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We consider two random walkers embedded in a finite, two-dimension comb and we study the mean first-
encounter time (MFET) evidencing (mainly numerically) different scalings with the linear size of the underlying
network according to the initial position of the walkers. If one of the two players is not allowed to move, then the
first-encounter problem can be recast into a first-passage problem (MFPT) for which we also obtain exact results
for different initial configurations. By comparing MFET and MFPT, we are able to figure out possible search
strategies and, in particular, we show that letting one player be fixed can be convenient to speed up the search as
long as we can finely control the initial setting, while, for a random setting, on average, letting one player rest
would slow down the search.
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I. INTRODUCTION

Nature displays many examples of comblike structures,
such as comb polymers, nanowires, and spiny dendrites (see
e.g., Refs. [1–3]). Artificial examples also abound: In several
buildings and devices, such as antennas and probes, we can
recognize a characteristic comb shape.

Mathematically, a comb can be described as a graph
with vertex set Z × Z and edge set {[(x, y), (x, y′)] : |y −
y′| = 1} ∪ {[(x, 0), (x′, 0)] : |x − x′| = 1}; otherwise stated,
the graph is obtained by taking a linear chain Z (also called
backbone) and by attaching to each of its vertices another
chain Z. From this definition, many variations on theme also
follows: d-dimension combs are obtained by attaching to
each vertex in the side chain another chain; “wedge combs”
are obtained by introducing a function f : Z → Z which
controls the length of the side chains; “brushes” are obtained
by replacing the backbone with a square lattice Z2; and, in
general, branched structures can be obtained by attaching to
each node of an arbitrary graph a chain (see, e.g., Refs. [4,5]).
Of course, for practical applications one may be interested in
finite combs where the infinite chains are replaced by finite
chains of length L.

Over the past few decades these objects have been the
subject of intensive studies, especially in relation to the
properties of random walkers placed therein. For instance,
if we are simply interested in the projection of the walker
position on the backbone, then we can map the problem
into a one-dimensional continuous-time random walk with a
waiting-time distribution corresponding to the distribution of
the time spent by the walker on a side chain of the original
comb (see, e.g., Refs. [6–9]); accordingly, comblike models
have also been used to mimic anomalous diffusion on fractal
structures (see, e.g., Refs. [10–12]). Other works focused on
the occupation time [13], on reaction-diffusion [14,15], and
on propagator estimates [16], just to mention a few.

However, probably the most striking properties arise when
dealing with two (or more) random walkers moving on the
comb and looking for their encounters. In fact, infinite combs
exhibit the so-called finite collision property (or two-particle
transience), namely two independent walks meet only finitely
many times (almost surely) [17,18]. This is rather unintuitive
given that combs are recurrent, that is, a simple random
walk visits infinitely many times any site of the structure.
In other words, if a random walker is looking for a mobile
target on a (infinite) comb, then there is a chance that the
encounter will never occur, no matter how long we wait,
while, if the target is fixed, then the random walker will
surely find it eventually. Indeed, the two-particle transience
and the one-particle recurrence are perfectly consistent and
ultimately stem from the strong topological inhomogenity
of the comb [5] (incidentally, we also recall the dimension
splitting exhibited by combs [19]). Although these properties
concern, by definition, infinite structures, some effects also
emerge when the size is finite [20–22]: The mean first-
encounter time (MFET), providing the characteristic time for
the encounter when the target is mobile, can scale with the
system size faster than the mean first-passage time (MFPT),
providing the characteristic time for the encounter when the
target is immobile. Again, this is qualitatively different from
what one would intuitively expect having in mind a Euclidean
lattice where MFET and MFPT display the same scaling and
the possible quantitative difference would make the MFET
smaller than the MFPT [23].

These findings suggest that search strategies on combs
can be implemented: According to the situation (look, for
instance, at the walkers as a predator and a prey or as two
chemical reactants), it may be advantagous to making time
for the two players to be on the same site—a condition that
may trigger a certain event—either large or small [24].

In this work we address the problem of finding the best
strategy in relation to the motion of the target and to the initial
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configuration. As we will see, a great variety of behaviors can
occur and in order to settle a strategy it is crucial to have a
suitable control of the initial setting.

This paper is structured as follows: In Sec. II we provide
the main definitions and we describe the topology of the
network considered. In Secs. III and IV we evaluate (average)
MFET and MFPT, exploiting analytical and numerical meth-
ods and addressing different initial settings. In Sec. V we
summarize results and, finally, Appendices A and B provide
the technicalities on the calculations.

II. MAIN DEFINITIONS

A. Encounter times

The encounter time between two walkers A and B is the
shortest time such that the two walkers are on the same site. In
general, it depends on the underlying structure S = (V, E )1,
on the initial position of the walkers iA, iB ∈ V , and on the
particular realization of the walks. One typically treats S
and (iA, iB) as parameters and looks for the related MFET,
referred to as MFETS

iA,iB . If A is fixed, then the MFET recovers
the MFPT, similarly referred to as MFPTS

iA,iB , where, again,
(iA, iB) identifies the initial position of the walkers, but this
time iA never changes during the process.

Further, in order to get more synthetic information, one
looks at the global-mean first-encounter time (GFET) ob-
tained by averaging MFETS

iA,iB over all possible initial posi-
tions (iA, iB) drawn independently from the stationary distri-
bution � = (π1, π2, . . . , πn)T , where πk = dk/

∑
i di, where

dk is the degree of the arbitrary vertex k in the structure S .
More precisely,

GFETS :=
∑
iA∈V

∑
iB∈V

πiAπiB MFETS
iA,iB . (1)

However, when iA = iB, the probability that the node i is
selected as the starting point for both A and B is taken as
proportional to d2

i in such a way that

GFETS
iA=iB :=

∑
i∈V

d2
i∑

k d2
k

MFETS
i,i. (2)

We will also consider the case where iA is fixed and the
average is performed only on iB, so to keep track of the effect
of the target position, this quantity is defined as

GFETS
iA :=

∑
iB∈V

πiB MFETS
iA,iB . (3)

Similarly, in the case where A is fixed, the MFPT taken by
the walker B starting from iB to first reach iA, i.e., MFPTS

iA,iB ,
can be averaged over all possible iA, iB drawn independently
from the stationary distribution � to get the global-average
first-passage time (GFPT), that is,

GFPTS :=
∑
iA∈V

∑
iB∈V

πiAπiB MFPTS
iA,iB , (4)

1As standard, V represents the set of vertices and E represents the
set of edges.

FIG. 1. Example of a two-dimension square comb. Here L = 8
and walkers A and B occur to be in the sites (2, 0) and (4, 1),
respectively.

which is just Kemeny’s constant and can be simplified as

GFPTS :=
∑
iA∈V

πiA MFPTS
iA,iB . (5)

The special case where iA = iB = i corresponds to the
mean return time and one has

GFPTS
iA=iB :=

∑
i∈V

d2
i∑
d2

i

MFPTS
i,i. (6)

Finally, for a given iA, averaging only on iB,

GFPTS
iA :=

∑
iB∈V

πiB MFPTS
iA,iB . (7)

B. The network structure

In this work we especially focus on two-dimensional
square combs, which are built by fixing the length L (for
simplicity L is even) of the backbone and by attaching to each
of its sites two side chains of length L/2. In this way the total
number of vertexes is

N := |V | = L(L + 1), (8)

the total number of edges is

|E | = 1

2

∑
i∈V

di = (N − 1) = L2 + L − 1, (9)

and the mean-squared degree is
∑
i∈V

d2
i = 4L2 + 10L − 14. (10)

Each vertex can be indexed by (x, y) (1 � x � L and − L
2 �

y � L
2 ), where x represents the location on the backbone and

y represents the location on the teeth, see Fig. 1 for a sketch.
In the following we will refer to this kind of structure as

C := C(L).
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III. GFET AND GFPT

In this section we focus on global averages for the MFET
and MFPT specifying different initial settings.

A. Players starting from the same site

Here we consider a system where two players are initially
set at the same site; we initially face the problem analytically
for an arbitrary graph, and then we will apply the general
result to the case of two-dimensional combs.

Let A and B denote two independent simple random walks
on a graph G = (V, E ) that is arbitrary, but finite, connected,
and not bipartite. The two walkers start from the same site
and, at each step, they move to any of their nearest neighbors
with equal probability; we denote with P = (pi, j )N×N the
transferring probability matrix.

The first encounter time Ti, j of two walkers starting from
node i and node j, respectively, satisfies the following recur-
sive formula [25]:

Ti, j =
{

1 w.p.
∑

k pi,k p j,k

Tk,h + 1 w.p. pi,k p j,h(k �= h) , (11)

where w.p. is the abbreviation of “with probability.” Then,
posing MFETG

i, j = mi, j for any i, j = 1, 2, . . . , N , to lighten
the notation, one has

mi, j = 1 +
∑
k �=h

pi,k p j,hmk,h. (12)

Also, introducing the matrix M = (mi, j )N×N , we can write

M = 1N 1T
N + P(M − Md )PT , (13)

where 1N is the column vector of length N with entries all
equal to 1 and Md is the N × N diagonal matrix with kth entry
equal to mk,k . Recalling that � = (π1, π2, . . . , πn)T is the
stationary distribution for random walks and, by definition,
�T P = �T , exploiting (13), we have

�T M� = �T 1n1T
n � + �T P(M − Md )PT �

= 1 + �T (M − Md )�.

Thus, �T Md� = 1, or, more explicitly,∑
k

πkmk,kπk = 1. (14)

The GFET for nonbipartite connected graphs where both
players perform a random walk starting from the same site,
defined in (2), therefore reads as

GFETG
iA=iB

=
∑

i

d2
i∑

k d2
k

mi,i = (2|E |)2∑
i d2

i

. (15)

We now consider a finite, connected bipartite graph B =
(V, E ) where the vertex set V can be decomposed into two
disjoint subsets (i.e., V = V1 ∪ V2) such that vertices belong-
ing to the same subset are never adjacent, that is, pi, j = 0, if
i, j belong to the same subset. Moreover, one has

∑
k∈V1

πk =
∑
k∈V2

πk = 1

2
. (16)

If A starts from vertex i, B starts from vertex j, and i, j belong
to different subsets (e.g., i ∈ V1 and j ∈ V2), then they can
never meet and mi, j = ∞2. If i and j belong to the same subset
(e.g., i ∈ V1 and j ∈ V1), then

mi, j = 1 +
∑
k∈V2

⎡
⎣pi,k

∑
h∈V2

p j,hmk,h

⎤
⎦ −

∑
k∈V2

pi,k p j,kmk,k .

Multiplying this expression by � on the left and on the right,
we get
∑
i∈V1

∑
j∈V1

πimi, jπ j =
∑
i∈V1

πi

∑
j∈V1

π j −
∑
i∈V1

∑
j∈V1

∑
k∈V2

πi pi,k p j,kπ jmk,k

+
∑
i∈V1

∑
j∈V1

∑
k∈V2

∑
h∈V2

(πi pi,k p j,hmk,hπ j )

= 1

4
−

∑
k∈V2

πkmk,kπk +
∑
k∈V2

∑
h∈V2

πkmk,hπh.

(17)

Of course, mutatis mutandis,

∑
i∈V2

∑
j∈V2

πimi, jπ j = 1

4
−

∑
k∈V1

πkmk,kπk +
∑
k∈V1

∑
h∈V1

πkmk,hπh.

(18)

By summing together (17) and (18),
∑
i∈V1

∑
j∈V1

πimi, jπ j +
∑
i∈V2

∑
j∈V2

πimi, jπ j

= 1

2
+

∑
k∈V1

∑
h∈V1

πkmk,hπh +
∑
k∈V2

∑
h∈V2

πkmk,hπh

−
∑
k∈V

πkmk,kπk, (19)

whence
∑

k∈V πkmk,kπk = 1/2. Therefore, following defini-
tion (2),

GFETB
iA=iB = 1

2

(2|E |)2∑
i d2

i

. (20)

If the target is not moving, then the encounter time recovers
the return time and, for any finite, connected graph the mean
first-return time to a node i is [26]

MFPTG,B
iA=iB

=
∑

k dk

di
, (21)

no matter whether the underlying structure is bipartite or not.
Thus, plugging (21) into definition (6), the GFPT turns out to
be

GFPTG,B
iA=iB

= (2|E |)2∑
i d2

i

. (22)

2With a little rearranging, seeking a lighter notation and to avoid
proliferation of symbols, we shall pose again MFETB

i, j = mi, j for any
i, j = 1, 2, . . . , N .
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FIG. 2. (a) The ratio GFETC/GFPTC is shown as a function of
L; data for GFETC are obtained by numerical simulations, while
data for GFPTC are obtained by evaluating the exact expression (27).
Notice that the ratio GFETC/GFPTC monotonically decreases with
L and this allows us to derive that the move of walker A overall
fastens the process and that, recalling that GFPTC ∼ L3, GFETC/L3

scales sublinearly with L. (b) The ratio GFETC
iA
/GFPTC

iA
is shown as

a function of L for different choices of iA.

Consequently, comparing (15), (20), and (22), for a nonbi-
partite connected graph we have

GFPTG
iA=iB

= GFETG
iA=iB

, (23)

namely the move of target A has no effect on the GFET, while
on bipartite connected graphs,

GFPTB
iA=iB = 2 GFETB

iA=iB , (24)

namely the move of target A fastens the encounter between the
two players. Otherwise stated, in nonbipartite finite connected
graphs the motion of the target A has no effects on the (global)
encounter time, while on bipartite finite connected graphs the
motion of the target A halves the (global) encounter time.

The two-dimensional comb C described in Sec. II B is
bipartite and, using (9) and (10), we can write

GFETC
iA=iB = 1

2
GFPTC

iA=iB = (L2 + L − 1)2

2L2 + 5L − 7
, (25)

that is,

GFPTC
iA=iB > GFETC

iA=iB . (26)

B. Players starting from independently drawn sites

Here we analyze the case of players starting from sites iA
and iB drawn independently from the stationary distribution �

on C. In particular, we derive the GFET, obtained by averaging
the MFET over all possible initial positions of A and B, as
defined in Eq. (1) and the GFPT, obtained by averaging the
MFPT over all possible initial positions of A and B, as defined
in Eq. (4). By comparing the two quantities we will be able to
see the effect of the target motion on the overall process.

The GFET is addressed by means of numerical simulations
which evidence that GFETC/L3 scales sublinearly with L (see
Fig. 2).

The GFPT is addressed analytically finding

GFPTC = 5L5 + 6L4 − 9L3 − 3L2 + 7L − 3

6L2 + 6L − 6
∼ L3, (27)

whose detailed derivation is presented in Appendix A.
Therefore, we can conclude that

GFPTC > GFETC, (28)

and the move of target A fastens the encounter between A and
B. This is also evidenced in Fig. 2(a).

Therefore the result (26) is preserved as the constraint iA =
iB is relaxed.

C. One player starting from a given site

Here we analyze the MFET in the case where the initial
position of target A is chosen at iA ∈ V , while the initial posi-
tion iB of B is randomly drawn from the stationary distribution
�, and we derive the GFET by averaging over iB, as defined
in (3). This result will be then compared to the GFPT obtained
by keeping A fixed, as defined in (7).

The GFET is approached numerically for different choices
of iA; the cases considered suggest that GFETiA/L3 scales
sublinearly.

As for GFPTC
iA , we got exact results for arbitrary iA =

(xiA , yiA ) as

GFPTC
iA = 4L5 + 15L4 + 12L3 + 3L2 + 5L − 9

6(L2 + L − 1)

+ 2xiA (1 + L)(xiA − L − 1

+ 2|yiA |(|yiA | + L2 − 1) ∼ L3, (29)

and the detailed derivation is presented in Appendix A.
From (29) one can see that GFPTC

iA increases with |yiA | while
0 � |yiA | � L/2. Also,

∂

∂xiA

GFPTC
iA = 4xiA (L + 1) − 2(L + 1)2, (30)

that is, GFPTC
iA is a convex function of xiA ∈ [1, L/2] and it

reaches its minimum at iA = (L/2, 0)

min
iA

GFPTC
iA = L5 + 3L4 + 6L2 + 11L − 9

6L2 + 6L − 6
,

and its maximum at iA = (1,±L/2) and at iA = (L,±L/2)

max
iA

GFPTC
iA = 10L5 + 12L4 − 21L3 − 6L2 + 23L − 9

6L2 + 6L − 6
.

By looking at the ratio between GFETC
iA and GFPTC

iA (see
Fig. 2, right panel), we find that if the distance between iA and
the central site (L/2, 0) scales linearly with L,

GFPTC
iA > GFETC

iA , (31)

namely if the initial position of the target (i.e., iA) is far from
the central site (L/2, 0), its motion fastens the encounter;
however, when iA is close to the central site finite-size effects
may yield to corrections.

A further representation is provided in Fig. 3, where
we show a colormap for GFETC

iA [Fig. 3(b)], for GFPTC
iA

[Fig. 3(b)], and for their logarithmic ratio [Fig. 3(c)].
In particular, notice that getting far from iA = (L/2, 0),
GFETC

iA/GFETC
iA moves from values that are larger than 1 to

values that are smaller than 1.

IV. MFET AND MFPT

In this section we focus on the MFET and the MFPT
specifying different initial settings.
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FIG. 3. Color map for GFETC
iA

(a), GFPTC
iA

(b), their logarithmic
ratio (c) and the logarithmic ratio of MFETC

iA
and MFPTC

iA
(d). Each

pixel represents a different choice of iA in a comb of size L = 64;
the brighter the color and the larger the related value according to
the related legends. Data for GFPT and for MFPT stem for the exact
formulas (22) and (33), while data for GFET and MFET stem from
numerical simulations (in both cases averages are made over 105

realizations; statistical fluctuations are still rather evident for GFET).

A. Players starting from the same site

Here we initially set both players on a site labeled as
(x0, y0) with y0 = kL (0 � k � 1/2) on a two-dimensional
comb. First, we address the case where the initial site belongs
to the backbone (i.e., k = 0), and next is the case where it
belongs to a tooth (i.e., k > 0).

1. Starting on the backbone

When k = 0 we can refer to previous results [21,22], which
showed that the MFET for two walkers starting from a site in
the backbone scales with the linear size L of the comb as

MFETC
iA=iB
k=0

∼ L3

log(L)
. (32)

If the target is immobile, then the MFET is just the mean
first return time for B. For any vertex (x0, y0) with y0 = 0 in
C, the degree is 4 (or 3 for the end nodes). Then, recalling
formula (21) and (9), the MFPT while A is immobile satisfies

MFPTC
iA=iB
k=0

= 1

2
(L2 + L − 1), (33)

[or MFPTC
iA=iB
k=0

= 2(L2 + L − 1)/3 for the end nodes]. There-

fore, as long as L is large enough,

MFPTC
iA=iB
k=0

< MFETC
iA=iB
k=0

, (34)

which means that if A and B start at the same vertex in the
backbone, then the move of A slows down the encounter.

2. Starting on the teeth

When y0 = kL (0 < k < 1/2), we can figure out two possi-
ble scenarios: (i) the first encounter between A and B happens
before one of the two walkers leaves the tooth that they
both start from, and (ii) the first encounter between A and B
happens after one of the two walkers leaves the tooth they
both start from. Therefore, the overall MFET can be written

FIG. 4. (a) Numerical results for MFETC
iA=iB,k>0 are analyzed to

get evidence about the scaling (35); in particular, for different choices
of k > 0 (as explained by the legend) we get that MFETC

iA=iB,k>0 ×
log(L) scales as L2 (the function y = L2 is depicted in black as
a reference). (b) The ratio MFETC

iA=iB,k>0/MFPTC
iA=iB,k>0 obtained

by dividing numerical estimates for MFETC
iA=iB,k>0 by the exact

evaluation of MFPTC
iA=iB,k>0 from (33) is plotted versus L for dif-

ferent choices of k (same legend as left panel). The decreasing trend
confirms that MFETC

iA=iB,k>0 scales less than quadratically with L and
therefore, in this case, the motion of reactant A fastens the encounter.

as the sum of the MFETs related to case (i) and to case (ii),
weighted by the probability that, respectively, case (i) and case
(ii) occurs.

The first scenario can be looked on as the encounter
problem on a finite one-dimensional interval [0, L/2] with
absorbing boundary at site 0 and a reflecting boundary at L/2,
while both A and B start at y0 with y0 = kL (0 < k < 1/2).
The probability Pexit that one of the two walkers leaves the
common tooth before encounter is just the probability that one
of the two walkers is absorbed at 0 before they encounter on a
finite one-dimensional interval [0, L/2].

Previous results [27–29] showed that Pexit ∼ y−1
0 ∼ L−1

and the MFET before one of the two particles is absorbed on a
finite one-dimensional interval scales linearly with the length
of the interval.

As for the second scenario, the MFET is by far longer as it
takes a time scaling as L3/ log(L) [21,22], therefore providing
the leading contribution for the overall MFET that reads as

MFETC
iA=iB
k>0

∼ L2

log(L)
. (35)

This result is corroborated by numerical simulations: in
Fig. 4(a), the quantity MFET × log(L) is shown to scale
quadratically with L for different choices of the initial site.
We also notice that MFETC

iA=iB
k>0

decreases with k, that is, the

larger the initial distance from the backbone and the smaller
the MFET.

Let us now face the case where the target A is immobile,
that is, we look at the mean first return time of B. Recall-
ing (21), (9), and the fact that for any vertex (x0, y0) in C with
y0 = kL (0 < k < 1/2) the degree is 2, we get

MFPTC
iA=iB
k>0

= L2 + L − 1. (36)

Then, comparing (35) and (36), as long as L is large enough,
we can state that

MFPTC
iA=iB
k>0

> MFETC
iA=iB
k>0

. (37)
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This result is corroborated by Fig. 4 (right panel) which shows
the ratio between the numerical results for MFET iA=iB

k>0
and the

exact result for MFPTC
iA=iB
k>0

is decreasing with L and this effect

is enhanced far larger values of k.
Further insights are provided in Fig. 3(d), where one can

see that, when iA is relatively far from the backbone, the
MFET can be much smaller than the MFPT.

Finally, for the case k = 1/2, the vertex (x0, y0) is just a
node with degree 1, and therefore the MFET is just 1, while, in
general, the MFPT is larger than 1, in such a way that, also for
this case, the move of target A fastens the encounter between
A and B:

MFPTC
iA=iB
k=1/2

> MFETC
iA=iB
k=1/2

. (38)

In conclusion, we obtain that if A and B start at the same
vertex in a tooth and the distance from the vertex to the
backbone is relatively large, the move of target A fastens the
encounter between A and B.

B. Players starting from different sites

Here we consider the case where A and B start from
arbitrary, fixed sites iA and iB on C and we derive the related
MFPT and MFET.

The latter is addressed numerically via simulations obtain-
ing a scaling with respect to L which ranges from L3 (if the
initial distance between walkers is relatively large, namely
∼L [22]) to L2/ log L (if walkers are initially on the same tooth
and relatively far from the backbone).

As for the MFPT, its evaluation is addressed analytically
finding exact results. In particular, specifying the initial posi-
tion of reactants in terms of the position along the backbone
and along the tooth, that is, setting iA = (xiA , yiA ) and iB =
(xiB , yiB ), we get

MFPTC
iA,iB

xiA
�=xiB

= 2|yiA |(L2 − 1) + L(|yiB | + |yiA |)

+ y2
iA − y2

iB + (L2 + L − 1)|xiB − xiA |
+ (xiA − xiB )(L + 1)(xiA + xiB − L − 1) (39)

and

MFPTC
iA,iB

xiA
=xiB

= (L2 + L − 1)|yiA − yiB |

+ (|yiA | − |yiB |)(L2 − 1 + |yiA | + |yiB |). (40)

The detailed derivations of Eqs. (39) and (40) are based on
the connection between the MFPT and the effective resistance
(see, e.g., Refs. [30,31]) and are presented in Appendix B.

By comparing results for MFET and MFPT, we get that if
A and B start from sites that are relatively close each other
and to the backbone, then the motion of A slows down the
process, namely the result of Sec. IV A [Eq. (36)] is robust
against relatively small changes in the initial setting; on the
other hand, when the distance between A and B is relatively
large, the outcome sensitively depends on the specific initial
configuration (see Fig. 5). In particular, when A and B are
initially on the same tooth, with yiA yiB > 0 and then if the
initial position of A is closer to the backbone than the initial

FIG. 5. Numerical results for MFETC
iA,iB

and exact result for
MFPTC

iA,iB
are compared for different choices of the initial site. In

particular, here xiA �= xiB and |yiA − yiB | either does not scale with L
(a) or it does scale with L (b). In the former case the move of target
A slows the encounter, while in the latter case different scenarios are
possibile according to the initial setting.

position of B, then the move of target A slows the encounter
between A and B and vice versa (see Fig. 6).

V. CONCLUSION

In this work we considered two “players,” referred to as
A and B, set on a two-dimensional comb structure and such
that their encounter is able to trigger an event. The mean
time to first encounter therefore provides the time scale for
the event to occur. As outlined in previous works (see, e.g.,
Refs. [20–22]) this timescale can be significantly influenced
by whether both players are moving or one, say, A, is fixed.
Such information is crucial to design a strategy able to fasten
or slow down, according to the specific problem, the process
(see e.g., Refs [23,24,32]).

In this work we made a step forward by evidencing that
the initial setting can also play a significant role. In fact,
according to the initial position of A and B different scenarios
can emerge as summarized by Table I. Therefore, in general,
if the initial positions are set randomly, the motion of player A
would, on average, speed up the process. However, if we are
able to finely control the positions of both players (for instance
placing them relatively close each other and to the backbone),
then we can exploit the particular topology of the comb to get
a slowdown of the process by letting both players move.

FIG. 6. Numerical results for MFETC
iA,iB

and exact result for
MFPTC

iA,iB
are compared for different choices of initial site. In

particular, here xiA = xiB . According to the initial setting the move
of target A can either slow or fasten the encounter.
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TABLE I. This table summarizes the main results of the work.
Here d (i, j) denotes the chemical distance between two nodes i, j ∈
V and the big O notation is used to distinguish between quantities
which scale (or do not scale) with the linear size L of C as L is grown
larger and larger.

Initial state Encounter times

iA = iB ∼ � GFPT > GFET
iA, iB ∼ � GFPT > GFET
iB ∼ � GFPTiA ≶ GFETiA

d (iA, iB ) ∼ O(1) and yA, yB ∼ O(1) MFPTiA,iB < MFETiA,iB

d (iA, iB ) ∼ O(L) MFPTiA,iB ≶ MFETiA,iB
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APPENDIX A: DERIVATION OF EQS. (27) AND (29)

First, we report the derivation of Eq. (27). Substituting
MFPTC

iA,iB into Eq. (5) with the right-hand side of Eq. (B1),
we obtain

GFPTC = |E |
∑
iA∈V

πiA (LiA,iB + WiA − WiB )

= |E |
∑
iA∈V

πiAWiA . (A1)

Recalling the expression for Wj in Eq. (B4), we get

∑
j∈V

π jWj =
∑
j∈V

d j

2|E |Wj

=
∑
j∈V

d j

8|E |2 (3L3 + 4L2 + 2)

+
∑

(x j ,y j )∈V

d j

2|E |2 [x2
j L − x jL

2 − 2x jL + x2
j − x j]

+
∑

(x j ,y j )∈V

d j

2|E |2 [L2|y j | + y2
j − |y j |]

= 5L5 + 6L4 − 9L3 − 3L2 + 7L − 3

6|E |2 . (A2)

Inserting Eq. (A2) into Eq. (A1), we obtain Eq. (27).
Let us now derive the exact result of GFPTC

iA [i.e., Eq. (29)]
for arbitrary iA = (xiA , yiA ).

Recalling that for the arbitrary structure S

MFPTS
iA,iB = |E |(LiA,iB + WiA − WiB ),

and posing for simplicity mi, j := MFPTC
i, j , the GFPT can be

expressed as [31]

GFPTC
iA =

∑
j∈V

π jmiA, j = πimiA,iA +
∑
j �=iA

π jmiA, j

= 1 +
∑
j �=iA

π j |E |(LiA, j + WiA − Wj )

= |E |(2WiA −
∑
j∈V

π jWj ) + 1. (A3)

Inserting Eqs. (A2) and (B4) into Eq. (A3), Eq. (29) is
obtained.

APPENDIX B: DERIVATION OF EQS. (40) AND (39)

Here we calculate the MFPT from an arbitrary site j to an
arbitrary site i on C, exploiting the connection between the
MFPT and the effective resistance (see, e.g., [30,31]). In fact,
we can write

MFPTC
i, j = |E |(Li, j + Wi − Wj ), (B1)

where Li, j denotes the shortest-path length between vertex i
and j, |E | is the total number of edges, and Wj is the weighted
average path length from any vertex to vertex j defined as

Wj =
∑
i∈V

πiLi, j =
∑
i∈V

di

2|E |Li, j . (B2)

For the two-dimensional comb described in Sec. II B, we find,
for arbitrary sites i = (xi, yi ) and j = (x j, y j ),

Li, j =
{|y j − yi| x j = xi

|y j | + |yi| + |x j − xi| x j �= xi
. (B3)

Inserting Eq. (B3) into Eq. (B2), for any vertex j = (x j, y j ),
we get

Wj = 1

2|E |
∑
i∈V

(Li, j · di )

= 1

|E |

⎧⎨
⎩2

L−1∑
xi=2

(|xi − x j | + |y j |) + 3

2
(L − 1) + 3|y j |

+
L/2−1∑

yi=1−L/2

|yi − y j | + L +
∑
xi �=x j

⎛
⎝2

L/2−1∑
yi=1

yi + L

2

⎞
⎠

+
∑
xi �=x j

[(|xi − x j | + |y j |)(L − 1)]

⎫⎬
⎭

= 1

|E |
{

3

4
L3 + L2 + 1

2
+ y2

j

+ (L + 1)
[
x2

j − x j (L + 1) + |y j |(L − 1)
]}

. (B4)

Plugging Eqs. (B3) and (B4) into Eq. (B1), we obtain
Eqs. (39) and (40).

Further, from Eqs. (39) and (40) we can highlight the
following scalings:
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(i) if xiA �= xiB (i.e., A and B start from a different tooth),

MFPTC
iA,iB

xiA
�=xiB

∼
{

L3, if |yiA | ∼ L or |xiB − xiA | ∼ L
L2, if |yiA | ∼ |xiB − xiA | ∼ const

;

(ii) if xiA = xiB and yiA × yiB � 0 (i.e., A and B start from
different sides of a tooth),

MFPTC
iA,iB

xiA
=xiB

∼
{

L3, if |yiA | ∼ L
L2, if |yiA | ∼ const

.

(iii) if xiA = xiB and yiA × yiB � 0 (i.e., A and B start from
the same side of a tooth),

MFPTC
iA,iB

xiA
=xiB

∼

⎧⎪⎪⎨
⎪⎪⎩

L, if |yiB | > |yiA |, |yiB | − |yiA | ∼ const
L2, if |yiB | > |yiA |, |yiB | − |yiA | ∼ L
L2, if |yiB | < |yiA |, |yiA | − |yiB | ∼ const
L3, if |yiB | < |yiA |, |yiA | − |yiB | ∼ L

.
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