equation, as it links parameter of
the mean field B with the mean area per lipid A.

We also compute the orientational chain order param-
eter [37] for a given hydrocarbon position, z: Sz(z) =
1
2 (3〈cos2 θ (z)〉 − 1). One can replace the mean cosine with a
tangent via 〈cos2 θ (z)〉 = 1/(1 + 〈tan2 θ (z)〉). Finally, a mean
local tangent can be expressed via expansion over eigenfunc-
tions:

〈tan2 θ (z)〉

= 〈( 	R′(z))2〉= 2
∑
n=0

〈
C2

n

〉
(R′

n(z))2 = 2kBT
∑
n=0

(R′
n(z))2

En
.

(16)

The average over the hydrocarbon group position order pa-
rameter is sometimes used to compare the overall order of the
lipid chain [38]. This parameter is useful for analysis of the
system behavior in the absence of a phase transition.

B. Liquid-gel phase transition in lipid bilayers

The total free energy of the lipid monolayer consists of
entropic repulsion, Eq. (9), hydrophobic tension, and van der
Waals attraction between the lipid tails:

FT

kBT
= Ft (A)

kBT
+ γ A

kBT
− 9π7/2

28

UN2

LA5/2kBT
. (17)

Here γ is the hydrophobic tension and U is the van der Waals
parameter.

The nature of hydrophobic tension consists of a number
of interactions and cannot be reduced to the contact of water
molecules with the hydrophobic chain. These interactions
include attraction of hydrophilic heads to water, repulsion
of hydrophobic tails from water, steric interactions between
lipid heads, the contribution of the hydration force, and an
electrostatic double-layer contribution if the head-groups are
charged [39]. A full account of all these contributions will
make the model intractable, complex, and it will bring a num-
ber of poorly known parameters, which will not contribute
to the clarity of the description of the tilt phase. A common
and very effective approximation is a reduction of all the
aforementioned interactions via casting them together into
single effective surface energy proportional to the area of the
lipid-water interface. However, as we discriminate between
area per lipid at the lipid-water interface and cross-section
area per hydrocarbon tail, only the latter appears to be applica-
ble. Attributing the interface area to the head-group interface
leads to an unphysically large drop of the total driving force at
the point where the area reaches the head-group area, A = Ah,
and results in the absence of tilt in the gel phase of the DPPC
lipids.

Another approach to calculate the system’s free energy
was used in Ref. [40], in which the following lipid energy
contributions were considered: the internal energy related to
a number of trans and gauche orientations in a particular
lipid conformation, dispersive energy related to van der Waals
interaction with neighboring lipids, and steric repulsion taken
in the linear approximation. The total lipid energy was then
used to compute partition function and free energy of the

FIG. 4. Main phase transition in DPPC bilayer.

system. By contrast, in our model steric repulsion is computed
self-consistently via Eq. (15), whereas van der Waals interac-
tion and hydrophobic tension are included directly into the
free energy of the chain, via Eq. (17). Our approach allows us
to discriminate between cross-section area per hydrophobic
chain and water-membrane surface area per lipid—the dis-
tinction which we found important for the origin of the tilt,
which seems to be problematic to explain within the approach
of [40].

After renormalization of Eq. (17) by the energy of the rigid
rod subject to the boundary conditions of Eq. (2) (the result is
Eq. (12) of [24], and reference to the derivation is also found
there), the three contributions of Eq. (17) provide the double-
minima dependence of the free energy on area A, describing
a first-order liquid-gel phase transition. Equilibrium area per
lipid is found by minimizing free energy Eq. (17) with respect
to the area per lipid. The main phase transition is characterized
by two minima (see Fig. 4). The liquid-gel phase transition
is also prominent with regard to the mean order parameter
[see text after Eq. (16)] dependence on the temperature (see
Fig. 5).

C. Tilt in lipid membranes

A nonzero lipid tilt angle α enables the lipid tails approx-
imation, thus making the area per tail A smaller than the area

FIG. 5. DPPC bilayer mean order parameter dependence on the
temperature.
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FIG. 6. Lipid monolayer with a tilt.

per head Ah, and the lipid length L larger than the membrane
thickness H . The relations are straightforward [17]:

H = LR cos α

Ah = A

cos α

(18)

(see Fig. 6).

II. TILT IN LIPID MEMBRANES

A. Tilt in lipid bilayers

In the first approximation, area per lipid in the gel phase
does not depend on the temperature [17], since lipid tails
condense by increasing the tilt angle. Treating cross-section
area per tail as the area featured in the total lipid free energy,
Eq. (17), allows us to compute the tilt angle using Eq. (18).
Calculated tilt angle dependence on the temperature is plotted
in Fig. 7 (solid line with triangles). We use the following
parameter values for calculation: 21 Å2 for incompressible
area A; 47.3 Å2 for lipid head area Ah [17]; 16 Å for total chain
length LR; 4.28 × 10−21 erg cm for effective chain bending
modulus Kf ; 798.4 kcal Å6/mol for van der Waals parameter
U [41]; and 19.5 erg/cm2 for hydrophobic tension γ [39].

As the temperature drops below 314 K, DPPC lipids un-
dergo a transition to the gel phase. At about 313 K the surface

FIG. 7. Solid line with empty triangles shows computed tilt angle
for DPPC bilayer. Filled triangles show measured DPPC bilayer tilt
angle values [17]. Line with empty circles shows calculated cross-
section area of DPPC tails. Area per lipid is defined by the lipid tails
as long as cross-section area per tail exceeds the area per lipid head.
Filled circles show experimental data for area per lipid in DPPC [17].

FIG. 8. Langmuir monolayer setup. Area per lipid is set by the
external pressure applied to barriers.

area of the lipids is effectively locked by the glycerol “necks.”
However, due to the tilt angle increase, the cross-section
area per lipid tail continues to decrease with lowering the
temperature (Fig. 7, dashed line). The difference between the
cross-section area per lipid tail and area per lipid head leads to
a tilt of the lipid tails (Fig. 7, solid line with triangles). Filled
triangles and circles show the experimental data for DPPC tilt
and area per lipid (both taken from [17]).

A fully saturated DPPC bilayer does not have a well-
defined gel phase transition temperature: at 314.3 K, part of
the lipids start to condense into gel phase, with all of the
bilayer becoming a gel phase only below 308.4 K. In between
these temperatures, liquid and gel phases coexist in the mem-
brane, which results in a so-called ripple phase [42–44]. How-
ever, the temperature region (308.4–314.3 K) in Fig. 7 implies
the existence of the gel phase alone. This discrepancy is
due to the limitation of our model, which is a first-order phase
transition model and thus does not account for the transitive
states and allows only one phase in the finite temperature
region.

B. Tilt in Langmuir monolayers

A Langmuir monolayer is lipid monolayer formed in a
water bath. The setup allows for an easy change of the bath
area with the help of the mobile barriers (see Fig. 8), and thus
allows changing the area per lipid at a fixed temperature. A
typical pressure-area isotherm of the lipid monolayer in the
Langmuir setup includes a gaslike phase at low pressures,
with a liquid-disordered phase formed with increasing the
pressure, and finally, a transition to a gel phase at high
pressures [18,19,45].

Treating the external pressure PL as the hydrophobic ten-
sion γ featured in Eq. (17) allows us to reproduce a pressure-
driven liquid-gel phase transition in the Langmuir setup (see
Fig. 9).

In contrast to a lipid bilayer, it is possible to compress
Langmuir monolayer lipids slightly tighter than the lipid
head’s area (marked with the filled square in Fig. 9). A de-
crease of tilt has been reported for Dimyristoylphosphatidyl-
choline phospholipid (DMPC) Langmuir monolayers for pres-
sures above the phase transition point (see Fig. 3 and Table 1
in Ref. [45]). In our approach, we neglect the compressibility
of the lipid heads, compared to the compressibility of lipid
chains. As seen from Fig. 9, this assumption does not hold
in the pressure-induced gel phase of the Langmuir monolayer.
However, as our calculation of area per tails still holds (dashed
line in Fig. 9), a tilted to nontilted transition in Langmuir
monolayers at high pressure, reported, e.g., for DMPC in [45],
can be explained by decreasing the tilt-related free energy
benefit caused by taking the proper account of compressibility
of the lipid heads. For example, Fig. 10 depicts the calculated
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FIG. 9. Liquid-to-gel pressure-driven DPPC phase transition at
297 K (Langmuir setup, see Fig. 8). Equation of state is the same as
for a bilayer, Eq. (17), with external pressure (see Fig. 8) PL taking
part of hydrophobic tension γ . Dashed line shows area per tails in
the gel phase.

free energy of hydrocarbon tails of the DPPC Langmuir
monolayer at 297 K and external pressure of 18 dyn/cm.
The experimental area per lipid under this condition is about
46 Å2 (see Fig. 9). As the optimal area per tails is lower
than that (free energy minimum is at 38 Å2), the Langmuir
monolayer under pressure of 18 dyn/cm is tilted. A vanishing
tilt at higher pressure, which is observed, e.g., for DMPC [45],
could be explained by heads compression at higher pressure,
thus fitting to the area per tails.

Finally, we computed the transition pressure dependence
on temperature for the DPPC Langmuir monolayer (see
Fig. 11). It matches our expectation of higher temperature
requiring higher pressure at the phase transition.

C. Bonded lipid monolayers

Another system we have considered in this work is the self-
assembled monolayers chemically bonded to the substrate,

FIG. 10. Calculated free energy of hydrocarbon tails of DPPC
Langmuir monolayer at 297 K and external pressure of 18 dyn/cm.
Experimental area per lipid under these conditions is about 46 Å2

(shown here with dashed line, also see Fig. 9).

FIG. 11. Pressure-driven liquid-to-gel phase transition pres-
sure dependence on temperature for DPPC. Experimental data
from [18,19].

which models various types of surface coverings (for a review
see, e.g., [26]). An abstract common picture is the following: a
rigid link fixes the head-group coordinate, however, allowing
the hydrocarbon chain inclinations, thus imposing the follow-
ing boundary conditions at the lipid chain head: R(0) = 0
and R′′(0) = 0, instead of R′(0) = 0 and R′′′(0) = 0. These
equations, together with the two conditions at the lipid chain
end: R′′(L) = 0 and R′′′(L) = 0 [see Eq. (2)], are analytically
solvable via the framework described in Sec. I A. Namely, the
boundary conditions of the bonded lipid,

Rx(0) = 0 lipid head is bonded to the substrate

R′′
x (0) = 0 the net torque acting on a chain’s head is zero

R′′
x (L) = 0 the net torque acting at a chain’s free end is zero

R′′′
x (L) = 0 the net force acting at a chain’s free end is zero,

(19)

allows one to rewrite the energy functional Eq. (1) in operator
form, with the same operator Ĥ = B + Kf

∂4

∂z4 . Orthonormal-
ized eigenvalues and eigenfunctions of the operator subject to
the boundary conditions Eq. (19) are

cn = πn + π

4
, n � 1

Rn =
√

2

L

[
sin(cnz) + sin cn

sinh cn
sinh(cnz)

]
(20)

En = B + cn
Kf

L4
,

which is analogous to Eq. (9) for nonbonded lipids.
Eigenfunctions of the bonded lipid, Eq. (20), result in a

different expression for the steric repulsion energy, which is
featured in the free energy Eq. (17). The free energy Eq. (17)
has to be renormalized by that of a rigid rod with the boundary
conditions of a bonded lipid, Eq. (19) (see Appendix A for the
derivation). Our calculation of the bonded DPPC monolayer
yields a monotonously decreasing free energy, with the maxi-
mum cross-section area A (see Fig. 6) of the free lipid (B = 0)
being Amax ≈ 40 Å2 (see Fig. 12).
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FIG. 12. Neither uniform tilt, nor temperature- or pressure-
driven liquid-gel phase transition are found for a lipid monolayer
chemically bonded to a substrate.

If we bind lipids to the substrate, so that the area per
lipid is greater than Amax, it follows then that lipids do not
“feel” each other, since in that region the mean-field steric
repulsion parameter is zero, B = 0. Hence, the tilt in that
region is also zero: lipids simply do not interact sterically
and the shrinking distance between them does not change the
free energy; therefore, a tilt would not yield the free energy
decrease.

If, on the other hand, we bind lipids to the substrate so that
area per lipid is smaller than Amax: Abind < Amax, it means that
the tilt is only possible if there would be a smaller free energy
at some smaller area. This condition proves to be unfulfilled,
as calculated free energy is found to be a monotonous function
of the area per lipid tail. Hence we conclude, that for bonded
lipids a phase with uniform tilt is less favorable compared to
a nontilted phase.

III. DISCUSSION

We examined a conjecture that the difference between an
area per lipid’s tail and area per lipid’s head is the smoking
gun of lipid tilt in the lipid membranes. We demonstrated,
using a simple microscopic model, that the above conjecture
comes into play when hydrophobic tension is acting in the
cross section of the lipid chains rather than being concentrated
merely at the lipid heads. Besides that, we have shown that
tilt emerges at both the temperature-driven liquid-gel phase
transition in lipid bilayers (Fig. 7) and the pressure-driven
liquid-gel phase transition in Langmuir monolayers. Finally,
we found that our theoretical model does not predict any uni-
form tilt in lipid monolayers chemically bonded to a substrate.

Importantly, we found that the transition between tilted and
nontilted states is not a direct consequence of the liquid-gel
phase transition. This fact is eminent from our calculation,
Fig. 7, where the transition to the gel phase precedes by
1 K a transition into a tilted state. Our calculation of area
per tail via Eq. (17) implies that hydrophobic energy, γ A,
features area per tail rather than area per head. We explain
it by noting that the physical origin of the hydrophobic energy
is the contact of water molecules with the chains, and thus it is
the cross-section area per tail that hydrophobic energy should
depend on rather than the area per lipid head.

Attributing the interface area to the head-group interface
leads to the unphysically large generalized force drop at

the point A = Ah, where the A < Ah energy term γ A is re-
placed by a constant γ Ah that does not contribute to the first
derivative, thus leading to a drop of the generalized force
∂F/∂A by the value γ . The latter value is comparable to all
other contributions, which leads to a very sharp free energy
minimum at Ah and leads to a zero tilt for DPPC at room
temperature, contrary to experiment. Another approach might
be to change the boundary conditions, e.g., assuming that the
lipid head position at the membrane surface R(0) and torque
applied to the lipid head R′′(0) are fixed in the gel phase.
This approach leads to a drastic break in the slope of the free
energy of the membrane as a function of area, which we think
is unphysical.

Though we considered only homogeneous bulk phases,
accounting for the dynamics of the phase transition and col-
lective phenomena can indicate the emergence of multiple
domains with different tilt directions and amplitudes, as it is
described in the work of Ref. [46]. The full account of the
phase transition details as well as a local-curvature-induced
tilt phase [11,12] requires separate investigation and lies out-
side the scope of this paper.

Upon comparing scales of FT /kBT values of bonded lipids
(Fig. 12) with nonbonded lipids (Fig. 4) we see a difference
of absolute values of free energies by an order of magnitude.
This difference is caused by the different renormalization
of bonded and nonbonded lipids. For this reason a direct
comparison of absolute values of calculated free energies
between the bonded and nonbonded is not meaningful. In-
stead, we compare a rate of decrease of computed values
of total free energies with area and conclude that bonding
leads to the higher decrease rate of the steric repulsion with
lipid cross-section area, as two other contributions to the total
free energy, namely, hydrophobic energy and van der Waals
interaction, are the same for both bonded and nonbonded
lipids.

This higher decrease rate of the steric repulsion energy
with area in the case of bonded lipids can be understood as the
effect that lipid head bonding exerts on the steric repulsion:
the bond prevents lateral movement of the lipid molecules
and thus causes reduction of the configurational volume avail-
able to each lipid, yielding, in turn, a faster decrease of the
excluded volume effect with an increase of area per lipid
compared to the nonbonded case. As a result, the change of
steric repulsion dominates the total free energy change of the
bonded lipids with area per lipid, making it monotonous, and
hence makes either a liquid-gel phase transition or uniform tilt
unfavorable, as explained in Sec. II C.

In summary, we have demonstrated that as the temperature
lowers, entropic repulsion between lipids diminishes, and thus
at some point van der Waals attraction between lipid tails
becomes a viable source of decreasing lipid free energy. If
the lipid heads are large enough to prevent lipid tails from
approaching each other, then lowering of the lipid free energy
occurs via a tilt of the lipid tails, which makes tails closer
to each other relative to the state in which their axes are
parallel to the normal to the membrane’s surface. In the case of
Langmuir monolayers, one can compress lipid-head regions
to some extent by the external pressure to reach the point
when the tilted state is no longer energetically advantageous.
Thus, in the Langmuir monolayers tilt disappears at higher
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pressures. Chemically bonded lipid monolayers are shown to
have no uniform tilt. Modeling the lipid membrane energy
functional with a mean-field self-consistent entropic repulsive
potential, together with hydrophobic tension and van der
Waals attraction between lipid tails, reproduces the liquid-gel
phase temperature-driven transition in the bilayer as well as
the pressure-driven transition in Langmuir monolayers, with
a correct variation of area per lipid, tilt angle, and membrane
thickness.

ACKNOWLEDGMENTS

The work on bonded lipid monolayers was supported by
the Russian Science Foundation (Project No. 17-79-20440).
The work on lipid bilayers was in part supported by the
Ministry of Science and Higher Education of the Russian
Federation in the framework of the Increased Competitiveness
Program of NUST MISIS (Grant No. K2-2017-085).

APPENDIX: RENORMALIZATION OF BONDED CHAIN’S
STERIC REPULSION ENERGY

Arbitrary bonded chain conformation and its energy might
be expanded in eigenfunctions and eigenvalues [see Eq. (20)]:

R =
∑
n=1

RnCn, Et =
∑
n=1

EnCn, (A1)

where Cn are time-dependant coefficients.
The free energy of bonded flexible string oscillations Ft

diverges:

Zx =
∏
n=1

kBT

h̄ωn
⇒ Ft = 2kBT

∑
n=1

log

(
h̄ωn

kBT

)
= ∞, (A2)

where ωn = √
En/ρ, ρ is a linear density of the string. One

might renormalize Ft by the free energy of the rigid bonded
string (Kf → ∞) subject to the same boundary conditions of
Eq. (19). For this, consider a nontrivial Jacobian involved in
partition function calculation:

Zx = 1

C

∏
n=1

kBT

h̄ωn
⇒ Ft = 2kBT

∑
n=1

log

(
h̄ωn

kBT

)
+ 2kBT logC.

(A3)

FIG. 13. The only displacement type of the bonded rigid rod.

The free energy equation (A3) can then be rewritten in the
following form:

Ft = 2kBT logC + kBT
∑
n=1

log
h̄2

(kBT )2ρ

Kf

L4
c4

n

+ kBT
∑
n=1

log

[
1 + BL4

c4
nKf

]
. (A4)

Considering rigid rod, Kf → ∞, we can obtain its free energy
as a limiting case of Eq. (A4):

F rigid
t = 2kBT logC + kBT

∑
n=1

log
h̄2

(kBT )2ρ

Kf

L4
c4

n. (A5)

On the other hand, a bonded rigid rod has a single oscillation
mode (see Fig. 13) and its partition function is known exactly:

Zx =
∫ π

2

− π
2

e− ∫ L cos α

0
B

2kBT z2 tan2 α dz dα =
∫ π

2

− π
2

e− L3

3
B

2kBT cos α sin2 α dα.

(A6)
Hence

F rigid
t = −2kBT log

∫ π
2

− π
2

e− L3

3
B

2kBT cos α sin2 α dα. (A7)

Using Eqs. (A5) and (A8), one arrives at the free energy
renormalized by subtraction from Eq. (A4) of the formally
divergent expression Eq. (A5) and then compensating that
subtraction by an equivalent (convergent) expression of the
free energy of the bonded rigid rod in the form of Eq. (A8):

F̃t

kBT
=

∑
n=1

log

[
1 + BL4

c4
nKf

]

− 2 log

[∫ π
2

− π
2

e− L3

3
B

2kBT cos α sin2 α dα

]
. (A8)
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