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Social dilemmas are situations wherein individuals choose between selfish interest and common good. One
example of this is the vaccination dilemma, in which an individual who vaccinates at a cost protects not only
himself but also others by helping maintain a common good called herd immunity. There is, however, a strong
incentive to forgo vaccination, thus avoiding the associated cost, all the while enjoying the protection of herd
immunity. To analyze behavioral incentives in a vaccination-dilemma setting in which an optional treatment is
available to infected individuals, we combined epidemiological and game-theoretic methodologies by coupling
a disease-spreading model with treatment and an evolutionary decision-making model. Extensive numerical
simulations show that vaccine characteristics are more important in controlling the treatment adoption than
the cost of treatment itself. The main effect of the latter is that expensive treatment incentivizes vaccination,
which somewhat surprisingly comes at a little cost to society. More surprising is that the margin for a true
synergy between vaccine and treatment in reducing the final epidemic size is very small. We furthermore find that
society-centered decision making helps protect herd immunity relative to individual-centered decision making,
but the latter may be better in establishing a novel vaccine. These results point to useful policy recommendations
as well as to intriguing future research directions.
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I. INTRODUCTION

Vaccines are an effective means of combating infectious
diseases that is largely responsible for worldwide successes
against smallpox, polio, and tetanus. Even when they confer
only transient immunity and/or their efficacy is far from
perfect, as is in the case of influenza, vaccines produce a
positive economic effect by keeping the society healthier [1].
Wide vaccination coverage, in particular, gives rise to herd
immunity whereby the fraction of vaccinated individuals is
high enough to offer a degree of protection even to those who
have not been vaccinated [2]. Vaccination, however, comes
at a cost that can be manifest, e.g., paying a doctor’s bill for
getting vaccinated, and/or latent, e.g., overcoming the fear
of a vaccine’s side effects [3] even when scientific evidence
shows that such fears are unfounded [4–6]. To avoid this cost,
some individuals resort to free riding in hope that others will
vaccinate and protect them from the disease, yet such behav-
ior ultimately undermines herd immunity and increases the
chances of an epidemic outbreak. Once people get infected,
they resort to ex post treatments such as the widespread use of
Oseltamivir (Tamiflu) against influenza, which in itself is also
costly in monetary terms and accompanied with potentially
serious side effects [7]. Seeing herd immunity as a public good
[8,9] opens the door to game theoretic analyses of behaviors

*Corresponding author: k.ariful@yahoo.com, kmariful-
math@gmail.com

in the face of infection risks [10–23], which is precisely our
objective too, but with a twist that agents may not only get
vaccinated at the onset of a seasonal epidemic, but also get
treated if infected.

To this end, we constructed an SITR/V compartmental
epidemic model to which, in addition to the usual susceptible
(S), infectious (I), and removed (R) compartments [24,25],
we added a compartment for agents under treatment (T ) and
agents who chose to vaccinate at the onset of the epidemic
(V ). Mathematical modeling of antiviral treatments heretofore
has largely focused on the effectiveness of drugs in containing
epidemics and the implications of drug-resistant viral strains
for disease spreading [26–34]. Even models that incorporate
antiviral treatments in conjunction with vaccination impose
vaccination coverage exogenously [35–40], falling short of
taking into consideration individual-level decision making.
Coupling our SITR/V epidemics model with game-theoretic
concepts allowed us to comprehensively analyze incentives
that drive individual human behaviors when facing dilemma
situations [41]. Specifically, agents in the model make ex ante
decisions on whether to vaccinate or not at the onset of the
epidemic. These decisions are based on the total cost incurred
during the previous epidemic season, which generally is some
combination of vaccination, infection, and treatment costs.
Agents who fared well against a standard for comparison,
which comprises either individual- or society-based risk as-
sessment (abbreviated IB-RA or SB-RA, respectively), will
tend to keep their current strategy, whereas agents who fared
poorly will tend to switch [9,42]. Additionally, agents who
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FIG. 1. Schematic model diagram: (a) In our SITR/V epidemic model, susceptible (S) individuals get infected at rate β, which applies
even to a fraction of vaccinated individuals for whom vaccination failed to induce immunity. This fraction, as well as the fraction of vaccinated
and immune individuals, is determined by vaccine efficacy e. Disease carriers are considered infectious (I ), in which case they may receive
an antiviral treatment with probability rate α, and then recover at rate δ or recover without treatment at rate γ < δ. Once an individual is
recovered, they are removed (R) from further consideration on the local timescale at which the epidemic progresses. (b) Aside from the
disease progression on the local timescale, the evolutionary decision-making process takes place on a global time scale, tg. Here an individual
decides whether to vaccinate or not at the onset of an epidemic season based on how they fared in the previous epidemic season relative to
others. Those agents who fared well are unlikely to change their strategy with respect to vaccination, and vice versa for agents who fared
poorly.

become infectious during the current epidemic season may
receive ex post treatment, but we assume that the decision is in
the hands of a medical professional (i.e., healthcare establish-
ment) rather than the agent themselves. The described setup
[Fig. 1(a)] naturally leads to two separate timescales; ex ante
decisions on vaccination (i.e., strategy updating) take place on
a “global” or “evolutionary” timescale, whereas an epidemic
season and ex post decisions on treatment unwind on a “local”
timescale [Fig. 1(b)].

In what follows, we first describe our modeling approach in
great detail. This is followed by an extensive model analysis
using numerical simulations, including the most direct impli-
cations for maximizing vaccination coverage and minimizing
epidemic size, while keeping the fraction of treated individ-
uals and the average social cost at bay. We end by outlining
more indirect implications and future research directions and
with general concluding remarks.

II. MODEL FORMULATION

A. Epidemic model

Our SITR/V model (Fig. 1) most naturally fits seasonal,
influenza-like diseases for which vaccination confers only
temporary immunity. A season then unwinds on a local
timescale, while the global timescale is interseasonal. With
minor adjustments, however, it is possible to think of the local
timescale as a timescale of a generation of agents who make
vaccination decisions for a lifetime. The global timescale
would then be intergenerational. From the perspective of
mathematical epidemiology, the SITR/V model belongs to a
class of compartmental epidemic models comprising, in this
case, six compartments: S(t ) denotes susceptible nonvacci-
nated agents, IS(t ) denotes infectious nontreated agents who
originally were susceptible, V (t ) denotes vaccinated agents
irrespective of whether they subsequently acquired immu-
nity of not, IV(t ) denotes infectious nontreated agents who

originally were vaccinated, T (t ) denotes treated agents, and
finally R(t ) denotes removed agents. The dynamics of these
compartments [Fig. 1(a)] is given by

Ṡ = −βS(t )[IS(t ) + IV(t )], (1)

V̇ = −β[V (t ) − eV (0)][IS(t ) + IV(t )], (2)

İS = βS(t )[IS(t ) + IV(t )] − αIS(t ) − γ IS(t ), (3)

İV = β[V (t ) − eV (0)][IS(t ) + IV(t )] − αIV(t ) − γ IV(t ),
(4)

Ṫ = αIS(t ) + αIV(t ) − δT (t ), (5)

Ṙ = γ IS(t ) + γ IV(t ) + δT (t ). (6)

Here β > 0 is infection rate, α > 0 is antiviral treatment
probability rate, γ > 0 is recovery rate, δ > γ is accelerated
recovery rate due to treatment, and 0 < e � 1 is vaccine
efficacy. We worked with a normalized population such that
S(t ) + V (t ) + IS(t ) + IV(t ) + T (t ) + R(t ) = 1, also imply-
ing that each of the six state variables refers to a population
fraction in a particular state. The initial condition is S(0) =
1 − x and V (0) = x, where x is the fraction of vaccinators,
which we set to 50% at the onset of the very first epidemic
season but later determine using evolutionary considerations
as described below.

B. Reproduction numbers

In a classic SIR model, the basic reproduction number R0 is
the average number of secondary infections caused by a single
infectious agent in a completely susceptible population. It can
be shown that R0 = β/γ , and that if R0 > 1 the infection
spreads through the population, whereas in the opposite case,
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the infection dies out in the long run. In our SITR/V model,
however, instead of the whole population, only the fraction
S(0) + (1 − e)V (0) is susceptible due to vaccination. Further-
more, the clearance rate of infectious individuals is not just γ ,
but γ + α due to the admission to treatment. It is therefore
more appropriate to look at the control reproduction number
Rc [43] defined as

Rc = β

γ + α
[S(0) + (1 − e)V (0)]. (7)

For this control reproduction number, it still holds that the
infection spreads through the population if Rc > 1 but dies out
otherwise.

C. Evolutionary game payoff structure

An agent’s fate during the epidemic season determines
their costs and ultimately the total payoff. Only forgoing vac-
cination and staying healthy is costless. Getting infected costs
Ci, getting vaccinated costs Cv < Ci, and similarly getting
treated costs Ct < Ci. We simplified considerations by setting
Ci = 1 and then working with a relative cost of vaccination
CV = Cv/Ci and a relative cost of treatment CT = Ct/Ci.

To calculate the total payoff of an agent at the end of
an epidemic season, i.e., when an equilibrium is reached
on a local timescale, we reclassified agents into six classes.
These are healthy vaccinated H◦

V, healthy nonvaccinated Hn
V,

infected vaccinated and treated I◦◦
VT, infected vaccinated and

nontreated I◦n
VT, infected nonvaccinated and treated In◦

VT, and
infected nonvaccinated and nontreated Inn

VT. Each class can be
linked to the results of the SITR/V model. To see how, we first
note that when the SITR/V model reaches the equilibrium,
i.e., t → ∞, we have S(∞) + V (∞) + R(∞) = 1, while
IS(∞) = IV(∞) = T (∞) = 0. By definition we further
have that H◦

V = V (∞) and Hn
V = S(∞). Each of the

remaining four classes, I◦n
VT, Inn

VT, I◦◦
VT, and In◦

VT, can be
thought of as a contribution to R(∞). We can separate these
contributions using Eqs. (5) and (6), from which it follows
that R(∞) = γ ∫ IV(t ) dt + γ ∫ IS(t ) dt + δ ∫ T (t ) dt and
δ ∫ T (t ) dt = α ∫ IV(t ) dt + α ∫ IS(t ) dt + T (∞), where
the integration is performed from t = 0 to t → ∞.
Because at the equilibrium the epidemic season is
finished and thus T (∞) = 0, we finally obtain R(∞) =
γ ∫ IV(t ) dt + γ ∫ IS(t ) dt + α ∫ IV(t ) dt + α ∫ IS(t ) dt
showing that I◦n

VT = γ ∫ IV(t ) dt , Inn
VT = γ ∫ IS(t ) dt ,

I◦◦
VT = α ∫ IV(t ) dt , and In◦

VT = α ∫ IS(t ) dt .
Based on the payoff structure specification so far, an

agent’s total payoff is determined by their class membership
as summarized in Table I. In addition, it is possible to calculate

TABLE I. Agent classes and the corresponding costs depending
on how agents of each class fared during an epidemic season.

Status Healthy Infected Infected and treated

Vaccinated H◦
V I◦n

VT I◦◦
VT

−CV −CV − 1 −(CV + CT) − 1
Nonvaccinated Hn

V Inn
VT In◦

VT

0 −1 −CT − 1

the average social payoff, 〈π〉, the expected payoff of a
vaccinator, 〈πC〉, and the expected payoff of a nonvaccinator,
〈πD〉, as follows:

〈π〉 = −CVH◦
V − (CV + CT + 1)I◦◦

VT − (CV + 1)I◦n
VT

− (CT + 1)In◦
VT − Inn

VT, (8)

〈πC〉 = 1

x

[−CVH◦
V − (CV + CT + 1)I◦◦

VT − (CV + 1)I◦n
VT

]
,

(9)

〈πD〉 = 1

1 − x

[−(CT + 1)In◦
VT − Inn

VT

]
. (10)

D. Strategy updating

At the onset of an epidemic season, after the previous
epidemic cycle on the local timescale has unwound and
reached an equilibrium, agents decide whether to vaccinate
or not, thus updating their strategy. This update is based on
imitating what works better than the agent’s own strategy. The
most widespread way of choosing whom to imitate is known
as individual-based risk assessment (hereafter IB-RA), which
consists of comparing one’s own payoff, πi, arising from
strategy si, to that of a randomly selected neighbor, πj, whose
strategy is sj, and then adopting this neighbor’s strategy with
transition probability P(si ← sj ). Transition probabilities are
generally functions of the payoff difference, πj − πi (Table II),
where among several available functional forms [41], we
implemented the Fermi pairwise function, itself a member of
a family of functions dubbed the smoothed best response [44].
A plausible alternative to individual-based risk assessment
is society-based risk assessment (hereafter SB-RA), wherein
agents compare their performance not to that of their ran-
domly selected neighbor, πj, but to the average performance
of the whole class to which the neighbor belongs, 〈πj〉 [12].
Herein there are two such classes, the class of vaccinators
C (for cooperation) and the class of nonvaccinators D (for
defection).

E. Evolutionary dynamics

The fraction of vaccinators, x, at the onset of an epidemic
season, such that S(0) = 1 − x and V (0) = x, is a dynami-
cal variable on a global timescale. Although heretofore we
often referred to agents and their actions, we expressed the
evolutionary dynamics of variable x in terms of mean-field
equations. This implies that the underlying spatial structure
or agent connectivity is homogeneous enough to have little
impact on the results [45]. Put alternatively, the difference
between an agent’s neighborhood and the whole population is
insubstantial. When such an approximation holds, the mean-
field approach often yields deep insights into the dynamics
of complex systems, e.g., the existence of bifurcation points,
bistability, and hysteresis [46–48]. An interested reader may
find a direct comparison—in the context of vaccination—
between multiagent simulations and mean-field approxima-
tions in Ref. [23].

The fraction of vaccinators, x = H◦
V(x) + I◦◦

VT(x) + I◦n
VT(x),

increases whenever there is a net tendency among agents
to imitate one of the vaccinator classes H◦

V, I◦n
VT, and I◦◦

VT.
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TABLE II. List of all possible payoff differences for inserting into the Fermi rule in the case of individual-based risk assessment and
society-based risk assessment.

Individual-based risk assessment (IB-RA) Society-based risk assessment (SB-RA)

Pairwise Fermi P(si ← sj ) = 1

1+exp[− πj−πi
κ ]

P(si ← sj ) = 1

1+exp[− 〈πj〉−πi
κ ]

si ← s j π j − πi si ← s j 〈π j〉 − πi

Payoff difference H◦
V ← H n

V 0 − (−CV) H ◦
V ← D 〈πD〉 − (−CV)

H ◦
V ← In◦

VT (−CT − 1) − (−CV) I◦◦
VT ← D 〈πD〉 − [−(CV + CT + 1)]

H ◦
V ← Inn

VT −1 − (−CV) I◦n
VT ← D 〈πD〉 − (−CV − 1)

H n
V ← H ◦

V −CV − 0 Hn
V ← C 〈πC〉 − 0

H n
V ← I◦◦

VT −(CV + CT + 1) − 0 In◦
VT ← C 〈πC〉 − (−CT − 1)

H n
V ← I◦n

VT (−CV − 1) − 0 Inn
VT ← C 〈πC〉 − (−1)

In◦
VT ← H ◦

V −CV − (−CT − 1)
Inn
VT ← H ◦

V −CV − (−1)
I◦◦
VT ← H n

V 0 − (−CV − CT − 1)
I◦n
VT ← H n

V 0 − (−CV − 1)
I◦◦
VT ← In◦

VT (−CT − 1) − (−CV − CT − 1)
I◦◦
VT ← Inn

VT −1 − (−CV − CT − 1)
I◦n
VT ← In◦

VT (−CT − 1) − (−CV − 1)
I◦n
VT ← Inn

VT −1 − (−CV − 1)
In◦
VT ← I◦◦

VT (−CV − CT − 1) − (−CT − 1)
Inn
VT ← I◦◦

VT (−CV − CT − 1) − (−1)
In◦
VT ← I◦n

VT (−CV − 1) − (−CT − 1)
Inn
VT ← I◦n

VT (−CV − 1) − (−1)

Conversely, variable x decreases whenever agents predomi-
nantly imitate one of the nonvaccinator classes: Hn

V, In◦
VT, and

Inn
VT. In the case of individual-based risk assessment (IB-RA),

the total number of possibilities is 18 because a member of
each of the three vaccinator classes can imitate any of the three
nonvaccinator classes and vice versa. Accordingly, we have

dx

dt
= Hn

V(x)H◦
V(x)

[
P
(
Hn

V ← H◦
V

) − P
(
H◦

V ← Hn
V

)]

+ In◦
VT(x)H◦

V(x)
[
P
(
In◦
VT ← H◦

V

) − P
(
H◦

V ← In◦
VT

)]

+ Inn
VT(x)H◦

V(x)
[
P
(
Inn
VT ← H◦

V

) − P
(
H◦

V ← Inn
VT

)]

+ Hn
V(x)I◦◦

VT(x)
[
P
(
Hn

V ← I◦◦
VT

) − P
(
I◦◦
VT ← Hn

V

)]

+ Hn
V(x)I◦n

VT(x)
[
P
(
Hn

V ← I◦n
VT

) − P
(
Hn

V ← I◦n
VT

)]

+ In◦
VT(x)I◦◦

VT(x)
[
P
(
In◦
VT ← I◦◦

VT

) − P
(
I◦◦
VT ← In◦

VT

)]

+ Inn
VT(x)I◦◦

VT(x)
[
P
(
Inn
VT ← I◦◦

VT

) − P
(
I◦◦
VT ← Inn

VT

)]

+ In◦
VT(x)I◦n

VT(x)
[
P
(
In◦
VT ← I◦n

VT

) − P
(
I◦n
VT ← In◦

VT

)]

+Inn
VT(x)I◦n

VT(x)
[
P
(
Inn
VT ← I◦n

VT

) − P
(
I◦n
VT ← Inn

VT

)]
,

(11)

where the notation CLASS(x) explicitly specifies that the
fraction of agents belonging to a certain class depends on x,
whereas products of the form CLASS1(x) · CLASS2(x) are
probabilities that any two individual members of the two
classes get in contact for imitation to be possible.

In the case of society-based risk assessment (SB-RA), any
vaccinator (resp., nonvaccinator) compares their performance

to the average performance of nonvaccinators (resp., vaccina-
tors) as a whole. This leaves us with only six possibilities as
follows:

dx

dt
= −H◦

V(x)D(x)P
(
H◦

V ← D
) − I◦◦

VT(x)D(x)P
(
I◦◦
VT ← D

)

− I◦n
VT(x)D(x)P

(
I◦n
VT ← D

) + Hn
V(x)C(x)P

(
Hn

V ← C
)

+ In◦
VT(x)C(x)P

(
In◦
VT ← C

) + Inn
VT(x)C(x)P

(
Inn
VT ← C

)
,

(12)

where C(x) = x is the fraction of all vaccinators and D(x) =
1 − x is the fraction of all nonvaccinators. The notation C and
D stand for cooperators and defectors, respectively.

F. The utility of treatment

Initially, we introduced the antiviral treatment probability
rate, α, and the accelerated recovery rate due to treatment, δ,
as independent parameters. If, however, δ were much larger
than the natural recovery rate, γ , the preference for treatment
should also be much higher than if δ were only marginally
higher than γ . Put more explicitly, δ−1 is the average number
of days to recovery under treatment as opposed to γ −1 which
is the average number of days to unaided (i.e., natural) recov-
ery. If γ −1 − δ−1 	 0, then the utility of treatment is very
high, and treatment should be a highly sought-after option.
Parameter α should therefore be a function of difference
γ −1 − δ−1. The exact form of this functional dependence is
unknown, but as with payoff differences, decision making
under a utility difference is often captured using the smoothed
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best response. In our case, this is the Fermi pairwise rule:

α = ω

1 + exp
[− γ −1−δ−1

κ

] , (13)

where ω is the maximum antiviral treatment probability rate
achieved when treatment dramatically speeds up recovery. Of
note is that in the limit κ → 0, Eq. (13) turns into a threshold
rule, with α = ω if γ −1 > δ−1 and α = 0 otherwise. Values
κ > 0 smooth the threshold rule into a sigmoidal function
recognizable as the smoothed best response, which allows
selecting an inferior (in terms of payoff or utility) option with
nonzero probability. Parameter κ is therefore often called the
strength of irrational selection. We used value κ = 0.1 in all
simulations.

III. RESULTS

Here we numerically explore the SITR/V model, first in
isolation and then coupled to evolutionary dynamics equa-
tions. Quantities of interest include vaccination coverage,
treatment adoption in terms of the fraction of treated agents
during an epidemic season, final epidemic size (abbreviated
FES), and average social payoff as a measure of policy burden
to society. Aside from already mentioned κ = 0.1, parameters
have the following default values unless specified otherwise:
β = 2.5/3, α = 0.1, γ = 1/3 (R0 = β/γ = 2.5), δ = 0.5,
and where applicable ω = 0.1.

A. SITR/V dynamics

Setting α = δ = 0 and assuming x = e = 0.5 collapses
the SITR/V model into a traditional SIR/V model whose
outputs serve as a benchmark [Fig. 2(a)]. Compared to this
benchmark, reintroducing the option of treatment with α =
δ = 0.1 considerably reduces the peak fraction of infectious
agents while slightly lengthening the duration of the epidemic
[Fig. 2(a)]. Increasing the recovery rate under treatment from
δ = 0.1 to δ = 0.6 has no bearing on the dynamics of infec-
tious agents [Fig. 2(a)], but it does decrease the peak fraction
of treated agents (not shown), which is important in practice
not to overwhelm healthcare institutions. Of note is that con-
sidering situations δ < γ , despite the greatly diminished util-
ity of a treatment that prolongs recovery, makes sense in that
the peak fraction of infectious agents still gets reduced simply
by virtue of diverting some of them to treatment. Doubling the
treatment probability rate to α = 0.2 suppresses the peak frac-
tion of infectious agents approximately 4.5-fold [Fig. 2(a)],
suggesting that eventually there may be no epidemic at
all. This indeed transpires at α = 0.3 when Rc ≈ 0.99 < 1
(not shown). When the utility of treatment as prescribed by
Eq. (13) is added to the mix, we see [Fig. 2(b)] that sufficiently
prolonged recovery (i.e., δ � γ ) leads to ignoring the treat-
ment option (i.e., α = 0), unaffected recovery (i.e., δ ≈ γ )
leads to treatment adoption at half the maximum probability
rate (i.e., α = ω/2), and sufficiently accelerated recovery (i.e.,
δ 	 γ ) leads to the maximum treatment adoption (i.e., α =
ω). Expectedly, the larger the treatment probability rate is, the
lower the control reproduction number and ultimately the final
epidemic size [Fig. 2(c)]. This holds for any given vaccination
coverage, but the full synergistic effect of vaccination and

treatment occurs when the control reproduction number is
pushed below unity, in which case the epidemic is avoided
altogether [Fig. 2(c)]. Akin to a larger treatment probability
rate, an increasing vaccine efficacy also lowers the control
reproduction number, and thus the final epidemic size, with
an obvious difference that these positive effects are highly
dependent on the vaccination coverage [Fig. 2(d)]. Finally,
the need for treatment diminishes with an increasing vacci-
nation coverage and may even be completely eliminated if the
population attains herd immunity [Fig. 2(e)]. The latter, how-
ever, is possible only if vaccine efficacy is sufficiently high
[Fig. 2(e)].

B. Interplay between vaccination and treatment costs

The primary benefit of coupling epidemiological and game
theoretic methodologies is the ability to analyze incentives
for various human behaviors in a dilemma situation. Here
the dilemma is whether to vaccinate or not, and how the
availability of the treatment option sways the popular opin-
ion. Interestingly, we find that the cost of treatment has
a relatively small effect on vaccination coverage, which is
primarily controlled by the cost of vaccine itself, as well as the
vaccine efficacy (Fig. 3). When efficacy is low, the population
responds in a binary manner whereby everyone vaccinates
if vaccine is cheap, and no one vaccinates if vaccine is
expensive, and this irrespective of the treatment cost (Fig. 3).
The population-level response to vaccination cost becomes
much more gradual as efficacy increases, with the influence of
the cost of treatment being most pronounced at intermediate
vaccine prices and efficacies (Fig. 3). This influence is such
that a more expensive treatment creates an incentive to act
cautiously and vaccinate more in place of testing one’s own
luck by abstaining, and then resorting to treatment if struck
by the disease (Fig. 3).

Looking beyond vaccination coverage reveals that treat-
ment is secondary to vaccination in the sense that the vacci-
nation cost, rather than the treatment cost, largely controls the
adoption of treatment (Fig. 4). Simply put, the most expensive
vaccines are avoided irrespective of efficacy, and eventually
the fraction of infected agents who receive treatment dur-
ing the epidemic season is maximized (Fig. 4). For more
reasonable cost-efficacy combinations, however, cheap and
expensive treatments alike start giving way to vaccination
(Fig. 4). A direct consequence of all this is that the primary
determinants of the final epidemic size (FES) are vaccine
characteristics. Specifically, the avoidance of expensive vac-
cines leads to the maximum FES that is kept in check only
by the treatment adoption (Fig. 5). The situation improves
as vaccines become cheaper, with efficacy being the primary
determinant of how cheap is cheap enough (Fig. 5). The
dependence of FES on the cost of treatment is mostly weak.
The burden to society in terms of the average social payoff
is even less dependent on the treatment cost, with this depen-
dence being more pronounced when vaccines are expensive
and almost nonexistent when vaccines are cheap (Fig. 6).
An interesting consequence is that when expensive treatment
incentivizes vaccination, it does so at a relatively little cost to
society.
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FIG. 2. SITR/V dynamics: (a) and (b) Progression of an epidemic season without and with Eq. (13) implemented, respectively. (c) and
(d) Control reproduction number and final epidemic size as functions of the vaccination coverage for various treatment probability rates and
vaccine efficacies, respectively. (e) Treatment adoption as a function of vaccination coverage for various vaccine efficacies. Parameter values
are β = 2.5/3 and γ = 1/3, with other values specified in the plots. See the accompanying description in the text for details.

C. Individual- versus society-centered decision making

Judging from phase diagrams in Figs. 3–6, a general im-
pression is that the society-based risk assessment (SB-RA) is
advantageous over the individual-based risk assessment (IB-
RA), but the truth is more complicated. Looking closely into
this issue, we find that when vaccines are cheap, the SB-RA
indeed supports a wider vaccination coverage, and thus also a
smaller final epidemic size (Fig. 7). However, as vaccines get
more expensive, and especially if their efficacy is high as well,
it is the IB-RA that supports a wider vaccination coverage and

thus also a smaller final epidemic size (Fig. 7). The reason for
this is that the SB-RA subdues contrarian decisions relative
to the IB-RA. For example, in a population dominated by
vaccinators, implying cheaper vaccines, a lone nonvaccinator
is less likely to get infected and may fare above average
by refusing to vaccinate, thus creating a strong incentive
for imitating this behavior under the IB-RA and ultimately
causing a lower vaccination coverage than under the SB-RA.
In a population dominated by nonvaccinators, it is a lone
vaccinator who is likely to fare above average, thus reversing
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FIG. 3. Vaccination coverage is primarily controlled by vaccine cost and efficacy: The vaccination coverage as a function of relative
vaccination cost CV and relative treatment cost CT. The most expensive vaccines are rejected even if very efficacious. Interestingly, cheaper
vaccines may achieve less coverage with an increasing efficacy, but this is because they better suppress outbreaks. Also interesting is that
a costlier treatment increases the vaccination coverage when vaccine is rightly priced and sufficiently efficacious. The individual-based risk
assessment (IB-RA; top row) generally leads to a somewhat lower vaccination coverage compared to the society-based risk assessment (SB-
RA; bottom row). Parameters used are β = 2.5/3, α = 0.1, γ = 1/3, and δ = 0.5, while efficacy improves from e = 0.1 (leftmost column) to
e = 0.8 (rightmost column).

FIG. 4. Treatment is secondary to vaccination: The treatment adoption as a function of relative vaccination cost CV and relative treatment
cost CT. In the limit of expensive vaccine, 30% of infected individuals eventually get treated irrespective of the cost of treatment. As vaccine
becomes affordable, however, which implies the right combination of cost and efficacy, treatment is abandoned in favor of vaccination. These
plots are therefore a mirror image of the plots in Fig. 3, and the individual-based risk assessment (IB-RA; top row) generally leads to a
somewhat higher treatment adoption compared to the society-based risk assessment (SB-RA; bottom row). Color bar is synchronized with
Fig. 9. Parameters used are β = 2.5/3, α = 0.1, γ = 1/3, and δ = 0.5, while efficacy improves from e = 0.1 (leftmost column) to e = 0.8
(rightmost column).
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FIG. 5. Outbreak size mirrors the vaccination coverage: Put alternatively, the final epidemic size is largely controlled by the coverage, and
thus vaccine cost and efficacy. Shown is the final epidemic size as a function of relative vaccination cost CV and relative treatment cost CT.
A costlier treatment suppresses outbreaks by turning agents proactive instead of reactive, but this works only if vaccine is rightly priced and
sufficiently efficacious. The individual-based risk assessment (IB-RA; top row) generally leads to somewhat poorer outcomes compared to the
society-based risk assessment (SB-RA; bottom row). Parameters used are β = 2.5/3, α = 0.1, γ = 1/3, and δ = 0.5, while efficacy improves
from e = 0.1 (leftmost column) to e = 0.8 (rightmost column).

the outcome. The described distinction between IB-RA and
SB-RA, as discussed later, has important implications for the
popularity of the present-day antivaccination movements.

D. Interplay between vaccine and treatment characteristics

Aside from costs, it is worthwhile emphasizing how other
parameters conspire to control outbreaks. Increasing the treat-

FIG. 6. Burden to society is weakly sensitive to the treatment cost: Shown is the average social payoff as a function of relative vaccination
cost CV and relative treatment cost CT. Plots reveal a relatively small decrease in the average social payoff even in the limit of expensive
treatment. The individual-based risk assessment (IB-RA; top row) is generally somewhat more burdensome than the society-based risk
assessment (SB-RA; bottom row). Parameters used are β = 2.5/3, α = 0.1, γ = 1/3, and δ = 0.5, while efficacy improves from e = 0.1
(leftmost column) to e = 0.8 (rightmost column).
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FIG. 7. Society-based risk assessment resists contrarian decisions: When vaccines are cheap and there are many vaccinators, a lone
nonvaccinator is less likely to get infected and may fare above average by taking a contrarian stance. In such circumstances, the individual-based
risk assessment (IB-RA) provides a local signal to the surrounding vaccinators to imitate the successful nonvaccinator, with the overall result
being less vaccination coverage and a larger final epidemic size than with the society-based risk assessment (SB-RA). Reverse reasoning holds
when vaccines are expensive and there are many nonvaccinators, in which case a lone vaccinator is more likely to avoid infection and thus fare
above average by taking the contrarian stance. The overall result is then a wider vaccination coverage and a smaller final infection size with
IB-RA than SB-RA. (a) and (b) The vaccination coverage and the final epidemic size, respectively, under IB-RA and SB-RA as a function of
relative vaccination cost CV for a range of vaccine efficacies e. Parameters used are β = 2.5/3, α = 0.1, γ = 1/3, and CT = 0.5.

ment probability rate, α, at first leads to a higher treatment
adoption, but as treatment becomes more widely adminis-
tered and the epidemic is better controlled, further increasing
parameter α only decreases the treatment adoption until the

epidemic is fully eradicated (Fig. 8). Interestingly, the results
are insensitive to vaccine efficacy if efficacy is too low. Here
the precise meaning of “too low” depends on the vaccination
cost (Fig. 8). If moreover the utility of the drug is taken into

FIG. 8. How vaccine and treatment characteristics control the treatment adoption: When Eq. (13) is not implemented (i.e., α is independent
of δ; left panels), increasing treatment probability rate α first leads to a wider treatment adoption, but as the epidemic gets more effectively
suppressed, the treatment adoption begins to decrease. At sufficiently high values of parameter α (α > 0.4), the control reproduction number
falls below unity and the epidemic is eradicated. Interestingly, the results are almost independent of the cost of treatment, yet vaccine
characteristics matter. When efficacy is low, parameter α alone controls the treatment adoption, but with high enough efficacy, fewer treatments
are necessary. How much “high enough” is depends on the vaccination cost. When Eq. (13) is implemented (i.e., α is related to δ; right panels),
treatments that prolong recovery are ignored, whereas treatments that shorten recovery are adopted equally irrespective of their cost. Instead,
more important are the vaccine efficacy and the vaccination cost. Parameters used are β = 2.5/3 and γ = 1/3; δ = 0.5 in the left panels and
ω = 0.1 in the right panels.
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FIG. 9. How vaccine and treatment characteristics control the final epidemic size: When Eq. (13) is not implemented (i.e., α is independent
of δ; left panels), increasing treatment probability α eventually leads to the eradication of the disease (α > 0.4). Vaccines with overly low
efficacy have no bearing on the final epidemic size (FES), but what “overly low” means is decided by the vaccination cost. Interestingly,
directing more agents to treatment interferes with the ability of a highly efficacious vaccine to control the epidemic, thus actually causing FES
to increase alongside parameter α until treatment is administered often enough to overwhelm the disease. When Eq. (13) is implemented (i.e.,
α is related to δ; right panels), treatments that prolong recovery are ignored, as are vaccines with overly low efficacy, allowing the disease to
spread freely. Again, what “overly low” means is decided by the vaccination cost. Treatments that shorten recovery are indeed adopted, but
they reduce FES only when the vaccine efficacy is low and end up increasing FES when efficacy is high. Parameters used are β = 2.5/3 and
γ = 1/3, while δ = 0.5 in the left panels and ω = 0.1 in the right panels.

account as prescribed by Eq. (13), treatment that prolongs re-
covery (δ � γ ) gets ignored, whereas treatment that shortens
recovery (δ 	 γ ) is adopted as much as this is allowed by the
vaccine efficacy and the vaccination cost (Fig. 8).

Effects of vaccine and treatment characteristics on the
final epidemic size (FES) only partly mirror the described

effects on the treatment adoption and in fact reveal further
complexities. Expectedly, increasing the treatment probability
rate, α, gradually reduces FES and even eradicates the disease
when treatment is administered widely enough (Fig. 9). As
with the treatment adoption, overly low vaccine efficacy is
inconsequential, but what constitutes “overly low” is decided

FIG. 10. Treatment interferes with vaccine’s control of the final epidemic size: (a) When Eq. (13) is not implemented (i.e., α is independent
of δ), treatment helps to lower the control reproduction number (Rc ). In terms of the final epidemic size (FES), however, when the treatment
probability rate is moderate, a reduced disease prevalence prompts some vaccinators to forgo vaccination, thus actually increasing FES in
comparison to no-treatment setting. (b) The same mechanism is at work even when Eq. (13) is implemented (i.e., α is related to δ). Here the
treatment adoption helps to reduce FES only in the case of a low-efficacy vaccine. If vaccine is efficacious enough, introducing treatment at
moderate probability rates worsens the disease prevalence. Parameters used are β = 2.5/3 and γ = 1/3, while the relative costs of vaccine
and treatment are CV = CT = 0.1, respectively.
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by the vaccination cost (Fig. 9). With a highly efficacious
vaccine available, we would expect a FES-reducing synergy
between vaccine and treatment. It turns out, however, that
the margin for such a synergy is very small, and in most
instances, treatment ends up interfering with vaccine’s ability
to control FES (Fig. 9). Similar is seen when the utility of
the drug is accounted for via Eq. (13). Treatment that shortens
recovery indeed helps to decrease FES, but only when vaccine
efficacy is low. When the opposite is true, FES actually
increases (Fig. 9). This interference of treatment with vaccine
is more clearly illustrated in Fig. 10. The mechanism in play
here is that treatment acts to reduce FES initially, but as the
evolutionary time progresses, restricted seasonal spreading of
the disease prompts some agents to stop vaccinating. The end
result is that FES is larger than it would have been without the
treatment option.

IV. DISCUSSION AND CONCLUSIONS

Herein we proposed a coupling of epidemiological and
game-theoretic methodologies to study behavioral incentives
in the face of a vaccination dilemma when treatment is avail-
able as an ex post fallback option. We largely focused on a
situation in which the treatment probability rate is moder-
ate, meaning that the availability of treatment considerably
reduces the final epidemic size but is insufficient to fully
eliminate the epidemic. Put more technically, the control
reproduction number is considerably lower than the basic
reproduction number but still above unity. This situation is, in
fact, the most interesting from an epidemiological perspective
because excessive use of drugs hastens the evolution of resis-
tance, and furthermore there may be technological limitations
to drug availability even when the price of the drug is not an
issue. In this context, we found that treatment indeed takes
a back seat compared to vaccination because the cost of the
latter, in conjunction with efficacy, primarily determines the
vaccination coverage and the treatment adoption. The final
epidemic size is consequently also much more sensitive to
the vaccination cost and efficacy than the treatment cost. The
most important effect of the treatment cost is that expensive
treatment creates an incentive for resorting to vaccination, es-
pecially when the vaccine cost-efficacy combination is right.
Because the consequent increase in burden to society is small,
in situations when both quality vaccines and treatments exist,

it makes sense to incentivize vaccination with higher treat-
ment prices, especially if doing so can prolong the evolution
of resistance to drugs. This is further justified by the narrow
margin for truly synergistic effects of vaccine and treatment
in suppressing the final epidemic size.

Present-day society is facing an emergence of mistrust
towards vaccines, often centered around influential public
figures who express skeptical sentiments against vaccination
[49–51]. It is interesting in this context that the individual-
based risk assessment (IB-RA) is more prone to succumbing
to such contrarian views than the society-based risk assess-
ment (SB-RA). Namely, when the vaccine coverage is high,
individuals who refuse vaccination are protected by others
and thus fare very well by getting the protection for free.
Seeing no downside for nonvaccinators, the IB-RA quickly
leads to imitating this behavior. The SB-RA, however, implies
a modicum of “collective memory,” whereby the harm that
may befall nonvaccinators is more difficult to ignore. The
question, therefore, is how to reinforce this collective mem-
ory enough to guide health-related decisions that may save
lives. Game-theoretic experiments have already shown ways
to promote cooperation in generic social-dilemma situations
[52–55], and while similar work is in progress in the context
of the vaccination dilemma [56–58], there seems to be a lack
of understanding of decision making in dilemmas that evoke
strong emotions, as is the case with vaccine skepticism.

There is much space for future work in relation to the
vaccination dilemma. Aside from the mentioned potential
for experimental studies, theory can be advanced too. For
example, we introduced the option of antiviral treatment as
if the decision to opt for treatment was predominantly in
the hands of medical professionals. This, of course, is not
entirely true, and a full consideration should be given to a
double dilemma that analyzes individual incentives whether
to vaccinate or not and whether to proceed with treatment
or not. Coevolution of multiple traits has already proven as
a powerful promoter of cooperation [59–62]. We are yet to
see the same in the context of the vaccination dilemma.
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