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Network geometry has strong effects on network dynamics. In particular, the underlying hyperbolic geometry
of discrete manifolds has recently been shown to affect their critical percolation properties. Here we investigate
the properties of link percolation in nonamenable two-dimensional branching simplicial and cell complexes, i.e.,
simplicial and cell complexes in which the boundary scales like the volume. We establish the relation between
the equations determining the percolation probability in random branching cell complexes and the equation for
interdependent percolation in multiplex networks with interlayer degree correlation equal to one. By using this re-
lation we show that branching cell complexes can display more than two percolation phase transitions: the upper
percolation transition, the lower percolation transition, and one or more intermediate phase transitions. At these
additional transitions the percolation probability and the fractal exponent both feature a discontinuity. Further-
more, by using the renormalization group theory we show that the upper percolation transition can belong to vari-
ous universality classes including the Berezinskii-Kosterlitz-Thouless (BKT) transition, the discontinuous perco-
lation transition, and continuous transitions with anomalous singular behavior that generalize the BKT transition.
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I. INTRODUCTION

Understanding the interplay between network structure and
dynamics [1] has been a fundamental research question in
statistical mechanics of networks [2,3]. Recently this field has
gained much momentum thanks to the vibrant research on
generalized network structures, including multilayer networks
[4–6] and simplicial and cell complexes [7–18]. In particu-
lar the study of percolation [19,20] on generalized network
structures has renewed interest to the so-called explosive
phenomena [21], which have been investigated for single
networks [22–26] as well as in the context of interdependent
percolation in multilayer networks [4,27–31] and percola-
tion in hyperbolic simplicial and cell complexes [12,13,32].
Multilayer networks include links representing interactions
of different natures and connotations. As such, multilayer
networks can describe interacting networks as diverse as
global infrastructures, financial systems, and the brain. In
recent years it has been shown [4,27] that interdependent
percolation of multilayer networks leads to discontinuous
phase transitions, revealing their intrinsic fragility. Simpli-
cial and cell complexes are built using geometrical building
blocks composed of triangles, polygons, and polytopes. As
such they are ideal generalized network structures to investi-
gate the interplay between hyperbolic network geometry and
dynamics [9,12,13,32–35]. Recently it has been found [32]

that link percolation in hyperbolic Farey graphs and some
well-behaved two-dimensional hyperbolic manifolds consti-
tuting the skeleton of cell complexes [13] is discontinuous.
Despite the fact that both percolation on simplicial and cell
complexes and interdependent percolation in multilayer net-
works can lead to discontinuous phase transitions, the relation
between the two critical phenomena has not been so far
investigated.

In this paper we depart from the study of discrete manifolds
and we consider branching simplicial and cell complexes
that reduce in some limit to very well-studied hierarchical
network structures, as for instance, the flower network and its
generalizations [36–39]. These branching simplicial and cell
complexes display a critical behavior of percolation that can
be fully characterized using the renormalization group (RG)
[13,40–45]. Interestingly, our RG investigation of branching
simplicial and cell complexes reveals a surprising relation
between percolation in these structures and interdependent
percolation on multilayer networks. Namely, we uncover a
mathematical mapping between the equation determining the
percolation probability in some specific simplicial and cell
complexes and the equation determining the emergence of
the mutually connected giant component (MCGC) [4,27] of
correlated and interdependent multiplex networks [46]. These
correlated multiplex networks have recently been shown to be
able to sustain multiple phase transitions [46]. Building upon
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the revealed mathematical mapping between the percolation
in branching cell complexes and interdependent percolation,
we are able to show that branching simplicial and cell com-
plexes are not only characterized by their upper and lower
percolation thresholds, as is the general rule for all nona-
menable graphs [47], but they can feature intermediate phase
transitions as well. These intermediate percolation transitions
are discontinuous and can be observed when the distribution
rk , which denotes the probability that a randomly chosen link
branches into k m-polygons, is multimodal.

Moreover, in this paper we identify the conditions that
guarantee a nontrivial discontinuous percolation transition at
the upper percolation threshold of two-dimensional simplicial
and cell complexes. Using the RG technique we show that as
the topology of the branching simplicial and cell complexes
changes, it is possible to observe a change of universality class
of percolation between the discontinuous and Berezinskii-
Kosterliz-Thouless (BKT) phase transitions, confirming and
generalizing the results in Refs. [36–39]. Moreover, we show
that the system might display higher-order critical points cor-
responding to continuous transitions with nontrivial singular
behavior, which, to our knowledge, has not been reported
previously on similar structures.

The paper is structured as follows: in Sec. II we define
the branching simplicial and cell complexes considered in this
paper; in Sec. III we characterize their percolation probability;
in Sec. IV we reveal the relation with interdependent percola-
tion of correlated multiplex networks; in Sec. V we show that
simplicial and cell complexes can undergo more than two per-
colation phase transitions; in Sec. VI we derive the expression
of the generating function of the cluster-size distribution; in
Sec. VII we derive the expression and the critical behavior
of the fractal exponent, and in Sec. VIII we use the RG
approach to predict the nature of the percolation transition at
the upper percolation threshold. Finally, in Sec. IX we provide
the conclusions.

II. BRANCHING SIMPLICIAL AND CELL COMPLEXES

Hierarchical networks with a nonamenable structure can
be manifolds, or more generally, branching simplicial and
cell complexes. Here we focus on a few specific examples of
two-dimensional branching simplicial and cell complexes. A
two-dimensional simplicial complex is a topological structure
formed by gluing triangles along their links, whereas a two-
dimensional cell complex generalizes this concept by gluing
arbitrary m-polygons along their links. Two-dimensional sim-
plicial and cell complexes form manifolds only if each link is
incident to at most two triangles (for the simplicial complexes)
or two polygons (for the cell complexes). However, if this con-
dition is not satisfied, then the resulting topological structures
are not discrete manifolds. A branching hierarchical simplicial
complex or cell complex is a network that can be constructed
by successively gluing triangles or polygons to single links
such that each link can be incident to more than two polygons.
Probably the most discussed hierarchical branching simplicial
complex is the flower network which stems from the Migdal-
Kadanoff [48,49] renormalization group techniques. Here we
focus on the percolation properties of branching simplicial
and cell complexes that feature random and deterministic

m=3                                      m=4

k=3 

k=4

FIG. 1. We show the first iteration n = 1 of the branching process
in which the initial single link (shown as a thick red line) branches out
to k, m-polygons with k drawn from the distribution rk . Here the first
iteration is shown for different values of m = 3, 4 (corresponding to
the attachment of triangles and rectangles, respectively) and k = 3, 4.

structure and generalize the flower network as described be-
low.

A branching tree can be constructed by starting at iteration
n = 0 from a single node. At every time n > 0 the node
connected to a single link is connected to k new links with
probability rk . This construction can be generalized to random
branching cell complexes in dimension d = 2. We start at
iteration n = 0 from a single initial link. At iteration n = 1
we attach a k � 1 polygons with m faces (m-polygons) to
it with k drawn from the probability distribution rk (see
Fig. 1). At iteration n > 1, we glue k � 1 new m-polygons
with probability rk to each link introduced at iteration n − 1.
In this way, the number of polygons k is treated as a random
variable.

At iteration n the average number of nodes N̄n and links L̄n

is given by

N̄n = 2 + 〈k〉(m − 2)

〈k〉(m − 1) − 1
[〈k〉n(m − 1)n − 1], (1)

L̄n = 1

〈k〉(m − 1) − 1
[〈k〉n+1(m − 1)n+1 − 1]. (2)

In the case m = 3 the polygons are triangles, and the same it-
erative process generates a random branching simplicial com-
plex. Here we refer to networks with arbitrary fixed m � 3
as simply the cell complexes. We note that the case m = 3
and rk = δk,2 corresponds to the flower network shown in
Fig. 2(a). A branching cell complex with m = 3 and hetero-
geneous rk distribution is shown in Fig. 2(b).

III. PERCOLATION IN NONAMENABLE
NETWORK STRUCTURES

We consider link percolation on branching cell complexes
where we remove each link independently with probability
q = 1 − p. Since the random branching cell complexes that
we consider are nonamenable structures [47], link percolation
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FIG. 2. The result of the first n = 2 iterations are shown for:
(a) the flower network with m = 3 and rk = δk,2, and (b) for a ran-
dom branching cell complex with m = 3 with nonzero probabilities
r1, r2, r3. In both cases nodes 1,2 are the nodes present at the iteration
n = 0, nodes 3,4 are the nodes added at the iteration n = 1, and all
the other nodes are added at iteration n = 2.

displays at least two percolation thresholds. In particular, as in
hyperbolic manifolds [12,13,32], we distinguish between the
lower p� and the upper pc percolation thresholds leading to
the identification of three distinct phases.

(1) For p < p�, i.e., below the lower percolation threshold,
there is no infinite cluster. Therefore, the percolation probabil-
ity, i.e., the probability that the two initial nodes are connected
at least by a path of nondamaged nodes, is T = 0.

(3) For p� < p < pc the percolation probability 0<T <1
and Mn, the number of nodes in the largest component at
iteration n, is subextensive, i.e.,

Mn = (N̄n)ψn , (3)

where the limit of the exponent ψn for n → ∞, i.e.,

ψ = lim
n→∞ ψn, (4)

is called the fractal exponent. In this phase we have ψ < 1.
(3) For p > pc, i.e., above the upper percolation threshold,

there is an infinite cluster which is extensive. This implies that
the percolation probability T = 1 and ψ = 1. Moreover, if we
indicate with Mn the number of nodes in the largest compo-
nent at iteration n above the upper percolation threshold, then
the fraction of nodes in the largest component P∞(p) is of
order one, i.e.,

P∞(p) = lim
n→∞

Mn

N̄n
= O(1). (5)

IV. PERCOLATION PROBABILITY

In this section we investigate the percolation probability
Tn indicating the probability that the two nodes present at
iteration n = 0 are connected with a path within the first n
iterations.

The percolation probability Tn for the random branching
cell complexes satisfies the following recursive equation:

Tn+1 = 1 − (1 − p)
∑
k�1

rk
(
1 − T m−1

n

)k
, (6)

That is, the two initial nodes are not connected at iteration
n + 1 if the link that connects the initial nodes is removed

and there is no path connecting these nodes through the m-
polygons within the first n iterations. In the limit of an infinite
network, n → ∞, the linking probability Tn converges to the
percolation probability T , i.e., Tn → T , where T satisfies

T = 1 − (1 − p)
∑
k�1

rk (1 − T m−1)k . (7)

Note that in presence of multiple solutions of Eq. (7) we only
consider the solution T ∈ [0, 1] with the smallest value. By
defining R(z) as the generating function of the distribution rk ,
i.e.,

R(z) =
∑
k�1

rkzk, (8)

and by defining Q(T ) as

Q(T ) = T m−1, (9)

we can write Eq. (7) as

f (T ) = T − 1 + (1 − p)R[1 − Q(T )] = 0. (10)

A close inspection of this equation reveals important prop-
erties of the critical behavior of the random branching cell
complexes. We first observe that T = 0 is a solution of
Eq. (10) only for p = 0. Therefore, it follows that the lower
percolation threshold p� is given by

p� = 0, (11)

for every branching cell complex studied in this work.
Second, we will show that applying the theory of critical

phenomena, we can obtain information on the other possible
percolation thresholds that can be encountered at discontin-
uous hybrid critical points, second-order critical points, and
higher-order critical points of Eq. (10). The discontinuous
hybrid critical point, also called the saddle-node bifurcation,
is found by imposing Tc < 1 and

f (Tc)|p=pc = 0,

f ′(Tc)|p=pc = 0, (12)

f ′′(Tc)|p=pc < 0.

If the above equations yield many solutions (pc, Tc), then one
has to select a subset that forms a minimal subsequence that is
simultaneously ascending in both variables pc and Tc. To find
the critical behavior of �T let us expand Eq. (10) close to
this critical point characterized by |�T | = |T − Tc| � 1 and
|�p| = |p − pc| � 1 and �p < 0, �T < 0. In this way we
get

0 = f (Tc)|p=pc + f ′(Tc)|p=pc�T + ∂ f (Tc)

∂ p

∣∣∣∣
p=pc

�p

+ ∂2 f (Tc)

∂ p∂T

∣∣∣∣
p=pc

�p�T + 1

2

∂2 f (Tc)

∂T 2

∣∣∣∣
p=pc

(�T )2 + · · ·

Since Tc < 1 we have ∂ f (Tc)/∂ p|p=pc
< 0. Therefore, for

|�T | = |T − Tc| � 1 and |�p|=|p−pc|�1 with �p<0,

�T < 0, we have the hybrid critical behavior

Â�p 	 (�T )2, (13)
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or equivalently

|�T | 	 |Â�p|β, (14)

where

β = 1
2 , (15)

and

Â = −
[

∂ f (Tc)

∂ p

∣∣∣∣
p=pc

][
1

2

∂2 f (Tc)

∂T 2

∣∣∣∣
p=pc

]−1

. (16)

The second-order critical point, also called the transcritical
bifurcation, is characterized by the following conditions on
f (T ):

f (1)|p=pc = 0,

f ′(1)|p=pc = 0, (17)

f ′′(1)|p=pc < 0.

In this way we find the critical point (pc, Tc) with

pc = 1 − 1

(m − 1)r1
,

Tc = 1, (18)

obtained as long as there is no discontinuous critical point for
p < 1 − 1/[(m − 1)r1] and provided that

r1 > max

[
1

m − 1
, 2

m − 1

m − 2
r2

]
. (19)

To find the critical behavior of �T let us expand Eq. (10) close
to this critical point characterized by |�T | = |T − 1| � 1
and |�p| = |p − pc| � 1 and �p < 0, �T < 0. By taking
into account the critical point conditions expressed in Eq. (17)
and the fact that ∂ f (Tc)/∂ p|p=pc

= 0 because Tc = 1, for
�p < 0 the expansion gives the mean-field behavior

�T 	 (A�p)β, (20)

where

β = 1, (21)

and

A = −
[

∂2 f (Tc)

∂ p∂T

∣∣∣∣
p=pc

][
1

2

∂2 f (Tc)

∂T 2

∣∣∣∣
p=pc

]−1

. (22)

In a model of random branching cell complexes with
arbitrary distribution rk , the manifold of second-order critical
points meets the manifolds of hybrid transitions on a set of
tricritical points. The tricritical points of Eq. (10), also called
the pitchfork bifurcation points, can be found by imposing the
conditions

f (1)|p=pc = 0,

f ′(1)|p=pc = 0,

f ′′(1)|p=pc = 0,

f ′′′(1)|p=pc > 0. (23)

These equations identify the tricritical point (pc, Tc), which is
given by

pc = 1 − 1

(m − 1)r1
,

Tc = 1, (24)

as long as there is no discontinuous transition for

p < 1 − 1

(m − 1)r1

and provided that

r1 = 2
m − 1

m − 2
r2, (25)

where

r1 > max

[
1

m − 1
, 6

(m − 1)2

(2m − 3)(m − 2)
r3

]
. (26)

We expand Eq. (10) close to the critical point for |�T | =
|T − 1| � 1 and |�p| = |p − pc| � 1 up to third order.
We observe that since Tc = 1 we have ∂ f (Tc)/∂ p|p=pc

= 0.
Therefore, for �p < 0 we obtain the tricritical scaling

Ã�p 	 (�T )2, (27)

or equivalently

|�T | 	 |Ã�p|β, (28)

where

β = 1
2 , (29)

and

Ã = −
[

∂2 f (Tc)

∂ p∂T

∣∣∣∣
p=pc

][
1

3!

∂3 f (Tc)

∂T 3

∣∣∣∣
p=pc

]−1

. (30)

Similarly it is possible to observe even higher-order critical
points of order s > 3. Such higher-order pitchfork bifurca-
tions are characterized by

f ( j)(1)|p=pc = 0, (31)

for j = 0, 1, 2 . . . , s − 1 and

(−1)s−1 f (s)(1)|p=pc > 0. (32)

Consequently, these higher-order critical points are observed
when

rk = �
(
k − 1

m−1

)
�

(
1 − 1

m−1

)
�(k + 1)

r1 (33)

for k = 2, . . . , s − 1, and

r1 > max

[
1

m − 1
,
�

(
1 − 1

m−1

)
�(s)

�
(
s − 1

m−1

) rs

]
. (34)

These transitions occur at

pc = 1 − 1

(m − 1)r1
,

as long as there are no discontinuous critical points for
p < 1 − 1/[(m − 1)r1]. At a critical point of order s we
observe the critical scaling

|�T | 	 |Ãs�p|β, (35)
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where

β = 1

s − 1
,

and Ãs is given by

Ãs = −
[

∂2 f (Tc)

∂ p∂T

∣∣∣∣
p=pc

][
1

(s + 1)!

∂s f (Tc)

∂T s

∣∣∣∣
p=pc

]−1

.

Finally, in the limiting case of s → ∞, the critical exponent β

vanishes and T features a 0-to-1 discontinuity at pc = 0.

V. MATHEMATICAL MAPPING TO INTERDEPENDENT
PERCOLATION IN DEGREE-CORRELATED

MULTIPLEX NETWORKS

The equation determining the percolation probability in
random branching cell complexes can be related to the equa-
tions determining the MCGC in a correlated multiplex net-
work. However, to perform an exact mathematical mapping
between the two problems and their corresponding equations,
one should consider a slight modification of the original model
of random branching cell complexes. Consider the modified
branching cell complex model with m � 3 in which we break
the symmetry between the k polygons attached to any given
link and impose a maximum value kmax. The modified model
is defined iteratively as in the following. We start at iteration
n = 0 from a single initial link. At iteration n � 1 to each
link introduced at iteration n − 1 we glue (k − 1) m-polygons
and one (m − 1)-polygon to it with k � 1 drawn from the
probability distribution rk . For this modified random branch-
ing cell complex model, the probability that the two initial
nodes are connected at iteration n when links are removed
with probability q = 1 − p is given by

Tn+1 = 1 − (1 − p)
∑
k�1

rk
(
1 − T m−2

n

)(
1 − T m−1

n

)k−1
,

and for large network sizes, when n → ∞, we have

T = 1 − (1 − p)
∑
k�1

rk (1 − T m−2)(1 − T m−1)k−1.

This equation can be exactly mapped to the equation deter-
mining the probability S′ that by following a link we reach a
node in the MCGC of a multiplex network with heterogeneous
activities of the nodes and maximum correlation between the
degree of the nodes in different layers. In fact, let us consider
a multiplex network [4] of M̂ layers in which all replica
nodes (i, α) in an arbitrary layer α = 1, 2 . . . M̂ have the same
activity Bi = B[α]

i indicating the number of replica nodes that
are interdependent to it and have the same degree κ = κ

[α]
i

which is independent of the node i and of the layer α. In this
highly correlated multiplex network studied in Ref. [46] let us
consider the MCGC when nodes are damaged with probability
1 − p̃. The equation for the probability S′ that by following a
link of the multiplex network in a given layer α we reach a
node in the MCGC reads

S′ = p̃
∑

B

P(B)[1 − (1 − S′)κ−1][1 − (1 − S′)κ ]B−1,

TABLE I. Mathematical mapping between the quantities deter-
mining the percolation probability T in the modified branching cell
complex and the mathematical quantities determining the probability
S′ that by following a random link of a random correlated multiplex
network with activity distribution P(B) and homogeneous degree of
each replica node κ = m − 1 we reach a node in the MCGC.

Branching cell-complex Correlated multiplex network

T 1 − S′

p 1 − p̃
m κ + 1
rk P(B)

where P(B) is the probability that a random node has activity
Bi = B. At the mathematical level it is thus possible to define a
mapping between the equation determining T in the modified
random branching hyperbolic manifolds and the equation
determining S′ in the correlated multiplex network. In this
mapping m corresponds to κ + 1, the probability distribution
rk corresponds to the activity distribution P(B) and p corre-
sponds to 1 − p̃ (see Table I).

Since the considered multiplex networks have been shown
to display multiple percolation phase transitions, it follows
that the mapping described above suggests that also in the
modified random branching network one may expect mul-
tiple critical points in the equation determining the linking
probability. However, the question whether also in the orig-
inally considered random branching model we can expect
multiple critical points of the linking probability needs to
be explored in detail and will be addressed in the following
section.

VI. MULTIPLE PERCOLATION TRANSITIONS

Here we provide evidence that random branching cell com-
plexes can feature more percolation transitions in addition to
the known upper and lower ones. These transitions can occur
for p = p�

c with p� < p�
c < pc and they are characterized by

discontinuities both in the percolation probability T and in
the fractal exponent ψ , with T < 1 and ψ < 1 above and
below the transition. In other words, the maximum cluster
still remains subextensive after undergoing a discontinuous
transition; see, for example, Fig. 3. These phase transitions
correspond to hybrid critical points of Eq. (10) different from
the upper or lower percolation threshold and correspond to
the multiple percolation transitions observed in the correlated
multiplex network considered in Ref. [46] for the modified
branching network model. Here we investigate this interesting
behavior in the context of a simplicial complex (m = 3) with
a trimodal distribution rk given by

rk = r1δk,1 + r2δk,2 + r̂δk,k̂, (36)

where r1 + r2 + rk̂ = 1 and k̂ � 3. By numerically studying
the roots of Eq. (10) supplied with the trimodal distribution
Eq. (36), we build the phase diagram of the model as a
barycentric plot for various values of k̂ (see Fig. 4). In Fig. 4
we distinguish between different phases �i j corresponding
to parameter values for which the percolation probability
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FIG. 3. The percolation probability T and 1 − ψ versus the
occupation probability of the links p, where ψ is the fractal exponent.
The considered branching simplicial complex (m = 3) has three
percolation thresholds: the lower percolation threshold at p� = 0,
the upper percolation threshold at pc = 0.1935(5), and one inter-
mediate percolation threshold at p�

c = 0.0395(6). At the interme-
diate percolation threshold both T and ψ have a discontinuity but
remain smaller than one. Here the branching simplicial complex has
rk = 0.62δk,1 + 0.07δk,2 + 0.31δk,20.

displays i = 0, 1, 2 continuous, and j = 0, 1, 2 discontinuous
and hybrid critical points, so that i + j indicates the total
number of distinct percolation thresholds. As shown in Fig. 4
the phase diagram evolves when k̂ increases. Figure 5 gives
several examples of the percolation probability T as a function

of p in the different phases and demonstrates the existence
of intermediate percolation transitions. When k → ∞, the
phase diagram degenerates, and the phase diagram consists
of three phases; see Fig. 6. In this limit we observe a phase
�01 with a discontinuous 0-to-1 transition for the percolation
probability T at p� = pc = 0. Interestingly by having a multi-
modal rk distribution and a random multi-modal distribution
qm of the number of sides of the polygons (with more than
three modes) it is possible to observe even more than one
intermediate phase transition (see for instance corresponding
phenomenology in correlated multiplex networks described in
Ref. [46]).

VII. GENERATING FUNCTION

Here we investigate the properties of the generating func-
tions T̂n(x) and Ŝn(x, y) that will be essential to characterize
the different phases of percolation in the branching simplicial
and cell complexes under investigation. The function T̂n(x)
is the generating function of the number of nodes in the
connected component linked to both initial nodes of the
considered random branching network. The function Ŝn(x, y)
is the generating function for the sizes of the two connected
components linked exclusively to one of the two initial nodes
of the same network. These generating functions are given
by

T̂n(x) =
∞∑

�=0

tn(�)x�,

Ŝn(x, y) =
∞∑

�=0

∞∑
�̄=0

sn(�, �̄)x�y�̄, (37)

where tn(�) indicates the distribution of the number of nodes
� connected to the two initial nodes and sn(�, �̄) indicates
the joint distribution of the number of nodes � connected
exclusively to a given initial node and the number of nodes
�̄ connected exclusively to the other initial node. By being
guided by the diagrammatic representation of these quantities,
as explained in Refs. [13,32], we obtain the recursive equa-
tions for T̂n(x) and Ŝn(x, y) that start from the initial condition

k =2k =1

k =5

k =2k =1

k =3

k =2k =1

k =15

k =2k =1

k ∞

21

12

11

20

01

02

FIG. 4. The barycentric plot characterizing the phase diagram of link percolation for the branching simplicial complex with m = 3 and
rk = r1δk,1 + rk,2δk,2 + rk̂δk,k̂ , where k̂ = 3, 5, 15, or is diverging. The parameter space (r1, r2, rk̂ ) is partitioned into phases �i j at which the
percolation probability T has i continuous and j discontinuous transitions. When k → ∞ in the rightmost barycentric plot, the first two critical
points merge and the domains �21, �11, �12 switch correspondingly to �11, �01, �02.
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FIG. 5. The barycentric plot characterizing the phase diagram of link percolation for the branching simplicial complex with m = 3
and rk = r1δk,1 + r2δk,2 + r20δk,20. The percolation probability T versus p is shown at points A, B, C, and D that belong to phases
�20, �21,�21, and �12, respectively, at the shared accumulation points E ∈ �11 ∩ �21 ∩ �12 and F ∈ �20 ∩ �11 ∩ �21 ∩ �12. The sample
points are given by the following barycentric coordinates (r1, r2, r20): A = (0.8, 0.1, 0.1), B = (0.33, 0.33, 0.33), C = (0.62, 0.07, 0.31), D =
(0.55, 0.22, 0.23), E = (0.52, 0.13, 0.35), and F = (0.65, 0.16, 0.19). The dashed lines indicate the unstable branches and the vertical lines
indicate the predicted positions of the discontinuous phase transitions.

T̂0(x) = 1 − Ŝ0(x, y) = p and read

Ŝn+1(x, y) = (1 − p)
∞∑

k=1

rk

[
m−2∑
r=0

xrym−2−r T̂ r
n (x)Ŝn(x, y)T̂ m−2−r

n (y) +
m−3∑
s=0

s∑
r=0

xrys−r T̂ r
n (x)Ŝn(x, 1)Ŝn(y, 1)T̂ s−r

n (y)

]k

.

T̂n+1(x) =
∞∑

k=1

rk

[
xm−2T̂ m−1

n (x) + (m − 1)xm−2T̂ m−2
n (x)Sn(x, x) +

m−3∑
s=0

(s + 1)xsT̂ s
n (x)Ŝn(x, 1)Ŝn(1, x)

]k

− (1 − p)
∞∑

k=1

rk

[
(m − 1)xm−2T̂ m−2

n (x)Sn(x, x) +
m−3∑
s=0

(s + 1)xsT̂ s
n (x)Ŝn(x, 1)Ŝn(1, x)

]k

, (38)
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FIG. 6. The barycentric plot characterizing the phase diagram of link percolation for the branching simplicial complex with m = 3 and
rk = r1δk,1 + r2δk,2 + r∞δk,k̂ with k̂ → ∞. The percolation probability T versus p is shown at points A, B, and C that belong to phases
�11, �02, and �01, respectively, and at their shared accumulation point D ∈ �11 ∩ �01 ∩ �02. The sample points are given by their barycentric
coordinates (r1, r2, r∞): A = (0.70, 0.08, 0.22), B = (0.45, 0.45, 0.1), C = (0.25, 0.25, 0.50), and D = (0.50, 0.13, 0.37). The dashed lines
indicate the unstable branches and the vertical lines indicate the predicted positions of the discontinuous phase transitions.
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VIII. FRACTAL EXPONENT

A. General framework

The total number of nodes Mn that at iteration n are in the
component connected to the two initial nodes can be obtained
by differentiating the generating function T̂n(x); i.e.,

Mn = dT̂n(x)

dx

∣∣∣∣
x=1

. (39)

By following the mathematical framework proposed in
Ref. [32] we rewrite Eqs. (38) in the vector form

Vn(x) = [
V 1

n (x),V 2
n (x),V 3

n (x)
]�

= [T̂n(x), n(x), Sn(x)]�, (40)

where n(x) = Ŝn(x, x) and Sn(x) = Ŝ(1, x), and we obtain
the recursive equation

Vn+1(x) = Fn(Vn(x), x). (41)

These equations are differentiated to obtain

dVn+1(x)

dx
=

n∑
j=0

3∑
s=1

∂F j

∂V s
j (x)

dV s
j (x)

dx
+ ∂Fn

∂x
, (42)

with initial condition V′
0 = (0, 0, 0) (where we do not count

the initial nodes).
We note that the nonhomogeneous term ∂Fn/∂x is sub-

leading with respect to the homogeneous one. Therefore, for
n � 1 and T < 1, we can express Mn as

Mn+1 	 Dn

n∏
n′=1

λn′un, (43)

where λn and un are the largest eigenvalue and the correspond-
ing eigenvector of the Jacobian matrix Jn given by

[Jn]i j = ∂F i(x)

∂V j (x)

∣∣∣∣
V(x)=Vn(1);x=1

, (44)

and Dn is given by

Dn =
(

n∏
n′=2

〈un′ |un′−1〉
)

〈u1|V̇0〉 , (45)

with V̇0 = ∂F0/∂x. We will show that for p 	 pc, Dn is in
first approximation independent of n, therefore it follows that
Rn = V̇ 1

n scales like

Mn+1 ∼
n∏

n′=1

λn′ = exp

[
n∑

n′=0

ln λn

]
. (46)

By using Eq. (3) it follows that ψn is given by

ψn = ln λn

ln[〈k〉(m − 1)]
, (47)

and the fractal exponent ψ can be calculated by performing
the limit for n → ∞ and using the definition of the fractal
exponent given by Eq. (4).

B. Derivation of the fractal exponent ψ

In this section our goal is to derive the explicit expression
for the fractal exponent ψ . From the explicit expression
of the generating functions given by Eq. (38), we derive
the closed equations for Vn = [T̂n(x), n(x), Sn(x)]�, where
n(x) = Ŝn(x, x) and Ŝn(x) = Ŝ(1, x),

Vn+1(x) = F[Vn(x), x]. (48)

These equations read

T̂n+1(x) =
∞∑

k=1

rk

{
xm−2T̂ m−1

n (x) + (m − 1)xm−2T̂ m−2
n (x)n(x) +

[
m−3∑
i=0

(i + 1)xiT̂ i
n (x)

]
S2

n (x)

}k

−(1 − p)
∞∑

k=1

rk

{
(m − 1)xm−2T̂ m−2

n (x)n(x) +
[

m−3∑
i=0

(i + 1)xiT̂ i
n (x)

]
S2

n (x)

}k

,

n+1(x) = (1 − p)
∞∑

k=1

rk

{
(m − 1)xm−2T̂ m−2

n (x)n(x) +
[

m−3∑
i=0

(i + 1)xiT̂ i
n (x)

]
S2

n (x)

}k

,

Sn+1(x) = (1 − p)
∞∑

k=1

rk

{[
m−2∑
i=0

xiT̂ i
n (x)

]
Sn(x)

}k

. (49)

The Jacobian Jn is obtained by differentiating Eq. (49) with respect to Vn, by putting x = 1 and using T̂n(1) = 1 − n(1, 1) =
1 − Sn(1) = Tn. To perform this analytical calculation we have used the mathematical identities

(1 − Tn)
m−3∑
i=0

i(i + 1)T i−1
n = 2

m−3∑
i=0

(i + 1)T i
n − (m − 1)(m − 2)T m−3

n (50)
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and

(1 − Tn)
m−3∑
i=0

(i + 1)T i
n =

m−2∑
i=0

T i
n − (m − 1)T m−2

n .

In this way it is easy to show that the Jacobian Jn can be expressed as

Jn =

⎛
⎜⎝

〈k〉[2H (Tn)−Q′(Tn)]−2(1 − p)G(Tn) Q′(Tn)
[〈k〉−(1−p)R′(1 − T m−1

n

)]
2{〈k〉[H (Tn)−Q′(Tn)]−(1 − p)G(Tn)}

2(1 − p)G(Tn) (1 − p)R′(1 − T m−1
n

)
Q′(Tn) 2(1 − p)G(Tn)

(1 − p)G(Tn) 0 (1 − p)R′(1 − T m−1
n

)
H (Tn)

⎞
⎟⎠,

where Q(T ) is defined in Eq. (9) and H (T ) is defined as

H (T ) =
m−2∑
i=0

T i, (51)

which admits for T < 1 the expression

H (T ) = 1 − Q(T )

1 − T
. (52)

Furthermore, R′(z) and G(T ) are given by

R′(z) =
∑

k

krkzk−1,

G(T ) = R′(1 − T m−1
n

)
[H (Tn) − Q′(Tn)]. (53)

Using the mathematical identities listed above and using a
procedure similar to the one used for deriving the expres-
sion of the Jacobian, it can be shown that ∂Fn/∂x is given
by

∂Fn

∂x
=

(〈k〉Tn2[H (Tn) − Q′(Tn)] + 〈k〉[TnQ′(Tn) − Q(Tn)] − 2(1 − p)TnG(Tn)

2(1 − p)TnG(Tn)(1 − p)TnG(Tn)

)
.

For Tn < 1 the Jacobian Jn has the largest eigenvalue λn given
by

λn = 1
2

[√
�̂(Tn) + K̂ (Tn)

]
, (54)

where �̂(Tn) and K̂ (Tn) are given by

�̂(Tn) = [K̂ (Tn)]2 − 4(1 − p)H (Tn)Q′(Tn)R′(1 − T m−1
n

)〈k〉,
K̂ (Tn) = [

2〈k〉 − (1 − p)R′(1 − T m−1
n

)]
H (Tn)

− [〈k〉 − 2(1 − p)R′(1 − T m−1
n

)]
Q′(Tn). (55)

For Tn = 1, instead, the largest eigenvalue is given by

λn = 〈k〉(m − 1).

The eigenvector un corresponding to the largest eigenvalue is

un = C

⎛
⎜⎜⎝

K̂ (Tn) − 2(1 − p)R′(1 − T m−1
n

)
H (Tn) +

√
�̂(Tn)

4(1 − p)R′(1 − T m−1
n

)
[H (Tn) − Q′(Tn)]

2(1 − p)R′(1 − T m−1
n

)
[H (Tn) − Q′(Tn)]

⎞
⎟⎟⎠,

where C is the normalization constant. For Tn = 1 and p = pc,
the eigenvector un is given by

un = (1, 0, 0)�.

Finally, by using Eqs. (4) and (47) we can determine the
fractal exponent ψ starting from the explicit expression of the
eigenvalue λn given by Eq. (54).

C. Critical scaling of the fractal exponent

Here we consider the critical scaling of the fractal expo-
nent close to the upper percolation threshold in the case in
which the critical percolation probability Tc = 1 is reached
continuously by the solution of Eq. (10). When Tc = 1, by
expanding Q′(Tn) and H (Tn) close to the critical point, i.e., for
p = pc + �p, and Tn = Tc + �Tn for �p < 0 and �Tn < 0
but small in absolute values, i.e., |�Tn| � 1 and |�p| � 1,
we obtain

Q′(Tn) = (m − 1) + (m − 1)(m − 2)�Tn

+ 1
2 (m − 1)(m − 2)(m − 3)(�Tn)2 + o[(�Tn)2],

H (Tn) = (m − 1) + 1
2 (m − 1)(m − 2)�Tn

+ 1
6 (m − 1)(m − 2)(m − 3)(�Tn)2 + o[(�Tn)2].

Moreover we can also expand the expression R′(1 − T m−1
n )

obtaining

R′(1 − T m−1
n

) 	 r1 − 2r2(m − 1)�Tn

+ [−r2(m−1)(m−2)+3r3(m−1)2](�Tn)2

+ o [(�Tn)2].

By using the definition of ψn [Eq. (47)] and the explicit
expression of λn [Eq. (54)] we can derive the scaling of ψn

as a function of �Tn,

ψn 	 1 − a(�Tn)2, (56)
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where a is a constant given by

a = (m − 2)

[6〈k〉2(m − 1) − 6] ln[〈k〉(m − 1)]

× [〈k〉2(m − 3)(m − 1) + 2m − 3].

Therefore, for the branching cell complexes considered in
this work, as long at the critical percolation probability Tc =1
is reached continuously by the solution of Eq. (7), the critical
scaling of ψn is universally dictated by Eq. (56) (note, how-
ever, that this critical behavior can be altered if the size of
the polygons m is randomly distributed and its distribution is
fat-tailed [13]). From the universal scaling of ψn as a function
of �Tn we can derive the critical behavior of the fractal
exponent as a function of �T by performing the limit n → ∞.
In Sec. III we have shown that the scaling of �T with �p can
be characterized by any exponent of the type β = 1/(s − 1)
when Tc = 1 is reached continuously. This implies that the
fractal exponent scales like

ψ 	 1 − ã(�p)2β, (57)

where ã is a constant. For the topologies considered in this
work the only possible deviation from the universal critical
scaling ψn as a function of �Tn given by Eq. (56) is observed
when at the upper percolation threshold the percolation proba-
bility is discontinuous. In this case we will also observe a dis-
continuity of the fractal exponent ψ at pc. In Fig. 7 we display
the percolation probability T as a function of p for branching
cell complexes undergoing percolation transitions of different
universality classes at the upper percolation threshold p = pc.

IX. ORDER PARAMETER

A. General framework

In this section we use the RG technique [13,40] to predict
the nature of the percolation phase transition at the upper
critical percolation threshold pc. At pc the order parameter
is given by the fraction P∞ of nodes in the giant component
in an infinite network given by Eq. (5), which we rewrite here
for convenience,

P∞ = lim
n→∞

Mn

N̄n
. (58)

By using Eq. (46) for approximating Mn when n � 1 we
obtain

P∞ 	 lim
n→∞

1

N̄ (0)
n

n∏
n′=1

λn′

	 exp

[
− ln[〈k〉(m − 1)]

∫ ∞

0
dn(1 − ψn)

]
. (59)

The RG flow can be derived directly by the RG Eq. (6), which
we rewrite here for convenience as

Tn+1 = F (p, Tn) = 1 − (1 − p)
∑

k

rk
(
1 − T m−1

n

)k
. (60)

In the RG procedure one proceeds as follows.
First, the RG Eq. (60) is expanded close to the critical

point (p, T ) = (pc, Tc), obtaining the scaling of �Tn =Tn−Tc

with n, for 0 < �p = p − pc � 1. Second, this scaling is
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FIG. 7. The percolation probability T and the fractional expo-
nent ψ are plotted as a function of occupation probability p of the
links. Here we consider a branching simplicial complex (m = 3)
with rk distribution rk = r1δk,1 + r2δk,2 + r3δk,3 with (r1, r2, r3) given
by (0.9,0.05,0.05) for the solid blue line [continuous critical point
of Eq. (10)], (0.8,0.2,0) for the orange dashed line [tricritical point
of Eq. (10)], (0.727273,0.181818,0.0909091) for the green dot-
dashed line [s order critical point of Eq. (10) with s = 4], and
(0.15,0.54,0.31) for the red dotted line [discontinuous critical point
of Eq. (10)].

inserted in Eq. (56) characterizing the critical behavior of
1 − ψn as a function of �Tn. Finally, using Eq. (59), we
can predict the nature of the phase transition by deriving
the scaling of the order parameter P∞ close to the upper
percolation threshold. Here we conduct this RG study in
the different phases of percolation defined on branching cell
complexes and we explain the different critical behavior that
can be observed for the percolation order parameter P∞
(see Fig. 8).

In the following sections we will use the RG technique
to predict that at the transcritical bifurcation point the perco-
lation transition is discontinuous, similar to the Farey graph
[32] and well-behaved generalized 2D hyperbolic manifolds
[13]; at the saddle-node bifurcation point we predict a BKT
transition and at the third-order pitchfork bifurcation point we
predict a second-order critical behavior (see Fig. 8). These
results confirm and generalize previous results obtained in
hierarchical networks and specifically the flower network
[36–38,40]. Here we reveal additional universality classes that
can occur at the pitchfork singularities of order s > 3 where
we predict and observe a critical scaling of the type

P∞ 	 exp[−A/(�p)σ ], (61)

with the theoretically derived anomalous exponent
σ = (s − 3)/(s − 1).
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FIG. 8. The percolation order parameter P∞ as a function of
occupation probability p of the links. Here we consider a branching
simplicial complex (m=3) with rk distribution rk =r1δk,1+r2δk,2 +
r3δk,3 with (r1, r2, r3) given by (0.9,0.05,0.05) for the solid blue
line (discontinuous percolation transition), (0.8,0.2,0) for the or-
ange dashed line (second-order transition), (0.727273,0.181818,
0.0909091) for the green dot-dashed line (anomalous transition fol-
lowing Eq. (61) with σ = 3) and (0.15,0.54,0.31) for the red dotted
line (BKT transition). The figure has been obtained by iterating
Eq. (42) for n = 1000 iterations.

B. RG theory at the transcritical bifurcation point

At the transcritical bifurcation point we observe a dis-
continuous percolation transition that is in the same univer-
sality class as percolation in the Farey graph [32] and in
well-behaved 2D cell complexes [13]. The derivation of this
result follows steps similar to the ones previously reported in
Ref. [13]. Here we report these results for the self-consistency
of this work.

Our goal is to study the critical behavior above the upper
percolation threshold, for �p = p − pc > 0. We expand the
RG Eq. (60) for 0 < �p � 1 and |�Tn| = |T − Tc| � 1
when pc = 1 − 1/[(m − 1)r1] and Tc = 1, obtaining

Tn+1 = F (pc, Tc) + ∂F

∂ p

∣∣∣∣
p=pc,T =Tc

�p

+ ∂F

∂T

∣∣∣∣
p=pc,T =Tc

�Tn + ∂2F

∂ p∂T

∣∣∣∣
p=pc,T =Tc

�p�Tn

+1

2

∂2F

∂T 2

∣∣∣∣
p=pc,T =Tc

(�Tn)2 + · · · , (62)

with

F (pc, Tc) = Tc = 1, (63)

∂F

∂ p

∣∣∣∣
p=pc,T =Tc

= 0, (64)

∂F

∂T

∣∣∣∣
p=pc,T =Tc

= 1, (65)

∂2F

∂ p∂T

∣∣∣∣
p=pc,T =Tc

= −r1(m − 1), (66)

∂2F

∂T 2

∣∣∣∣
p=pc,T =Tc

= r1(m − 2) − 2r2(m − 1)

r1
. (67)

Therefore, by truncating the expansion to the leading terms
in �Tn and �p we can write

�Tn+1 − �Tn = Ĉ�Tn[�Tn − B̂�p], (68)

with constants B̂ and Ĉ given by

B̂ = 2(m − 1)r2
1

(m − 2)r1 − 2r2(m − 1)
, (69)

Ĉ = 1

2r1
[(m − 2)r1 − 2r2(m − 1)]. (70)

For n → ∞, we adopt a continuous approximation of
Eq. (68). We indicate with x the continuous approximation
of −�Tn � 1, i.e., x 	 −�Tn, that follows the differential
equation

dx

dn
= −Ĉx[x + B̂�p], (71)

with initial condition x(0) = 1 − p. This equations has the
solution

x(n) = B̂�p

[(
1 + B̂�p

1 − p

)
eĈB̂�pn − 1

]−1

. (72)

For r1 > 2r2(m − 1)/(m − 2), ψn obeys the scaling rela-
tion Eq. (56) that can be expressed as a function of x(n) as

ψn = 1 − a(Tc − Tn)2 = 1 − a[x(n)]2. (73)

Consequently, using Eq. (59) we can express P∞ in the
continuous approximation as

P∞(p) 	 exp

[
− ln[〈k〉(m − 1)]a

∫ ∞

0
dn[x(n)]2

]
. (74)

Using the expression of x(n) given by Eq. (72) we obtain for
0 < p − pc � 1

P∞(p) 	 exp

{
− ln[〈k〉(m − 1)]a

[
(1 − p)

Ĉ

+ B̂�p

Ĉ
ln

(
B̂�p

Ĉ

)]}
, (75)

which can also be written as

P∞(p) 	 P∞(pc)

(
�p

r

)−h�p

, (76)

where P∞(pc), h and r are given by

P∞(pc) = exp

[
− ln[〈k〉(m − 1)]a

2

(m − 1)(m − 2)

]
,

h = ln[〈k〉(m − 1)]a
B̂

Ĉ
, (77)

r = Ĉ

B̂(m − 1)
.

Equation (76) can be further expanded for 0 < �p � 1 ob-
taining the critical behavior

P∞(p) 	 P∞(pc) + α�p[− ln(�p)], (78)

where α = P∞(pc)h.

062311-11



BIANCONI, KRYVEN, AND ZIFF PHYSICAL REVIEW E 100, 062311 (2019)

C. RG theory at the saddle-node bifurcation point

In this section we follow Refs. [38,40] and by using the RG
theory we show that as long as Tc < 1 the upper percolation
threshold follows a BKT transition. Developing Eq. (60) for
Tn = Tc + �Tn and p = pc + �p with 0 < �p � 1 up to
second order we obtain

Tn+1 	 F (pc, Tc) + ∂F

∂ p

∣∣∣∣
p=pc,T =Tc

�p

+ ∂F

∂T

∣∣∣∣
p=pc,T =Tc

�Tn + 1

2

∂2F

∂T 2

∣∣∣∣
p=pc,T =Tc

(�Tn)2,

with

F (pc, Tc) = Tc < 1, (79)

∂F

∂ p

∣∣∣∣
p=pc,T =Tc

= a = 1 − Tc

1 − pc
> 0, (80)

∂F

∂T

∣∣∣∣
p=pc,T =Tc

= 1, (81)

∂2F

∂T 2

∣∣∣∣
p=pc,T =Tc

= 2b > 0. (82)

Therefore, close to the upper percolation transition �Tn

evolves according to the equation

�Tn+1 − �Tn = a�p + b(�Tn)2. (83)

For |�Tn| � 1 we can write the above equation in the contin-
uous limit as

dy(n̂)

dn̂
= 1 + y2, (84)

where n̂ = nδ and δ = √
ab�p and y = b�Tn/δ. This equa-

tion has the solution

y(n̂) = tan{n̂ + tan−1[y(0)]}, (85)

displaying a divergence for n̂c = ncδ such that n̂c +
tan−1[y(0)] = π/2. Therefore, the continuous approximation
of �Tn indicated by x(n) obeys

x(n) = δ

b
tan{nδ + tan−1[y(0)]}. (86)

The initial condition x(0) = (T0 − Tc) � 0 implies that
y(0) � 0. However, the function x(n) eventually becomes
positive and diverges for n = nc = n̂c/δ. At nc 	 n̂c/δ the
approximation x(n) � 1 is no longer valid and the solution
x(n) has a jump to the trivial solution x0 = 1 − Tc. In the latter
case, we have that 1 − ψn will also have a discontinuity at nc

(see Fig. 9), i.e.,

1 − ψn =
{

fψ (n̂) for n < nc

0 for n > nc
. (87)

Therefore, the critical transition is continuous and follows the
BKT singularity. In fact, we have

P∞ 	 exp

[
−

∫ ∞

0
dn(1 − ψn)

]

	 exp

[
−1

δ

∫ n̂c

0
dn̂ fψ (n̂)

]
	 exp

[
− α√

�p

]
, (88)

p=pc
p=pc+

1 10 100 1000
0.7

0.8

0.9

1.0

n

n

FIG. 9. The scaling of the exponent ψn as a function of n
is plotted at the critical point p = pc corresponding to the BKT
transition and slightly above the critical point for p = pc + ε with
ε = 10−4. The rk distribution is given by rk = 0.1δk,1 + 0.5δk,2 +
0.3δk,3 + 0.1δk,4 and pc = 0.1261(7).

where α is a constant. This BKT transition has already been
reported for specific branching cell complexes and other 2D
hierarchical networks in Refs. [36–38] and in 3D hyperbolic
manifolds in Ref. [12].

D. RG theory at the pitchfork bifurcation points

In this section we study the nature of the percolation
transition of the pitchfork bifurcation points. We start with
the treatment of the tricritical point of Eq. (10), finding that
in this case the transition is second order and subsequently we
discuss the case of critical points of order s > 3 of Eq. (10)
finding continuous phase transitions with anomalous critical
behavior.

Let us expand the RG Eq. (60) close to the tricritical point
(pc, Tc) for 0 < �p � 1 and |�Tn| � 1 when r1 = 2r2(m −
1)/(m − 2), pc = 1 − 1/[〈m − 1〉r1], and Tc = 1. In this way
we obtain

Tn+1 	 F (pc, Tc) + ∂F

∂ p

∣∣∣∣
p=pc,T =Tc

�p

+ ∂F

∂T

∣∣∣∣
p=pc,T =Tc

�Tn + ∂2F

∂ p∂T

∣∣∣∣
p=pc,T =Tc

�p�Tn

+ 1

2

∂2F

∂T 2

∣∣∣∣
p=pc,T =Tc

(�Tn)2

+ 1

6

∂3F

∂T 3

∣∣∣∣
p=pc,T =Tc

(�Tn)3, (89)

with

F (pc, Tc) = Tc = 1,

∂F

∂ p

∣∣∣∣
p=pc,T =Tc

= 0, (90)

∂F

∂T

∣∣∣∣
p=pc,T =Tc

= 1, (91)

∂2F

∂ p∂T

∣∣∣∣
p=pc,T =Tc

= −r1(m − 1), (92)
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∂2F

∂T 2

∣∣∣∣
p=pc,T =Tc

= 0, (93)

∂3F

∂T 3

∣∣∣∣
p=pc,T =Tc

< 0. (94)

Therefore, by truncating the expansion to the leading terms in
�Tn and �p we can write

�Tn+1 − �Tn = −Ĉ�Tn[(�Tn)2 + B̂�p], (95)

where constants B̂ and Ĉ are given by

B̂ = r1(m − 1)

Ĉ
, (96)

Ĉ = −1

6

∂3F

∂T 3

∣∣∣∣
p=pc,T =Tc

. (97)

For n → ∞ we approximate the above equation in the con-
tinuous limit and we use x to indicate the continuous approxi-
mation of −�Tn � 1, i.e., x 	 −�Tn. In this way we get the
differential equation

dx

dn
= −Ĉx[x2 + B̂�p], (98)

with initial condition x(0) = 1 − p, whose solution is

x(n) =
√

B̂�p

{[
1 + B̂�p

(1 − p)2

]
e2ĈB̂�pn − 1

}−1/2

. (99)

Therefore, the percolation order parameter P∞ is given by

P∞(p) 	 exp

{
− ln[〈k〉(m − 1)]a

∫ ∞

0
[x(n)]2

}

	
[

B̂�p

(1 − p)2

]β̂

∝ (�p)β̂ , (100)

where

β̂ = ln[〈k〉(m − 1)]
a

2Ĉ
. (101)

It follows that in this case the transition is continuous with a
critical exponent β̂. This phase transition has been reported in
the case of the flower network in Ref. [38].

At the higher-order critical points of Eq. (10) of order s we
have

F (pc, Tc) = Tc = 1,

∂F

∂ p

∣∣∣∣
p=pc,T =Tc

= 0, (102)

∂F

∂T

∣∣∣∣
p=pc,T =Tc

= 1, (103)

∂2F

∂ p∂T

∣∣∣∣
p=pc,T =Tc

= −r1(m − 1), (104)

∂ jF

∂T j

∣∣∣∣
p=pc,T =Tc

= 0, (105)

(−1)s ∂sF

∂T s

∣∣∣∣
p=pc,T =Tc

> 0, (106)

for j = 1, 2, . . . , (s − 1). Therefore, by expanding the RG
Eq. (60) close to the s-critical point (pc, Tc) for 0<�p�1
and |�Tn| � 1 when r1 = 2r2(m − 1)/(m − 2), pc =1−1/

[〈m − 1〉r1] and Tc = 1 up to order s we get

Tn+1 	 F (pc, Tc) + ∂F

∂ p

∣∣∣∣
p=pc,T =Tc

�p

+ ∂F

∂T

∣∣∣∣
p=pc,T =Tc

�Tn + ∂2F

∂ p∂T

∣∣∣∣
p=pc,T =Tc

�p�Tn

+ 1

s!

∂sF

∂T s

∣∣∣∣
p=pc,T =Tc

(�Tn)s. (107)

Therefore, by truncating the expansion to the leading terms
in �Tn and �p we can write

�Tn+1 − �Tn = −Ĉ�Tn[(−1)s−1(�Tn)s−1 + B̂�p],

where constants B̂ and Ĉ are given by

B̂ = r1(m − 1)

Ĉ
, (108)

Ĉ = (−1)s 1

s!

∂sF

∂T s

∣∣∣∣
p=pc,T =Tc

. (109)

By performing the limit n → ∞ we can derive the equation
for the continuous approximation of −�Tn � 1, indicated as
x(n), i.e., x 	 −�Tn. This equation reads

dx

dn
= −Ĉx[xs−1 + B̂�p], (110)

with initial condition x(0) = 1 − p. This equation has the
solution

x(n) = (
B̂�p

)γ

{[
1 + B̂�p

(1 − p)s−1

]
e(s−1)ĈB̂�pn − 1

}−γ

,

with γ = 1/(s − 1). Therefore, the fraction of nodes in the
giant component can be approximated by

P∞(p) 	 exp

{
− ln[〈k〉(m − 1)]a

∫ ∞

0
[x(n)]2

}

	 exp[−A(�p)−σ ], (111)

where A is a constant and σ = (s − 3)/(s − 1). Therefore, the
transition is continuous with a nontrivial singularity dictated
by the exponent σ which can in general be different from
σ = 1 and σ = 1/2. This expression reduces to the BKT
singularity for s = 5, i.e., P∞(p) ∝ exp [−A/

√
�p] and in the

limit s → ∞ reduces to the scaling P∞(p) ∝ exp[−A/�p],
but in general might be nontrivial. To our knowledge this
anomalous critical scaling has not been reported previously
for any specific branching cell complex.

Here we compare the RG predictions with extensive simu-
lations for critical points of Eq. (10) of order s = 4, 5, 6 (see
Fig. 10). We have found evidence that the exponent σ grows
with the order s of the critical point as predicted by the contin-
uous RG approach. For s = 4 we found a perfect agreement
with the theoretical prediction σ = 1/3. However, for s = 5, 6
the exponent that we found numerically slightly differs from
the predictions. This deviation from the theoretical predictions
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s=4
s=5
s=6

10−6 10−5 10−4 10−3 10−2 10−1100

101

102

p−pc

−l
n
P ∞

FIG. 10. The critical scaling of the order parameter P∞ versus
p − pc is shown for branching simplicial complexes (m = 3) with
distribution rk = r1δk,1 + r2δk,2 + r3δk,3 + r4δk,4 + r5δk,5 and param-
eter values corresponding to the critical points of order s of Eq. (10).
Here the data are obtained by iterating Eq. (42) n = 2×104 times.
The thin dotted line is the theoretically predicted scaling given by
Eq. (61) with σ = 1/3.

could be an effect of finite sizes or also due to the continuous
approximation that we have used to predict the critical scaling.

X. CONCLUSIONS

In this work we have investigated the relation between
network geometry and dynamics on branching simplicial and
cell complexes. Our main results are twofold. On the one
hand, we have shown that the discontinuous percolation tran-

sition is observed not only in hyperbolic manifolds but also in
branched nonamenable hierarchical networks. In this way we
have generalized previous results restricted to special cases of
branching simplicial complexes. Additionally, we have shown
that, as the topology of the branched cell complex is evolving,
the upper percolation transition can display nontrivial con-
tinuous critical behavior. On the other hand, we have shown
that the considered nonamenable networks can have a number
of intermediate phase transitions besides the upper and the
lower one. At the lower percolation transition, the percolation
probability becomes larger than zero but the giant compo-
nent is not extensive. At the upper percolation transition
the giant component becomes extensive. At the intermediate
phase transitions the percolation probability and the fractal
exponent have abrupt discontinuities but the fractal exponents
remain smaller than one. Therefore, below and above these
intermediate phase transitions the giant component remains
subextensive. The latter result was derived by exploiting the
mathematical similarities between the equations determining
the percolation probability of simplicial and cell complexes
with the equations determining the emergence of the MCGC
in correlated multiplex networks. Despite the fact that the
relation between the two percolation problems appears to be
only a formal one, we expect that this result might be useful
to further stimulate the research on the universal properties
of explosive percolation problems. Namely, this work can
be extended in several directions, including, for instance, the
treatment of higher-dimensional simplicial and cell complexes
and the case in which the two-dimensional cell complexes are
formed by m-polygons with heterogeneous distribution for the
number of faces m.
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