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Geometrical and spectral study of β-skeleton graphs
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We perform an extensive numerical analysis of β-skeleton graphs, a particular type of proximity graphs.
In a β-skeleton graph (BSG) two vertices are connected if a proximity rule, that depends of the parameter
β ∈ (0,∞), is satisfied. Moreover, for β > 1 there exist two different proximity rules, leading to lune-based and
circle-based BSGs. First, by computing the average degree of large ensembles of BSGs we detect differences,
which increase with the increase of β, between lune-based and circle-based BSGs. Then, within a random matrix
theory (RMT) approach, we explore spectral and eigenvector properties of random BSGs by the use of the
nearest-neighbor energy-level spacing distribution and the entropic eigenvector localization length, respectively.
The RMT analysis allows us to conclude that a localization transition occurs at β = 1.
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I. INTRODUCTION

The analysis of spatial networks plays a fundamental role
for understanding complex systems embedded in geographi-
cal spaces; see [1,2]. Here we study a model which is a gener-
alization of the so-called random neighborhood graphs [3,4],
known as β-skeleton graphs, embedded in the unit square. In
a β-skeleton graph (BSG) two vertices (points or nodes) are
connected by an edge if and only if these vertices satisfy a
particular geometrical requirement named a proximity rule.
The proximity rule is encoded in the β parameter, which takes
values in the interval 0 < β < ∞. With the proximity rules
we will define below, a fully connected graph is obtained in
the limit β → 0, while the network becomes a disconnected
graph when β → ∞.

In particular, BSGs are useful to study geometric complex
systems where the connectivity between two items is inter-
fered by the presence of a third one in between them. This
is the case, for instance, in granular materials [5], for repre-
senting urban street networks [6], as well as for representing
fractures in rocks [7], among others.

This work is organized as follows. In Sec. II we introduce
the proximity rules needed to construct the BSGs. In fact,
for β > 1 there exist two different proximity rules, leading to
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lune-based and circle-based BSGs. Indeed, our study focuses
on a detailed comparison between both. Therefore, we study
topological and spectral properties of BSGs by using the
average degree, in Sec. III, and by using nearest-neighbor
energy-level spacing distribution and the entropic eigenvector
localization length, in Sec. IV. Finally, we summarize in
Sec. V.

II. DEFINITIONS OF β-SKELETON GRAPHS

For a given set of vertices V = {v1, v2, . . . , vn} on the
plane, a Euclidean distance function d , and a parameter
0 < β < ∞, a graph Gβ (V ), called a BSG, is defined as
follows [3]:

Two vertices vi, v j ∈ V are connected with an edge
iff no point from V \{vi, v j} belongs to the neighborhood
N (vi, v j, β ), where

(1) For 0 < β � 1, N (vi, v j, β ) is the intersection of two
discs, each with radius

r = d (vi, v j )

2β
, (1)

having the segment viv j as a chord. The disk centers are
located at

c−
+ = vi + v j

2
∓ R(π/2)(v j − vi )

2β
(1 − β2)1/2, (2)
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FIG. 1. Examples of neighborhoods N (vi, v j, β ) for the vertices
vi = (−0.25, 0) and v j = (0.25, 0) and several values of β � 1.

where R(·) is a rotation matrix and vi and v j are the coordinate
vectors of the corresponding vertices, namely

R(π/2) =
(

0 −1
1 0

)
, vi ≡

(
xi

yi

)
, v j ≡

(
x j

y j

)
. (3)

In Fig. 1 we show some examples of neighborhoods
N (vi, v j, β ). We stress that in the limit β → 0 the neighbor-
hood N becomes the straight line joining the vertices vi and
v j , so the network becomes fully connected.

(2) For β > 1 there are two proximity rules:
(2a) Lune-based BSG. Here N (vi, v j, β ) is the inter-

section of two discs, each with radius

r = βd (vi, v j )

2
, (4)

whose centers are at

c1 = β

2
vi +

(
1 − β

2

)
v j, (5)

c2 = β

2
v j +

(
1 − β

2

)
vi. (6)

In Fig. 2(a) we can see the lunes of influence for different
values of β � 1. Note that in the limiting case β → ∞,
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FIG. 2. Examples of (a) lune-based and (b) circle-based neigh-
borhoods N (vi, v j, β ) for the vertices vi = (−0.25, 0) and v j =
(0.25, 0) and some values of β � 1.

N (vi, v j, β ) is an infinite strip of width |vi − v j |; thus,
even for very large values of β some connections may exist.

(2b) Circle-based BSG. Here N (vi, v j, β ) is the union
of two discs, with radius given by Eq. (4), that pass through
both vi and v j . The disk centers are located at

c−
+ = vi + v j

2
∓ R(π/2)(v j − vi )

2
(β2 − 1)1/2. (7)

In Fig. 2(b) we can see the circles of influence for different
values of β � 1. Note that in the limiting case β → ∞,
N (vi, v j, β ) is the entire plane; therefore, for large enough
values of β the skeleton graph becomes a disconnected
graph.
It is worth mentioning that, for β = 1, Eqs. (2), (5), and

(7) reduce to the same expression. Indeed, the case β = 1 is
well known in the literature as Gabriel graph [8] and is called
a 1-skeleton graph. Another well known case is β = 2, which
is known as relative neighborhood graph [4], in the lune-based
formulation, and is typically called a 2-skeleton graph.

III. RANDOM β-SKELETON GRAPHS
IN THE UNIT SQUARE

In this work we consider randomly and independently dis-
tributed vertices in the unit square. As examples, in Fig. 3 we
show BSGs with β = 0.5 and β = 1 for N = 200. Note that
we have used the same set of randomly distributed vertices in
both panels. Here, since β � 1 the proximity rule is unique.
Then, in Fig. 4 we present BSGs for β = 1.5 and β = 2.
There we consider both the lune-based (left panels) and the
circle-based (right panels) proximity rules. We have used the
same set of vertices as in Fig. 3. From this figure it is clear that
different proximity rules produce quite different networks. In
particular, for a fixed value of β, lune-based skeleton graphs
show higher connectivity than circle-based skeleton graphs.
We will characterize this feature by the use of geometrical
and spectral properties below.

Average degree

A well known topological measure in graph theory is the
degree of a vertex k, which is the number of edges incident
to a given vertex. Here, since we are interested in random
BSGs, we will consider the ensemble average degree 〈k〉 that
we compute by averaging over all vertices of BSGs with fixed
parameter pairs (N, β ).

(a) (b)

FIG. 3. BSGs with (a) β = 0.5 and (b) β = 1 for the same set of
N = 200 randomly distributed vertices in the unit square.
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(a)
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(b)
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FIG. 4. BSGs with (a), (b) β = 1.5 and (c), (d) β = 2 for the
same set of randomly distributed vertices of Fig. 3. The lune-based
(circle-based) proximity rule was used in the left (right) panels.

On the one hand, in Figs. 5 we plot 〈k〉 as a function of
N for random BSGs with several values of β < 1 (i.e., when
only one proximity rule applies). We observe that, for fixed
β, 〈k〉 increases for increasing N . Moreover, for fixed N , 〈k〉
increases for decreasing β; this confirms the expected scenario
of completely connected networks in the limit β → 0.

On the other hand, in Figs. 6 and 7 we also plot 〈k〉 as
a function of N but now for random BSGs with β � 1. We
consider both lune-based (left panels) and circle-based (right
panels) proximity rules. For clarity, we group the data in
the regimes 1 � β < 2 (Fig. 6) and β � 2 (Fig. 7). First, let
us concentrate on the BSGs constructed with the lune-based
proximity rule; see left panels in Figs. 6 and 7. There, we
observe three different behaviors for 〈k〉: (i) when β is small,
β < 2, 〈k〉 is an increasing function of N ; (ii) for intermediate
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FIG. 5. Average degree 〈k〉 as a function of N for random BSGs
with β < 1. Here, the standard deviation error is smaller than the
symbol size.

values of β, 2 � β � 20, 〈k〉 is approximately constant for
the values of N we used in this work; and (iii) when β is
large, β > 20, 〈k〉 is a decreasing function of N . This pattern
is also observed for BSGs constructed with the circle-based
proximity rule (see right panels in Figs. 6 and 7) but shifted to
smaller values of β; that is, 〈k〉 is approximately constant as a
function of N for 1.5 � β � 4.

From the observations above we can conclude that for
intermediate values of β (including relative neighbor graphs)
the BSGs are very stable graphs in the sense that the average
degree remains constant as a function of N .

Moreover, in Fig. 8(a) we now plot 〈k〉 versus β for
BSGs constructed with both the lune-based and circle-based
proximity rules. From this figure, one can clearly see that 〈k〉
is a monotonically decreasing function of β. However, 〈k〉
decreases faster with β for the circle-based proximity rule.
Also, note that the decrease of 〈k〉 as a function of β implies
the increase of the number of isolated vertices, Nisolated, whose
average we report in Fig. 8(b). Notice that 〈Nisolated〉 = 0 when
β < 1 (β < 2) for circle-based (lune-based) BSGs; i.e., for
those values of β the giant component of the graph contains
all vertices.

Therefore, the main difference we can observe between
random BSGs constructed with the lune-based and circle-
based proximity rules is that in the circle-based case the
networks become disconnected for relatively smaller values
of β than in the lune-based case; compare Figs. 7(a) and 7(b),
left and right panels in Fig. 4, and also the curves in Fig. 8.
Indeed, from Figs. 7(b) and 8 it is clear that when β � 100 it is
highly probable to have completely disconnected BSGs when
they are constructed following the circle-based proximity rule.

IV. RANDOM MATRIX THEORY APPROACH
TO β-SKELETON GRAPHS

The study of spectral and eigenvector properties of the
adjacency matrices of random graphs, by the use of random
matrix theory (RMT) measures, is a well known practice;
see, e.g., [9–14]. However, here we apply a less widespread
approach that considers, in addition, the construction of a
RMT ensemble appropriate for the graph under study; see
some examples of this approach in Refs. [15–17].

Specifically, we define the RMT ensemble corresponding
to the random BSGs as follows. We choose the nonvanish-
ing elements of the adjacency matrices A to be statistically
independent random variables drawn from a normal distribu-
tion with zero mean, 〈Ai j〉 = 0, and variance 〈|Ai j |2〉 = (1 +
δi j )/2, where δi j is the Kronecker delta. Therefore, for graphs
with isolated vertices, diagonal random adjacency matrices
are obtained, known in RMT as the Poisson ensemble [18].
When the graphs are fully connected, real and symmetric full
random adjacency matrices are recovered; known in RMT
as the Gaussian orthogonal ensemble (GOE) [18]. Note that
in our random BSGs the Poisson ensemble and the GOE
are reproduced for β → ∞ and β → 0, respectively. Thus,
the random adjacency matrices corresponding to the random
BSGs work as an interpolating RMT ensemble that transits
from the GOE to the Poisson ensemble by increasing β.

The use of randomly weighted adjacency matrices (instead
of the standard binary ones) (i) allows the use of RMT
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FIG. 6. Average degree 〈k〉 as a function of N for random BSGs with 1 � β < 2. In both panels the standard deviation error is smaller
than the symbol size.

predictions in the proper limits and (ii) avoids handling of
null matrices for graphs with isolated vertices, so it is possible
to numerically approach the limit β → ∞. Moreover, it is
important to stress that the topology of the random BSGs, as
defined in Secs. II and III, is not affected by adding weights to
the corresponding adjacency matrices.

Therefore, below we use exact numerical diagonalization
to obtain the eigenvalues λm and eigenvectors �m (m =
1, . . . , N) of large ensembles of randomly weighted adjacency
matrices characterized by β and N .

A. Spectral properties

In order to characterize the spectra of random BSGs, we
use the nearest-neighbor energy level spacing distribution
P(s) [18], a widely used tool in RMT. For β → ∞, i.e.,
when the vertices in the random BSGs are mostly isolated,
the corresponding randomly weighted adjacency matrices are
almost diagonal and, regardless of the size of the graph, P(s)
should be close to the exponential distribution,

P(s) = exp(−s), (8)

which is better known in RMT as the Poisson distribution.
In the opposite limit, β → 0, when the BSGs are fully con-
nected, the randomly weighted adjacency matrices become
members of the GOE and P(s) closely follows the Wigner-
Dyson distribution,

P(s) = π

2
s exp

(
−π

4
s2

)
. (9)

Thus, for a fixed graph size N , by increasing β from zero
to infinity, the shape of P(s) is expected to evolve from
the Wigner-Dyson distribution to the Poisson distribution.
Moreover, for a fixed value of β, the increase in the density
of vertices N also produces changes in the shape of P(s). In
Fig. 9 we explore both scenarios.

We construct histograms of P(s) from N/2 unfolded spac-
ings [18], sm = (λm+1 − λm)/�, around the band center of a
large number of graph realizations (such that all histograms
are constructed with 5 × 105 spacings). Here, � is the mean
level spacing computed for each adjacency matrix. Then,
Fig. 9 presents histograms of P(s) for the randomly weighted
adjacency matrices of random BSGs: In Fig. 9(a) the graph
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FIG. 7. (a), (b) Average degree 〈k〉 as a function of N for random BSGs with β � 2. In (a) the standard deviation error is smaller than the
symbols size.
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FIG. 8. (a) Average degree 〈k〉 as a function of β for random
BSGs for several values of N . (b) Fraction of isolated nodes (nor-
malized to N), 〈Nisolated〉/N , as a function of β. In both panels the
lune-based and circle-based proximity rules are reported.

size is fixed to N = 102 and β takes the values 0.1, 0.9, 1,
and 10. In this figure we observe a complete transition in
the shape of P(s) from the Wigner-Dyson to Poisson distri-
bution functions (also shown as reference) for increasing β.
In Fig. 9(b) the parameter β is set to 1 (Gabriel graph) while
N increases from 6 to 104. Here, in contrast to Fig. 9(a),
we do not observe a complete transition from Wigner-Dyson
to Poisson in the shape of P(s). From Fig. 9(b) one may
expect that by decreasing further the number of vertices N
the Wigner-Dyson shape could emerge; however, this is not
the case, as shown in Fig. 10. There we observe that for
N < 6 the P(s) becomes symmetric with respect to s = 1. It
is important to stress that we have not observed this shape
for the P(s) before. Indeed, in other random network models
embedded in the plane, such as random regular graphs and
random rectangular graphs (RRGs) (for the definition and
general properties of RRGs the reader is referred to [19]), we
did observe the full transition from Wigner-Dyson to Poisson
for the P(s) as a function of the density of vertices for a fixed
value of the proximity rule parameter [15].

Now, in order to characterize the shape of P(s) for random
BSGs we use the Brody distribution [20,21]

P(s) = (μ + 1)aμsμ exp(−aμsμ+1), (10)
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FIG. 9. Nearest-neighbor energy level spacing distribution P(s)
for random BSGs with (a) [(b)] N = 102 [β = 1] and several values
of β [N]. Here we use the lune-based proximity rule to construct
the BSGs. Dash-dotted and dashed lines correspond to the Poisson
and Wigner-Dyson distribution functions given by Eqs. (8) and (9),
respectively.

where aμ = �[(μ + 2)/(μ + 1)]μ+1, �(·) is the gamma func-
tion, and μ, known as Brody parameter, takes values in the
range [0,1]. Equation (10) was originally derived to provide
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FIG. 10. Nearest-neighbor energy level spacing distribution P(s)
for random BSGs with β = 1 and N � 6. Vertical dashed line at
s = 1 is plotted to guide the eye.
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an interpolation expression for P(s) in the transition from
Poisson to Wigner-Dyson distributions, serving as a measure
for the degree of mixing between Poisson and GOE statistics.
In fact, μ = 0 and μ = 1 in Eq. (10) produce Eqs. (8) and (9),
respectively. In particular, as we show below, the Brody pa-
rameter will allows us to identify the onset of the localization
transition for random BSGs. It is also relevant to mention that
the Brody distribution has been applied to study other com-
plex networks models; see, e.g., [9–16]. In fact, we found that
Eq. (10) provides excellent fittings to the histograms of P(s)
of random BSGs. For example, the fittings to the histograms in
Fig. 9(a) [Fig. 9(b)] (not shown to avoid figure saturation) pro-
vide μ(β ) = 0.953(0.1), 0.624(0.9), 0.276(1), and 0.002(10)
[μ(N ) = 0.872(6), 0.645(10), 0.316(102), 0.145(103), and
0.0468(104)]. It is important to remark that for N � 5 the P(s)
cannot be fitted by the Brody distribution (see Fig. 10), there-
fore we will not consider small graph sizes in our analysis
below.

Thus we now perform a systematic study of the Brody
parameter μ as a function of the parameters β and N of
the BSGs. To this end, we construct histograms of P(s) for
a large number of parameter combinations to extract the
corresponding values of μ by fitting them using Eq. (10).
Figure 11 reports μ versus β for five different graph sizes
for both lune-based and circle-based proximity rules. Notice
that in all cases the behavior of μ is similar for increasing β:
For small β (i.e., β � 0.1) μ is approximately constant and
equal to 0.96; then μ decreases fast for β approaching 1; and
finally, for β > 1, μ continues decreasing but slowly when β

is further increased. For large β (i.e., β > 10) and large N ,
μ ≈ 0.

Indeed, from Fig. 11 we can conclude that our model
of random BSGs undergoes a clear and sharp transition at
β = 1 from a regime very close to the GOE regime (mostly
connected vertices), μ ≈ 0.96, to the Poisson regime (mostly
isolated vertices), μ ≈ 0, as a function of β. What is re-
markable is that this delocalization-to-localization transition
seems to be independent of the density of vertices N ; in
fact, the larger the value of N the sharper the transition at
β = 1 is. It is interesting to recall that we have also identified

a delocalization-to-localization transition in random regular
graphs as a function of the proximity rule parameter [15];
however, for that model the transition is rather smooth and
importantly depends on the density of vertices. In addition, in
the inset of Fig. 11(a) we present the values of μ for increasing
N for Gabriel graphs where we include the case N = 4000.

The main difference we can observe between random
BSGs constructed with the lune-based and circle-based prox-
imity rules is that the Poisson limit is approached faster in
the circle-based case, which was already expected from the
analysis of the average degree of the previous Subsection
since there it was shown that circle-based BSGs become
completely disconnected for relatively smaller values of β.

B. Eigenvector properties

The term “localization transition” we used in the previous
subsection to describe the sharp decrease of μ at β = 1 im-
plies that we expect the eigenvectors of the adjacency matrices
of BSGs to be mostly localized for β > 1. In the following we
verify this statement.

To measure quantitatively the spreading of eigenvectors in
a given basis, i.e., their localization properties, two quantities
are mostly used: (i) the information or Shannon entropy S and
(ii) the inverse participation number I2. Indeed, both have been
widely used to characterize the eigenvectors of the adjacency
matrices of random network models. For the eigenvector �m,
associated with the eigenvalue λm, they are given as

Sm = −
N∑

n=1

∣∣�m
n

∣∣2
ln

∣∣�m
n

∣∣2
(11)

and

Im
2 =

N∑
n=1

∣∣�m
n

∣∣4
. (12)

These measures provide the number of main components of
the eigenvector �m. Moreover, Sm allows one to compute the
so-called entropic eigenvector localization length [22]

	 = N exp[−(SGOE − 〈Sm〉)], (13)
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FIG. 11. Brody parameter μ as a function of β for several values of N for (a) lune-based and (b) circle-based random BSGs. Vertical lines
in the main panels indicate Gabriel graphs (β = 1) and relative neighbor graphs (β = 2). The inset in (a) shows μ vs N for β = 1 (Gabriel
graphs). The inset in (b) is an enlargement of the main panel in the interval 1 � β � 2.
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FIG. 12. Entropic eigenvector localization length 	 (normalized to N) as a function of β for several values of N for (a) lune-based and
(b) circle-based random BSGs. Vertical lines in the main panels indicate Gabriel graphs (β = 1) and relative neighbor graphs (β = 2). The
inset in (a) shows 	 vs N for β = 1 (Gabriel graphs). The inset in (b) is an enlargement of the main panel in the interval 1 � β � 2.

where SGOE is the average entropy of a random eigenvector
with Gaussian distributed amplitudes (i.e., an eigenvector of
the GOE), which is given by [23]

SGOE = ψ

(
N

2
+ 1

)
− ψ

(
3

2

)
. (14)

Above, 〈·〉 denotes average and ψ (·) is the digamma function;
SGOE ≈ ln(N/2.07) for large N .

We average over all eigenvectors of an ensemble of adja-
cency matrices of size N to compute 〈Sm〉, such that for each
combination (N, β ) we use 5 × 105 eigenvectors. With defi-
nition (13), when β → ∞, since the eigenvectors of the adja-
cency matrices of BSGs have only one main component with
magnitude close to 1, 〈Sm〉 ≈ 0 and 	 ≈ N exp[−SGOE] ≈
const. ≈ 2.07. On the other hand, for β → 0, 〈Sm〉 ≈ SGOE

and the fully chaotic eigenvectors extend over the N available
vertices of the BSG, so 	 ≈ N .

Therefore, in Fig. 12 we plot 	/N as a function of β

for random BSGs of sizes ranging from N = 50 to 800.
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FIG. 13. 〈ln I2〉 (red full symbols) and ln〈I2〉 (black empty sym-
bols) as a function of ln N for Gabriel graphs (diamonds) and relative
neighborhood graphs (triangles and circles for lune-based proximity
rule and circle-based proximity rule, respectively).

We consider both lune-based [Fig. 12(a)] and circle-based
[Fig. 12(b)] proximity rules. As for the Brody parameter vs β

(see Fig. 11), here we clearly observe a sharp transition from
delocalized to localized eigenvectors at β = 1. Additionally,
in the inset of Fig. 12(a) we report 	/N vs N for β = 1. There
we can clearly see the GOE (	/N ∼ 1) to Poisson (	/N ∼ 0)
transition in the eigenvector properties of Gabriel graphs, also
reported through spectral properties, by the use of P(s); see
the inset of Fig. 11(b).

Finally, we would like to add that the inverse participation
number of the eigenvectors of BSGs shows an equivalent
panorama to that reported in Fig. 12 for 	, so we do not show it
here. Instead, in Fig. 13 we plot 〈ln I2〉 and ln〈I2〉 as a function
of ln N for Gabriel graphs (β = 1) and relative neighborhood
graphs (β = 2). The nonlinear trend of the curves correspond-
ing to β = 1 and β = 2 in the lune-based proximity rule
rejects the possible existence of a localization transition of the
Anderson type where the eigenvectors are multifractal objects
characterized by a set of dimensions Dq, where the correlation
dimension D2 can be extracted from the scalings I typ

2 ∝ N−D2

or 〈I2〉 ∝ N−D2 (I typ
2 ≡ exp〈ln I2〉 is known as the typical value

of I2). See for example Refs. [24–26] where multifractality
of eigenvectors has been reported in random graph models.
Moreover the independence of both 〈ln I2〉 and ln〈I2〉 on N
for β = 2 in the circle-based proximity rule confirms that the
corresponding eigenvectors are in the localized regime; that
is, D2 ≈ 0.

V. CONCLUSIONS

In this paper we perform a thorough study of a particular
type of proximity graphs known as β-skeleton graphs (BSGs).
In a BSG two vertices are connected if a proximity rule,
that depends of the parameter β ∈ (0,∞), is satisfied. We
explore the two known versions of them: Lune-based and
circle-based BSGs.

Our main result is the identification of a delocalization-
to-localization transition at β = 1 for the eigenvectors of the
adjacency matrices of BSGs for increasing β. It is important to
stress that the localized phase corresponds to mostly isolated
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vertices while the delocalized phase identifies mostly com-
plete graphs; see Fig. 8. We characterize the delocalization-
to-localization transition by means of topological and spectral
properties; we use the standard average degree as topological
measure and, within a random matrix theory approach, the
nearest-neighbor energy-level spacing distribution and the
entropic eigenvector localization length as spectral measures.

It is important to stress that the delocalization-to-
localization transition we report here for the random BSGs
is significatively different from the transitions we observed in
other random network models and RMT ensembles. While for
Erdös-Rényi random graphs [16] and random regular graphs
[15] we were able to find a universal parameter ξ (that
explicitly depends on N) for which the spectral and eigenvec-
tor properties of the corresponding graph models are scalable

(i.e. the curves μ vs ξ and 	/N vs. ξ , for different values of N ,
fall on top of invariant smooth curves), here, in contrast, the
delocalization-to-localization transition curves evolve with
the increase of N towards a nondifferentiable function at
β = 1, resembling a thermodynamic phase transition. There-
fore, the RMT ensemble we define here, through the randomly
weighted adjacency matrices of BSGs, may serve to study and
characterize thermodynamic-like phase transitions.
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