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Mapping time series to complex networks to analyze observables has recently become popular, both at the
theoretical and the practitioner’s level. The intent is to use network metrics to characterize the dynamics of the
underlying system. Applications cover a wide range of problems, from geoscientific measurements to biomedical
data and financial time series. It has been observed that different dynamics can produce networks with distinct
topological characteristics under a variety of time-series-to-network transforms that have been proposed in the
literature. The direct connection, however, remains unclear. Here, we investigate a network transform based
on computing statistics of ordinal permutations in short subsequences of the time series, the so-called ordinal
partition network. We propose a Markovian framework that allows the interpretation of the network using
ergodic-theoretic ideas and demonstrate, via numerical experiments on an ensemble of time series, that this
viewpoint renders this technique especially well-suited to nonlinear chaotic signals. The aim is to test the
mapping’s faithfulness as a representation of the dynamics and the extent to which it retains information from
the input data. First, we show that generating networks by counting patterns of increasing length is essentially
a mechanism for approximating the analog of the Perron-Frobenius operator in a topologically equivalent
higher-dimensional space to the original state space. Then, we illustrate a connection between the connectivity
patterns of the networks generated by this mapping and indicators of dynamics such as the hierarchy of unstable
periodic orbits embedded within a chaotic attractor. The input is a scalar observable and any projection of a
multidimensional flow suffices for reconstruction of the essential dynamics. Additionally, we create a detailed
guide for parameter tuning. We argue that there is no optimal value of the pattern length m, rather it admits
a scaling region akin to traditional embedding practice. In contrast, the embedding lag and overlap between
successive patterns can be chosen exactly in an optimal way. Our analysis illustrates the potential of this
transform as a complementary toolkit to traditional time-series methods.
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I. INTRODUCTION

Data analysis methods that employ concepts and measures
from network science [1–8] have been increasingly attract-
ing the interest of nonlinear time-series-analysis practitioners
over the past decade. Applications include human electrocar-
diograms (ECGs) [2,9,10], time series of earthquake epicentre
locations [11], marine paleoclimate data [12], surface air
temperature measurements [13], gas-liquid phase transitions
[14], coastal hurricane activity [15], foreign exchange rates
[16], lake sediment records [17], global equity index time
series [18], and diode resonator circuit data [19]. The chief
aim is the detection of dynamical characteristics given scalar
time series by encoding information into an abstract structure
and computing various statistics thereof. A complex network
representation provides immense potential towards this end
due to the variety of existing measures and their computa-
tional simplicity. Additionally, it provides a natural framework
for defining the notion of connectivity between nonlinearly

*kostas@nodeslinks.com
†thomas.stemler@uwa.edu
‡michael.small@uwa.edu

interacting components and studying characteristics of topo-
logical nature. The pertinent question, however, is whether
network representations can indeed capture fundamentally
different system dynamics and offer complementary insight
to existing techniques.

Various studies have demonstrated a proof of concept by
using networks to differentiate dynamical behavior and map-
ping features of time series to structures exhibiting distinct
topological properties [20,21]. However, it remains unclear
how the resulting networks relate to the underlying dynamics.
Here, we investigate a mapping based on symbolic dynamics,
in particular ordinal analysis [22–25], and attempt to provide
a solid theoretical foundation to the class of ordinal network
transforms [7,9,10,19,26–29]. We reformulate the technique
first introduced by Small [7] via a rigorous Markovian frame-
work that allows the approximation of deterministic dynamics
through examination of statistical properties of a stochastic
model [30]. The key concept is the description of system-wide
dynamics through the evolution of sets, rather than character-
izing dynamical behavior at the level of trajectories. Tradition-
ally this is achieved by using Ulam’s method for discretizing
the Perron-Frobenius (or transfer) operator [31,32]. Instead,
we use a modified version defined on ordinal partitions.
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Existing ordinal network formulations [7,9,10,19,26–29]
are not based on a rigorous framework, but heuristic ap-
proaches. The network tools employed so far are, therefore,
not inspired by a theory, e.g., ergodic. Instead, simple mea-
sures used widely in hot areas of network science, e.g., num-
ber of nodes, mean number of connections (or its variance),
average shortest path length, etc. have constituted the main
tools of analysis. We have specifically opted for a rigorous
approach to (a) be able to choose network metrics for the
purposes of analysis in a targeted, informed manner, (b) ex-
plain characteristics of the network topology produced when
encoding deterministic chaotic dynamics and (c) provide a
link between ordinal network features and the partitioning of
the original state space.

Our experiments illustrate the connection between funda-
mental dynamical features underlying the input time series
and the structure of the network. We uncover a relationship
between the hierarchy of unstable periodic orbits (UPOs)
embedded within chaotic attractors and the cycles found in
the network. An inverse mapping of network properties to
the original dataset enables accurate localisation of low-order
UPOs. With computational efficiency in mind, one of the
reasons for promoting this framework is to set the stage for
generating quantitative estimates of characteristic dynamical
indicators, e.g., Lyapunov exponents [33] and topological
entropy [34], using ergodic-theoretic ideas.

This work is also intended to be a guide to the practitioner,
highlighting subtle aspects of parameter tuning and shedding
light on sampling constraints. All other ordinal network stud-
ies recommend parameter selection either based on heuristic
arguments or upon inspection of results, without rigorous rea-
soning or consistent selection among different systems. One
of the reasons is that their focus is application-oriented, hence
an ad hoc choice targeting a specified dataset in mind may be
more suitable within such a scope. In contrast, the motivation
behind this study is to assess the extent to which ordinal net-
work representations remain faithful to the original dynamics.
Our suggestions are the result of sensitivity analysis drawn
from numerical experiments on a large variety of test systems,
both discrete and continuous. It led to different conclusions
with respect to appropriate selection; a main finding being
that there is no optimal value for the pattern length, rather it
admits a scaling region similar to the embedding dimension
in traditional practice. Finally, we advocate using Poincaré
maps in the case of continuous flows as constructed networks
are less sensitive and more effective for detecting UPOs
or estimating invariants [33,34]. In summary, our findings
comprise evidence that the proposed mapping can be used to
augment traditional analysis toolkits.

II. TIME-SERIES-TO-NETWORK TRANSFORMS

Zhang and Small [2] first utilized complex networks to
examine properties of various time series. Mapping pseudope-
riodic cycles to nodes on a network, with connections assigned
by a similarity criterion, they used statistical measures to
examine the topology of the network. Their analysis showed
a distinction in topological structure between chaotic and ran-
dom signals. Several different network transforms have been
proposed [1,3–7,14], each best equipped to capture certain

aspects of dynamical behavior—and hence more appropriate
for applying to certain systems—while less effective in captur-
ing other aspects [20]. The various methods differ primarily
on the nature of the entity for which nodes encode, and
therefore the type of information represented by the network:
(a) topological characteristics of state space [3,6,35], (b) tem-
poral information [1,7], or (c) geometrical properties of the
time series [4]. Network transforms may be broadly classified
into three categories [20].

In proximity networks nodes correspond to segments in
state space. Connectivity is defined by considering mu-
tual proximity of different segments. The most commonly
employed method in this class is the recurrence network
paradigm [6]. It has proved effective for real-world data
[12,17] and, more recently, some theoretical links between
classical nonlinear dynamics tools and the network structure
have been presented [36]. Inversion of the transform has
been proved for a special class of appropriately weighted ε-
recurrence networks under certain conditions on the given the
time series [37]—specifically, a uniform distribution of points
on the attractor—as well as for equivalent (all other aspects
being equal) k-nearest neighbor networks [38]. In visibility
graphs nodes represent single time series points and connec-
tivity is defined by considerations of convexity constraints
[4,18,39]. Transition networks comprise formations whereby
nodes represent coarse-grained dynamical states and con-
nectivity is defined by temporal succession [1,7,9,19,26,40].
While the choice of network transform is critical, and each
method can shed light on different characteristics of dynam-
ical behavior, the concept of recurrence is underlying the
majority of existing methods [20]. This refers to a system’s
propensity to revisit certain dynamical states over and over
again as time progresses. In mathematical terms, this renders
measure-preserving dynamical systems well suited to this
type of analysis due to the Poincaré recurrence theorem.

A. Transition networks

The working hypothesis behind almost the entire spectrum
of nonlinear time-series-analysis techniques is the existence
of a deterministic component in time series, possibly hidden
by noise [41]. The framework of a state space may then be es-
tablished and, under certain technical conditions (endowment
with a Borel algebra and a measure-preserving evolution rule),
one can define the natural invariant measure, i.e., the proba-
bility distribution of all possible states [42]. In practice, most
systems are intuitively thought of as evolving continuously
in time and capable of obtaining any value from within an
interval (continuous state space). This leads to the necessity
for discretization, which can be defined by any arbitrary
partition of state space [43]. One option is a regular-lattice
partition into quantiles or equal-size bins [44,45], i.e., the
familiar histogram at a specified resolution, which constitutes
the most commonly employed choice.

Dynamical states are then labeled in a discrete form by
each bin. Transition networks are formed by estimation of
transitional probabilities from one state to another by means
of frequency statistics computed from time series [1,40,46].
Therefore, in stark contrast to proximity-based approaches,
transition networks explicitly involve the temporal order of
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observations and, thereby, preserve (to a certain extent) causal
relationships contained in the dynamics within connectivity
patterns. At the same time, a common drawback of transi-
tion networks is that amplitude information, especially finer
aspects such as small fluctuations, is discarded. This class
of approaches is, consequently, better suited for identifying
state space regions that are central to the causal evolution
mechanism of the system, e.g., high mixing, stretching and
transport of lobe dynamics. Nicolis et al. [1], for instance,
uncovered a link between local stability properties, as well
as global indicators, of the underlying dynamics and the
incoming and outgoing connections in the network. Padberg
et al. [40] followed a different direction using set-oriented
methods to identify global transport barriers in continuous
flows.

The focal point of this study is a methodology which
belongs to the class of transition networks. The foundation
is the notion of an ordinal partition of state space, dynamics
on which can easily be obtained by counting and catego-
rizing short time-series segments. Ordinal partition networks
(OPNs) [7] are a model of the coarse-grained dynamics in that
connectivity between nodes is defined via temporal succession
of symbols that label each category. Sun et al. [26] extended
the original transform by including amplitude information in
the symbolic representation and allowing directed (forward-
time causality only) and weighted edges (frequency count of
occurring transitions between a pair of symbols). McCullough
et al. [19] considered a generalized version of this formulation
by including a time lag parameter into the network formation
algorithm and applied the technique to diode resonator data.
Masoller et al. [27] applied this OPN variant with a single-step
lag to one-dimensional discrete maps and semiconductor laser
intensity data to capture changes in a time series. Similarly,
Kulp et al. [10] applied it to ECG data from patients with a
variety of heart conditions. McCullough et al. [9] generalized
the framework even further by varying the lag to conduct
multiscale analysis on ECG data. Zhang et al. [28] augmented
the OPN construction algorithm to map multivariate time
series to a network. Guo et al. [29] proposed a different
scheme for multivariate time series whereby cross and joint
OPNs are computed. Input series are drawn from two coupled
systems, where synchronization is often present.

All existing OPN variants share three characteristics. First,
the methodology itself, as well as the resulting networks, were
not explored in a rigorous fashion. No unifying framework
relating network topology to the original dynamics has been
proposed so far. Hence, no clear way of estimating dynamical
invariants exists due to the lack of a mathematical foundation.
Second, in all these studies metrics that belong to two groups
were employed to analyze a specific dataset at hand. They
comprise either (i) common network science tools (e.g., mean
and variance of number of connections, characteristic path
length etc.; see Refs. [10,19,26]) or (ii) information-theoretic
measures (some form of Shannon entropy on empirical dis-
tributions of nodal properties; see Refs. [9,27–29]). Finally,
an ad hoc selection of parameters is suggested based either
on (i) heuristic arguments or (ii) inspection of results, without
providing rigorous reasoning or consistent selection among
different systems. We propose a framework that (a) allows
a natural interpretation of the network as an approximation

to the dynamics, (b) provides an informed, targeted means of
choosing useful metrics, (c) enables use of ergodic-theoretic
tools and (d) suggests parameter selection according to sensi-
tivity analysis of the most general OPN variant for univariate
series applied to a gamut of discrete and continuous systems.

B. Ordinal symbols

Symbolic dynamics is an incredibly powerful tool in the
study of dynamical systems. The core idea is the discretization
of state space into a finite number of components, each
labeled by a different symbol drawn from a finite set, an
alphabet. Dynamics of infinitely long symbolic sequences,
e.g., from an alphabet such as the binary set {0,1}, can—under
certain conditions—be topologically conjugate to the original
dynamics [47]. Ordinal symbolization considers a linearly
ordered state-space partition based on patterns which encode
the relative amplitude of observed values in short consecutive
time series segments. Each symbol reflects the rank ordering
of sample points within each segment. By recording the
relative frequency of occurrence of all symbols, an empirical
probability distribution is constructed. The Shannon entropy
of this distribution, permutation entropy (PE), quantifies the
diversity of possible orderings [22]—referred to as the set of
admissible ordinal patterns. Given finite data, a practitioner
only has access to a sample of this set, the patterns which
are in fact realised in the given time series. In the limit
of infinitely large pattern length, Bandt et al. [23] proved
analytically that PE is equal to the Kolmogorov-Sinai (KS)
entropy for piecewise monotonic self-interval maps in R, and
a similar statement holds for the topological entropy. Amigó
et al. [24] later generalized this result to discrete deterministic
systems defined by ergodic maps on intervals in Rn. This
result relies on a modified concept of PE derived from a
finite-state stationary stochastic process equipped with an
arbitrary order. A different viewpoint was introduced by the
standardised approach due to Keller and Sinn [48], whereby
multidimensional ordinal patterns, inspired by the original
definition, are defined.

Ordinal analysis rapidly attracted the interest of practition-
ers, especially among investigations of complex biomedical
signals, due its computational efficiency. Contributions in
the field include several studies on electroencephalograph
(EEG) measurements using PE as a criterion for distinc-
tion between different brain physiologies; qualitative changes
related to epileptic activity in multidimensional time series
obtained from different channels [25], detection of the onset
of epileptic seizures [49], differentiation of brain states using
ordinal pattern distributions [50], detection of deterministic
dynamics in epileptic seizures [51], to name a few. Cardiac
interbeat-interval biosignals [52,53], climate time series [54],
and financial time series [55] have also been analyzed in the
same fashion.

Apart from PE, the other main tool employed in applied
ordinal analysis is the count of forbidden patterns (CFP). De-
terministic rules dictate certain constraints in the set of ordinal
patterns which can be realised. In particular, such systems are
characterized by the existence of a set of forbidden patterns
[56] that cannot occur in any time series realisations thereof.
This set can be thought of as the collection of regions in
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state space where the trajectory is not allowed to transverse.
It is an example of pruning, a rule which forbids the oc-
currence of certain subsequences in the symbolic dynamics.
However, random systems can admit every possible pattern
given sufficiently long time series. This stems from the fact
that sampling a stochastic process will generate identically
and independently distributed (i.i.d.) values. Mapping the
sample data set to a symbolic alphabet of finite size results
in a sequence of i.i.d. permutations. The probability that any
ordinal pattern is missing approaches zero as the total number
of data points grows. This pruning rule, i.e., CFP, has been
utilized as a criterion for the detection of a deterministic
component in noisy time series data [57].

In the current study we investigate the properties of the
graphs associated with the Markovian formulation produced
by alphabets which are composed of ordinal symbols of
increasing length. We argue that counting ordinal patterns
from a time series is essentially equivalent to defining a
partition in a higher-dimensional state space wherein the
underlying dynamics have been embedded. An adapted form
of Ulam’s method is then used to provide a definition for
ordinal networks computed from time series generated by
low-dimensional chaotic ergodic systems (see Fig. 1 for a
schematic of the transform). We examine the extent to which
this network-based stochastic approximation remains faithful
to the true deterministic dynamics.

The outline of the paper is as follows. In Sec. III we present
the method. In particular, we show how to extract a symbolic
sequence from a time series (Sec. III A), define the notion
of an ordinal partition (Sec. III B), introduce the Markovian
framework (Sec. IV), redefine the construction of an OPN
(Sec. IV A), and last, we discuss ergodicity (Sec. IV B) and
irreducibility (Sec. IV C). In Sec. V we present the results
of our investigations. Specifically, we first explore the rep-
resentation of simple dynamics as a proof of concept via
the transformation of periodic series (Sec. V A). Sec. V B
is devoted to the selection of methodological parameters, as
well as to practical considerations presented by real-world
data, e.g., finiticity. In Sec. V C we examine the network
structures obtained by the numerical experiments conducted
on various chaotic discrete-time dynamical systems in one
and two dimensions. Furthermore, we adapt the application
of OPN transforms to data generated by three-dimensional
chaotic continuous-time flows by means of Poincaré maps. Fi-
nally, in Sec. V D we illustrate the connection between cycles
in OPNs and the dominant (lowest-order) UPOs embedded
within a chaotic attractor. This result is used to successfully
detect UPOs of order 4 in the Lorenz attractor. Conclusions
are discussed in Sec. VI.

III. COUNTING ORDINAL PATTERNS

We consider deterministic dynamical systems defined by
the pair (M, φ), where the single-valued Cr function φ :
M → M represents the action of a rule for temporal evo-
lution and the compact manifold M specifies a state space
for the system. Points within M, say xn ∈ M ⊆ Rd for some
dimension d ∈ N, uniquely represent the state of the system
at some instant in time. Time is prescribed either in terms of
advances in discrete time steps n ∈ Z (iterated maps) or as
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FIG. 1. Schematic of the procedure used to generate an OPN
given a scalar measurement from a multidimensional flow. (a) Lorenz
attractor. Observables obtained via crossings of a long trajectory
(N = 1, 133, 155) with the z = 27 plane in the ż > 0 direction.
(b) Ordinal patterns of length m = 4 extracted from the x-component
series of the 2D Poincaré map. (c) Two-dimensional spring embed-
ding layout (produced by a built-in MATHEMATICA algorithm)
of the OPN that represents coarse-grained dynamics on the Lorenz
attractor.

progression in continuous time t ∈ R, i.e., continuous-time
flows generated as solutions to ordinary differential equa-
tions. We focus on the former type and examine the latter
through the lens of Poincaré maps. Counting patterns via a
Poincaré map associated with a flow instead of the numerical
approximation obtained by sampling the system at discrete
time instants is unorthodox within ordinal symbolization, but
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offers the benefit of not having to select the sampling rate (and
embedding lag, see Sec. V B 1) parameters.

The equation which defines a discrete-time system of d
state variables is given the by the recurrence relation of
general form

xn+1 = f (xn; θ), (1)

where f : Rd → Rd is a nonlinear vector field which de-
scribes the action of the dynamics on states in d-dimensional
space, i.e., points defined by the ordered d-tuple x =
(x1, x2, . . . , xd ) and a set of parameters θ. Temporal evolution
is described in terms of forward-time iterates from a specified
initial state given by functional composition, i.e., the flow
which specifies the solution to Eq. (1) may be represented by

φ(x0, n; θ) = φn(x0; θ) = f n(x0, θ) (2)

for some initial state x0.
A collection of states specified by the solution of Eq. (1)

for some initial state x0 = x(0) is called a trajectory. The set
of all state-space points which lie in the ‘past’ or ‘future’ of
a specified x0 is referred to as the orbit through x0. It is given
by the bi-infinite (or infinite for noninvertible maps) sequence

O(x0) = {xn ∈ Rd |xn = f n(x0; θ), n ∈ Z}, (3)

where f n(x) denotes the pre-image of the nth iterate of f if n
is negative.

Ideally, one wishes to possess full knowledge of the tem-
poral evolution of every possible initial state to properly
understand a dynamical system. In practice, if the equations
of motion are known, then one resorts to numerical simulation
and sampling trajectories from several initial states. Experi-
mentally, however, it is often the case that one is in possession
of only a single long orbit. In addition, there is often no direct
access to the state variables themselves as the time series may
comprise values of a measurement function applied to the
state of the system.

A. Symbolic itinerary

Let {x∗
n}N

n=1 denote an arbitrary scalar time series of N
temporally ordered measurements of the state of a dynam-
ical system. We require that these values are drawn from
a linearly ordered set. Our main assumption is that the ob-
servable, i.e., the sequence x∗

n , represents the trajectory of a
deterministic system. It may correspond to one of the state
variables {x j} j∈{1,...,d} or to a measurement function of the full
state of the system g(x). For simplicity we drop the asterisk
hereinafter.

The ordinal symbolization technique [22] consists of a
coarse-grained segmentation of the dataset into elements
(windows) of equal length m, i.e., akin to embedding the time
series to m-dimensional space using a time delay τ . Suc-
cessive windows are not overlapping at w = w(m) ∈ {1, m}
points. Thus, the maximum number of windows occurs in
the case of maximal overlap at m − 1 points (w = 1) and is
equal to N − m + 1. However, the minimum number occurs
in the nonoverlapping case (w = m) where the total number
of windows equals �N

m �. To illustrate the difference between
parameters τ and w, consider the first two segments obtained
by setting m = 3, τ = 2 and (A) w = 1 or (B) w = 4. Time

lag τ dictates the relation between points within a segment,
hence the first two segments are given by (x1, x3, x5) and
(x2, x4, x6) in scenario A. Slide lag w dictates the relation
between successive segments, in particular the extent to which
they do not overlap. Hence, the first two segments in scenario
B are given by (x1, x3, x5) and (x5, x7, x9). The first compo-
nent of consecutive segments under scheme A is generated
by the sequence x1, x2, x3, . . . due to w = 1, whereas the
corresponding sequence under scheme B is x1, x5, x9, ... due
to w = 4.

Denote the resulting collection of segments (or embedding
vectors) by an indexed sequence of m-tuples of the form

x(m)
i = (xi, xi+τ , ..., xi+(m−1)τ ) ∈ Rm

with indices i = 1, 1 + w, 1 + 2w, . . . ,

⌊
N − m

w

⌋
+ 1,

preserving the temporal order of windows. Each window is
mapped to a symbol drawn from a finite alphabet. The set of
permutations of the natural numbers {1, 2, ..., m}, over which
the symmetric group Sm acts, will serve as the alphabet of
choice to create a symbolic ordering for each window which
reflects the ordinal relations between points within. Ordinal
symbols can be thought of either as the set of re-orderings
of {1, 2, ..., m} or as the group elements of Sm acting on the
identity element through the symmetric group’s operation,
i.e., composition of permutations; the original choice of the
identity element as a reference frame is arbitrary and any
member of Sm comprises a valid alternative.

The mapping may be defined in two equivalent ways,
namely chronological index ranking introduced by Bandt and
Pompe [22] and amplitude ranking introduced by Small [7].
According to the former, shifted time indices within a window
are stored in a vector indexed by the corresponding amplitude
rank in ascending order. For example, consider one of the win-
dows obtained from segmentation into windows of length m =
4 with τ = 1, w = 1, say the seventh x(4)

7 = (x7, x8, x9, x10),
whereby relative magnitude relations are given by

x10 < x8 < x7 < x9.

By shifting indices {7, 8, 9, 10} to the set {1, 2, 3, 4}, the asso-
ciated permutation is (4,2,1,3), or in cyclic notation (143)(2).
This is due to the fact that the first point of this segment
chronologically (x7) is the second largest value in the group
and so assumes the third position (due to order being as-
cending). Similarly, the second chronological value (x8) is the
third largest and so placed in the second position, x9 (third)
is the largest and so assumes the fourth position, etc. Thus,
according to this mapping, time indices of sample points are
sorted.

However, according to amplitude ranking, points within
a window are ranked in terms of relative amplitude in de-
scending order, i.e., time indices remain fixed and each
sample point is simply assigned a rank. For instance, the
4-tuple (x7, x8, x9, x10) is assigned the permutation (2,3,1,4),
or (123)(4), since x7 is the second largest member of the
group, x8 is the third largest, x9 is the largest, etc. The sketch
in the top panel of Fig. 2 illustrates the difference between
the two for the case m = 3. It can be easily shown that
both formulations are equivalent by defining a bijective map
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FIG. 2. (a) Juxtaposition between chronological index rank and
amplitude ranking. (b) Assignment of ordinal patterns of length
m = 3 to a chaotic time series generated by the logistic map xn+1 =
4xn(1 − xn) with xn ∈ [0, 1] via amplitude ranking.

between the two. In the case m = 2, this rank is equivalent to
the traditional setting in symbolic dynamics, i.e., mapping of
trajectories to infinite sequences of elements in the binary set
{0, 1}.

Formally, an ordinal pattern of length m for the window
labeled by x(m)

i

π
(
x(m)

i

) = (π1, π2, ..., π j, ..., πm ), π j ∈ {1, ..., m}
may be defined as the permutation π ∈ Sm, which arranges
the points within according to their order, i.e., xπ1 < xπ2 <

· · · < xπm (chronological index rank), or as the transformation
π : Rm → Sm such that xi+ j−1 is the π j th largest point in
x(m)

i (amplitude rank). In the event that two elements of
x(m)

i are equal, we arbitrarily pick the one that occurs first
chronologically as the smallest [22].

By mapping every window to an ordinal pattern, one ob-
tains a symbol sequence corresponding to a given time series
uniquely. We represent the ordinal symbolic itinerary of time
series {xn}N

n=1 by

{sn}�
N−m

w
�+1

n=1 , sn ∈ Sm ∀n ∈ N. (4)

The empirical probability distribution of ordinal patterns is
defined via their relative frequency of occurrence within sn,

Prob[π; sn] = P [π] = |{n|sn = π}|⌊
N−m

w

⌋ + 1
, π ∈ Sm, (5)

FIG. 3. Proportion of admissible ordinal patterns as m increases.
Estimates computed from scalar time series generated via iteration of
the expansive chaotic maps given by the (a) logistic equation xn+1 =
4xn(1 − xn) with xn ∈ [0, 1] and (b) cubic equation xn+1 = 3xn − 4x3

n

with xn ∈ [−1, 1].

where | · | denotes cardinality of a set and “|” means “such
that.”

The number of admissible (distinct occurring) patterns is

N (sn, m) = |{π ∈ sn|P [π] 	= 0}|. (6)

Since the cardinality of Sm is m!, one can evaluate the relative
count of admissible patterns computed from a time series
over the set of all possible, P (m)

a (xn), and the corresponding
proportion in the complementary set of forbidden ordinal
patterns (patterns which cannot be realised in a time series
due to deterministic constraints [56]). The relative count of
forbidden patterns equals

P (m)
f (xn) = 1 − P (m)

a (xn) = 1 − 1

m!
N (sn, m). (7)

In practice, P (m)
a ,P (m)

f are both estimators of the true numbers
in the case of N < ∞, i.e., when we are in possession of
a trajectory but not the full orbit. Note that the absence of
an m-pattern pervades all longer patterns for larger m in the
form of outgrowth forbidden patterns whose growth is super-
exponential in contrast to admissible m-patterns (exponential
growth with m). The semilogarithmic plot depicted in Fig. 3
illustrates the rate of decrease of the proportion of admissible
patterns computed from chaotic time series (N = 106) of the
logistic (black circles) and cubic (red squares) maps. Note that
the rate is faster than exponential. This has been theoretically
described for discrete maps [56]. In addition, the discrepancy
in the rate corresponding to each map is due to the inherently
different dynamics. Since both maps are strongly mixing, the
larger state space [−1, 1] is expected to produce a greater
diversity of ordinal patterns for finite m. For m � 23, the two
curves coincide due to undersampling effects.

B. Ordinal partition

In the previous section, we outlined the details of the gen-
eralized BP methodology for ordinal symbolization of a given
time series. Here we describe the fundamental construction
for the modeling process we propose in this study. To speak
of Markovian descriptions of deterministic dynamics, we shall
restrict our attention to even more specific families of systems.
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The characteristic shared by all systems under study is chaotic
behavior, i.e., (I) sensitivity to initial conditions, (II) topolog-
ical mixing, and (III) the existence of dense periodic orbits
(Ch. 1, Sec. 1.8, Def. 8.5 [58]). In addition, the evolution
rule φ is required to be a measurable transformation. Endow
M with a σ -algebra �M and associate with an invariant
probability measure

ν : M → [0, 1]|ν(A) = ν[φ−1(A)] ∀A ∈ �M. (8)

The probability space denoted by the triplet (M, �M, ν)
is also equipped with a filtration {Fn�0}, i.e., an increasing
sequence of σ -algebras on the measurable space M such
that n1 � n2 ⇒ Fn1 ⊆ Fn2 . Since ν is φ-invariant, we speak
of a measure-preserving dynamical system, i.e., one which
obeys a ‘conservation of mass’ principle with respect to the
action of the evolution operator φ. Infinitely many invariant
measures are typically admitted by deterministic chaotic dy-
namics. Experimentalists often wish that ν corresponds to
the natural invariant measure, i.e., the distribution of state
space mass over a typical orbit of the system. Therefore, our
focus is restricted to examination of ergodic systems [59]. The
measure ν satisfies

lim
N→∞

1

N

N−1∑
n=0

f (φn(x)) =
∫
M

f dν (9)

for any continuous function f : M → R and Lebesgue-
almost all initial conditions x ∈ M.

Given that the natural measure of the system is unknown,
one resorts to simpler alternatives to compute an estimate
thereof from xn. This inadvertently leads to the consideration
of different types of finite state-space partitions (Sec. 6.1
[30]). In practice, the best alternative for the estimator of ν,
which we denote by ν̂, reduces to essentially counting sym-
bols using one of several alternatives for a state-space partition
[30,32,44]. This finite set of symbols represents a partition
of state space into a finite number of connected regions of
nonempty interior. Usually the elements of the partition take
the form of regular-grid cells [32] whose collection covers
M. Dynamics occurring within each element are completely
ignored, while the model captures coarse-grained dynamics
between elements. It is this classical framework that we adopt,
but by adapting it to our setting. In place of ν̂ we choose the
normalized Lebesgue measure.

Since ordinal symbols constitute our choice, the first step
of our proposed procedure amounts to a mapping of M
to a higher-dimensional space Rm with m > d via a time-
delay embedding of a single point lag [60]. Provided certain
smoothness and genericity conditions on φ which are fulfilled
by the family of systems defined above, a sufficiently large
m—specifically larger than twice the fractal (box-counting)
dimension D0 of manifold M [61]—ensures the existence of
a diffeomorphism between the original and reconstructed state
spaces. The image state space MIMG, and not the original
manifold M, is the space which will be partitioned into
a finite number of elements. Therefore, topological equiva-
lence between original and embedded dynamics is ensured
via counting patterns of length larger than twice the fractal
dimension of the underlying dynamics.

FIG. 4. Chaotic logistic trajectory of Fig. 3 embedded in R2

and corresponding ordinal partition of image state space MIMG =
[0, 1] × [0, 1] into elements Q1, Q2 indexed by (1,2) and (2,1),
respectively. Arrows represent temporal order. Representing Q1, Q2

by 0 and 1, respectively, leads to the binary itinerary corresponding
to this trajectory.

The image state space MIMG ⊆ Rm may then be covered
by a finite collection of connected sets of nonempty interior,
Q = {Q1, Q2, ..., Qm!}, indexed by members of Sm, and re-
ferred to as an ordinal partition of order m. Recast here, we
have that given any point x = (x1, . . . , xm)T ∈ MIMG,

x ∈ Qπ∈Sm ⇔ xπ1 � xπ2 � · · · � xπm , (10)

which must always be true for some permutation label π =
(π1, π2, . . . , πm) ∈ Sm as we are only concerned with linearly
ordered sets. Moreover, this mapping is obviously unique. The
lack of strict inequalities connotes the resolution of ranking
ties via chronological order.

Intuitively, each element of an ordinal partition is spatially
defined by a region whose boundaries are formed by the xi =
x j cross-sectional hyperplanes of Euclidean space Rm (xi de-
notes the ith coordinate). For instance, in R2 the sole boundary
is provided by the identity line x = y as Fig. 4 demonstrates
for the chaotic logistic trajectory. In R3 these are the x = y,
x = z, and y = z planes as depicted in the partition of Fig. 5.
Notice that the identity line x = y = z is a shared boundary
between all 3! = 6 regions (different color in Fig. 5). In R4 the
six three-dimensional spaces xi = x j where i, j = 1, . . . , 4
segment the full space into 4! = 24 regions with the identity
line (1, 1, 1, 1)T again being a common boundary, a fact which
holds in general regardless of the value of m. Therefore, each
of the m! regions in Rm may also be prescribed by a hyper-arc
denoting a different angular location of points with respect to
the identity line 1 = (1, 1, . . . , 1)T ∈ Rm. The pattern length
dictates both the resolution of the partition (uniform size
1/m!) and its dimensionality. Upon increasing the resolution,
data is mapped to increasingly higher-dimensional spaces
irrespective of the original dimensionality.

This is not a partition in the strict sense as we are not faced
with pair-wise disjoint elements due to shared boundaries. To
overcome this difficulty in practice, Bandt and Pompe [22]
suggested using chronological order as a criterion for sorting
ranking ties. This is equivalent to sending every observed
point on the boundary into the interior of one of the two
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FIG. 5. Chaotic logistic trajectory of Fig. 3 embedded in R3 and
corresponding ordinal partition (m = 3) of image state space MIMG

into elements Q1, ..., Q6. Arrows represent temporal order. The region
indexed by the permutation (3,2,1) is never visited by the trajectory;
this pattern is forbidden.

adjacent elements. However, in rigorous terms, the covering
has the following two properties:

(I) ∪m!
i=1 Qi = MIMG,

(II) Int(Qπ ) ∩ Int(Qξ ) = ∅ if π 	= ξ,

where Int denotes the interior of a set, excluding boundary
points. The set of elements of the partition Q, labeled by
permutations of natural numbers, will serve as the symbolic
alphabet of an associated Markov model for the evolution rule
φ once our symbolic dynamics are defined as follows.

Given a finite time series such as xn, we possess a tempo-
rally ordered trajectory that is a subset of the true dynamical
orbit O(x0). Embedding with a sufficiently high m and τ = 1
allows us to obtain a subset of a topologically equivalent orbit
MIMG, designated by the sequence

O
(
x(m)

0

) = {. . . , φ−3
∗ (x(m) ), φ−2

∗ (x(m) ), φ−1
∗ (x(m) ), x(m),

φ∗(x(m) ), φ2
∗ (x(m) ), φ3

∗ (x(m) ), . . . },
∀x(m) ∈ O

(
x(m)

0

)
,

whereby φ∗ topologically conjugate to φ. Since MIMG is fully
covered by partition Q, which is guaranteed by property (I),
every point x(m) ∈ Qπ for some permutation π. Similarly for
all its iterates φn

∗ (x(m) ). Consider a sequence comprising of
labels of Qn ∈ Q which is defined via the orbit O(x(m)

0 ), i.e., a
bi-infinite sequence

{sn}∞−∞ = {
sn ∈ Sm|φn

∗ (x(m) ) ∈ Qsn

}
, (11)

which represents the analogous symbolic orbit. The finite
symbolic itinerary (abuse of notation since we only refer to the
finite itinerary sn hereinafter) sn defined in Eq. (4) constitutes
a time-contiguous sample drawn from this sequence. Using
a decimal point, we can separate si<0 from si�0 in the form
. . . s−2s−1.s0s1s2s3s4 . . . and speak of current state, future and
past. This construct suffices for delineation of shifts (and
subshifts) of finite type and the associated symbolic dynamics.

IV. MARKOVIAN FRAMEWORK

Instead of following the direction of topological conjugacy
and studying subshifts of finite type, as in Ref. [62] within
the Amigó paradigm, we opt for a Markovian description.
We define discrete-time stochastic processes of countable
state space for increasing m on the set of permutations by
means of the counting measure and information extracted
from a sample trajectory. The procedure is defined via the
counting measure applied to the symbolic itinerary sn and
the associated σ -algebra �Q of all subsets of the symbol
space. In particular, we record pairs of consecutive ordinal
patterns drawn from the ordered product space Sm × Sm.
They represent forward-time transitions between admissible
patterns, or alternatively a single action of φ∗ on elements of
the partition Q. Given a consecutive pair of ordinal patterns
in the symbolic itinerary, say . . . , sn = π, sn+1 = ξ, . . . de-
noting the corresponding partition elements Qπ, Qξ , we can
compute μ(Qπ ∩ φ−1

∗ Qξ )—the number of times the itinerary
is in state Qπ and the φ∗-preimage of Qξ simultaneously.
This quantity represents the proportion of mass moving from
region Qπ to region Qξ in state space under a single action
of the dynamics. Division by μ(Qπ ), the normalized version
of which is the probability measure on the space of ordinal
patterns as defined in Eq. (5), leads to the required Markovian
transition probabilities. Given probability space (Q, �Q, μ)
along with filtration {Fn}, we define the Sm-valued stochastic
process S = (Sn, n ∈ N ) which possesses the Markov prop-
erty, i.e., ∀π ∈ Sm and n1, n2 with n1 < n2,

P
[
Sn2 = π|Fn1

] = P
[
Sn2 = π|Sn1

]
, (12)

if the input time series comprises a measurement function
of a signal generated by a deterministic source. The most
fundamental question is that of convergence as m → ∞ since
the number of admissible patterns grows exponentially with
m [56]. However, the Shannon-McMillan-Breiman theorem
asserts that these entropies do not diverge as m becomes
large provided the source is a discrete-time ergodic stationary
process [63]. That is, the ordinal Markov chain defined in
Eq. (12) is characterized by the asymptotic equipartition
property.

Note that, strictly speaking, S obeys the Markov property
given by Eq. (12) only if w � m; in the case of inequality,
some information loss occurs since there are time series
points that are not encoded. This constitutes a nonoverlap-
ping scheme. If w < m, then successive patterns overlap at
m − w points, with w = 1 producing the maximally overlap-
ping scheme. Hence, successor patterns are conditioned on
their predecessor, i.e., each new pattern contains part of the
previous pattern and becomes part of the following pattern.
Therefore, the constraint imposed on the set of admissible
ordinal transitions leads to Markov chain S having a finite
memory. This setup can be treated as a Markov chain of order
m − w, with w � m − 1 finite. The future state depends on
the past m − w states.

A. Ordinal networks

Ordinal symbolization so as to obtain itinerary sn together
with Markov chain S allow the association of a given time
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series with a directed graph, as is common in the study of
Markov chains of countable state (Ch. 1 [64], Sec. 1.4, 1.7
[65]). This is what we term an ordinal network. It is con-
structed as follows. The set of observed admissible patterns
is mapped onto the set of nodes V = {1, 2, 3, . . . ,V } of a
graph, say G(V, E ). The total number of nodes (assumed
to be nonisolated by construction) equals the network size
|V| = V (m), is equal to N (sn, m). Directed edges are assigned
to pairs of patterns occurring in temporal succession, i.e., the
set of links (or edges) E corresponds one-to-one to admissible
forward-time transitions between regions of the ordinal parti-
tion Q as observed in the given time series.

Formally, bijective mappings κ : Sm → V and ψ : Sm ×
Sm → E are applied to the set of admissible symbols (and
the product set of ordered pairs of symbols) of itinerary sn

to procure an OPN topology. Nonelementary events in the
context of the previously defined ordinal stochastic process
of order m, say of the form Qπ ∩ φ−1

∗ Qξ , are represented by
a link labeled i j, whereby it is understood that ∃n ∈ N such
that

[κ (sn−1), κ (sn)] = (π, ξ)
⋂

ψ (sn−1, sn) = (π, ξ) = (i, j),
(13)

where π, ξ ∈ Sm are two ordinal symbols which appear suc-
cessively within the symbolic itinerary. They, respectively,
form the labels of partition elements Qπ, Qξ and nodes in-
dexed by i, j ∈ V . Thus, we can revert to the familiar i, j
notation following this, which facilitates comparison of our
formulas to the existing literature on ergodic theory.

The elements of the adjacency matrix W = (Wi j )
N (sn,m)
i, j=1

form a directed multigraph and are simply given by the
frequencies

Wi j = μ(Qi ∩ φ−1
∗ Qj ), (14)

where μ denotes the Lebesgue measure given infinitely long
time series. In practice, it corresponds to the counting mea-
sure. Directed multigraphs comprise a natural representation
for a random walk realised according to the rules specified by
finite-state time-homogeneous Markov chains such as S.

The associated transition graph dictates that edges are
normalized by the number of nearest (outgoing) neighbors of
each node; i.e., its elements are identical to the transition prob-
abilities of chain S. Then a right-stochastic matrix, T = (Ti j ),
is produced with rows summing up to unity. This corresponds
to the weighted state-transition matrix of the Markov chain. It
is defined by the conditional probability

Ti j = μ(Qi ∩ φ−1
∗ Qj )

μ(Qi )
. (15)

We interpret entry Ti j as the probability that a typical point
in region Qi of embedding space moves into Qj under one
iteration of the evolution operator φ∗.

The binary formulation A = (Ai j ) given by

Ai j = 1(0,∞)[μ(Qi ∩ φ−1
∗ Qj )], (16)

where 1(0,∞)(x) denotes the indicator function on an open
semi-infinite interval, is the corresponding connectivity ma-
trix. It constitutes an unweighted directed graph with Ai j = 1
if a forward-time transition between the corresponding or-
dinal symbols is observed in sn, otherwise it is equal to 0.

FIG. 6. (a), (b) Example trajectories from an 8-periodic (r =
3.56; left) and a chaotic (r = 4; right) dynamical regime of the
logistic map xn+1 = rxn(1 − xn). (c), (d) Respective ordinal networks
using patterns of length m = 3, single-point time delay (τ = 1), and
maximal overlap (w = 1). (e), (f) OPNs for higher values of m.

We shall show that matrix A captures important topological
information about the underlying dynamics behind the input
time series.

To summarize, constructing OPNs from a specified time
series comprises a multistage process. First, a nonlinear
transformation to a different set of coordinates in a higher-
dimensional space is applied. Second, this new state space is
partitioned into a finite collection of disjoint sets by means
of location of points relative to the identity line x = y = z =
. . . . Third, a subsequent mapping to a symbol space is per-
formed. Fourth, this allows the formulation of a discrete-time
finite-valued Markov chain. Directed and weighted networks
correspond to the natural transition graph representation
thereof (see Fig. 6 for example networks representing periodic
and chaotic dynamics). All relevant information is extracted
via application of the counting measure to the symbolic
itinerary sn.

B. Ergodicity

Ergodic theory is concerned with the statistical properties
of deterministic dynamical systems which admit an invariant
measure. In abstraction, the field concerns qualitative prop-
erties of the action of a group on a measure space. This
constitutes a departure from the Lagrangian perspective of
tracking the dynamics of an individual point and an adaptation
of a viewpoint of the motion of collections of particles (or
densities). Intuitively, one considers the evolution of a “mass
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of particles” in state space; the aim being the study of the
temporal change in the ‘size’ of a specified set of particles.
The appropriate mathematical framework for general M ⊆
Rd is via the Borel σ -algebra (smallest subset of the set of all
measurable subsets of Rd ), whereby the notion of “size” may
be quantified in a meaningful sense by means of the Lebesgue
measure.

Dynamical systems may be classified depending on
whether (i) mass or (ii) volume is preserved in state
space under the dynamics. In the former case, the ergod-
icity property asserts that, under certain conditions, the
time average of a function along a single trajectory ex-
ists almost everywhere and is related to the spatial aver-
age. This property, which formalises the notion of typi-
cality, is guaranteed by strong analytical results such as
the ergodic theorems by Birkhoff [59] and Khinchin [66].
In the latter class, the distinction is between conservative
(area/volume/Lebesgue measure-preserving) dynamical sys-
tems, dissipative (volume-contracting) systems and expand-
ing maps (volume-generating). Note that the latter two are
still measure preserving, but not of the Lebesgue measure.
All three such types of systems are amenable to a Markovian
approach.

A major advantage of following the Markov modeling
paradigm is the ability to overcome all the drawbacks as-
sociated with simulating (or examining) a long orbit of a
dynamical system, which comprises the traditional approach
[30]. Namely, that orbits may display nonequilibrium be-
havior for a long time before settling into an asymptotic
mode and computer round-off errors or limited experimental
precision. Rather than compounding a sequence of iterations,
one can treat a time series generated by an ergodic system
as a collection of single iterates of the governing dynamical
law via a stochastic approximation provided by the Markov
model.

The framework we propose for interpreting OPNs is es-
sentially an adaptation of the work by Froyland [31] and
Dellnitz and Junge [32] on the discretization of the Perron-
Frobenius operator via Ulam’s method, but in embedding
space rather than the original state space. In one-dimensional
systems, Li [67] and Boyarsky [68] first demonstrated how
powerful this approach can prove. Froyland [69] extended the
former’s analytical results to random interval maps. The main
idea lies on the fact that the statistical properties of interest
can be rendered stable by the addition of a small amount
of noise [30]. Thus, instead of analyzing the deterministic
dynamics directly, one may wish to slightly perturb and create
a Markov model. The details of the method for approximat-
ing a natural measure in this fashion have been outlined in
Ref. [31].

C. Strongly connected graph and irreducibility

The pertinent questions for any Markov chain are the
existence and uniqueness of a stationary distribution, which
reflects the long-term average occupation of each state if the
underlying process is ergodic. Existence is generally guaran-
teed by finiticity and time-homogeneity (Sec. 1.5, Ch. 4, Con-
vergence Theorem 4.9 [65]) of the chain in question, while
uniqueness is slightly trickier. The property of irreducibility

is a facet of OPNs which can be instantly checked after
symbolization. Topological transitivity is expected to lead to
irreducible Markov chains, however finiticity can alter the
produced network in the case of undersampling. In the case of
lack of irreducibility due to finiticity, we propose a quick and
benign way of modifying the network structure which ensures
this property. First, we proceed with the necessary definitions.

State (node) j is said to be accessible from state i if
P (Sni j = j|S0 = i) > 0 for some ni j ∈ N ∪ {0}, i.e., there is a
nonzero probability that a system realisation (or alternatively,
a random walk on the transition graph T ) starting from node
i will reach node j at some point in the future (dependent on
both i and j, hence the index). Transition i j is represented by
a self-loop in T if ni j = 0. A Markov chain is irreducible if
all states are accessible from all others. Formally,

∃n ∈ N|P (Sn = j|S0 = i) = T n
i j > 0 ∀i, j ∈ V . (17)

Furthermore, a state i has period k � 1 if recurrent trajecto-
ries must occur at integer multiples of k, i.e., k = GCD{n ∈
N|P (Sn = i|S0 = i) > 0}. The acronym GCD stands for
greatest common divisor. The chain is aperiodic if k = 1 ∀i ∈
V . These two notions are essential for the facts we establish
as follows.

First of all, if a finite-state Markov chain is irreducible and
aperiodic, there exists a unique stationary distribution p =
(p1, p2, . . . , pV ) which satisfies the axioms of probability
(nonnegativity,

∑
i pi = 1 and countable additivity) and such

that

pT = p. (18)

This is the positive invariant measure of the Markov chain.
This statement and convergence to equilibrium are well-
known facts, see, e.g., Thm. 1.7.2, Thm. 1.7.7, Thm. 1.8.3
in Norris [64]. Eq. (18) is identical to the left-eigenvector
equation of T with eigenvalue equal to unity. The appro-
priate multiple in this eigendirection corresponding to p is
obtained by normalizing the leading left eigenvector. (Since
the Perron-Frobenius theorem dictates that the unit eigenvalue
is the largest for a stochastic matrix, it is simple, and so the
corresponding eigenspace is one-dimensional and all elements
of the leading eigenvector are positive.)

Second, we are also concerned with the property of ergod-
icity. The celebrated ergodic theorem due to Birkhoff [59] was
initially proved within the framework of dynamical systems
on smooth manifolds, but was later recast in terms of a general
information source by Khinchin [66]. It is this form we are
interested in since we would like to ensure that the ordinal
Markov chain S has a representative limiting behavior in
terms of a time-average from a long trajectory. Fortunately,
irreducibility suffices to prove this fact (Thm. 1.10.2 [64]).

Third, irreducibility is manifested in the form of a strongly
connected transition graph, i.e., a path exists from every
node to any other. We remark that an OPN will be irre-
ducible by virtue of construction since a node is connected
to the nodes corresponding to the predecessor and successor
symbols within the itinerary sn, except in the following two
problematic cases: (a) the node corresponding to s1 has no
incoming links, or (b) the node corresponding to s� N−m

w
�+1

has no outgoing links. This event becomes more likely with
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increasing m, however it is quite rare judging from numerous
numerical simulations and never occurs unless the symbolic
itinerary or the OPN is severely undersampled for specified
m. In addition, we propose the simple fix of removing the first
or last value of a time series, repeating the irreducibility check
(via strong component detection algorithms) and iterating this
procedure if necessary.

Finally, we remark that it can be easily shown that the
relative (over all nodes) out-strength distribution of the di-
rected multigraph W and the stationary distribution of the
ordinal Markov chain S are identical. Denote by kout

W (i) the
out-strength of node i ∈ V , i.e., the total number of adjacent
outgoing links

kout
W (i) =

V∑
j=1

Wi j . (19)

This term is equivalent to the weighted out-degree of a node.
By “out-degree” we refer to the (binary) connectivity graph
represented by A. It corresponds to the number of distinct out-
going neighbors, i.e., the total number of successor patterns.

Note that by nature of construction of an ordinal multi-
graph, every node has the same number of incoming and
outgoing links with the exception of possibly two nodes. This
is a direct consequence of the fact that all the symbols in
itinerary sn, except the first and last, are connected to their
predecessor by an incoming transition and their successor by
an outgoing transition. Otherwise we have that kin

W (i|s1 = i) =
kout

W (i|s1 = i) − 1 and kin
W (i|s� N−m

w
�+1 = i) = kout

W (i|s� N−m
w

�+1 =
i) + 1. Provided a sufficiently long time series, equality fol-
lows in the limit kout

W (i) � 1. Observe that the out-strength
distribution of the network obeys Eq. (18), the left-eigenvector
equation which element-wise takes the form∑

pi · Ti j = p j ∀i, j ∈ V . (20)

Consider the left-hand side of Eq. (20)∑
i

kout
W (i)Ti j =

∑
i|Ai j=1

kout
W (i)

Wi j

kout
W (i)

=
∑

i|Ai j=1

Wi j = kin
W ( j) = kout

W ( j). (21)

Evidently, the out-strength (and in-strength) of multigraph
W is a left-eigenvector and can be made identical to the
stationary distribution p via normalization. Figure 7 shows the
Ikeda attractor (μ = 0.9) with state-space points of the chaotic
trajectory colored according to the relative out-strength of
the corresponding node in the OPN computed for m = 10.
Since the nodal out-strength corresponds to a symbol si in
the itinerary, we mapped colors to the first value xi in the
window x(m)

i .

V. NUMERICAL RESULTS

A. Periodicity in ordinal symbolic itineraries

The first test that the OPN construction is subjected to is
related to its capacity for accurate representation of periodic-
ity. We examine network topology separately for the case of
(a) discrete-time and (b) continuous-time systems, as sam-
pling frequency plays a central role in the latter case.

FIG. 7. Chaotic attractor generated by setting μ = 0.9 in the
Ikeda map xn+1 = 1 + μ(xn cos θn − yn sin θn ), yn+1 = μ(xn sin θn +
yn cos θn), θn = 0.4 − 6

1+x2
n+y2

n
. Color map (dark-light spectrum) ac-

cording to the relative out-strength distribution of the directed multi-
graph W (which is equal to the Markovian stationary distribution
of T ). Ordinal patterns computed from the x-component time series
with m = 10 and w = 1.

1. Discrete-time dynamics

Numerical results show that periodicity of a trajectory is
captured by the ordinal symbolic itinerary sn, although not
necessarily at the original period. We present evidence that
the corresponding OPN also preserves dynamical topology.
Random walks from an arbitrarily chosen initial node recover
the original symbolic trajectory with full certainty, provided a
necessary and sufficient condition on m. If unfulfilled, then
symbol sequences of lower period arise. We also make a
preliminary case for selecting maximal overlap (slide lag
w = 1) as it exhibits minimal sensitivity to the value of m,
in contrast to all other overlapping variants.

In the trivial case of an equilibrium state, a time series
comprises of a single repeated value. This results in a single-
symbol itinerary regardless of chosen parameter values. The
corresponding OPN constitutes of one node and a self-loop
linking the node to itself. To consider regimes of longer
period, we initially examine maximally overlapping symbol-
ization.

Trajectories of period 2k for k ∈ N lead to directed cyclic
graphs of size 2l where l ∈ N such that 0 � l � k. The
case l = 0 corresponds to the uninteresting m = 1. If m � 2,
hence l 	= 0, then a random walk—irrespective of starting
node—produces a 2l -periodic symbolic itinerary since only
one possible path exists within the network. This path is the
network space analog of the original dynamical orbit. This is
also the case for 3- and 5-periodic regimes, which leads to the
hypothesis that orbits of any integer period may be captured
by OPNs.

For instance, Fig. 8 depicts a visualization of the OPN
(m = 17) computed from trajectories of the logistic map of
period 2,3,4,8,16, and 32. We observe the respective directed
2k-cycle (and 3-cycle) graphs, as expected. In fact, we shall
show that a sufficiently high m allows the equality l = k
(and similarly for odd powers), in other words periodicity is
captured exactly by the network topology. A random walk on
this particular type of graph retrieves the original symbolic
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FIG. 8. OPN structure for m = 17 corresponding to trajectories
drawn from (a) 2-periodic (r = 3.4), (b) 3-periodic (r = 1 + √

8 �
3.8284), (c) 4-periodic (r = 3.5), (d) 8-periodic (r = 3.56), (e)
16-periodic (r = 3.566), and (g) 32-periodic (r = 3.5695) regimes
of the logistic map. Maximal overlap between successive patterns
(w = 1).

itinerary with probability equal to P = 1. This finding is
confirmed for time series generated by analogous parameter
regimes (found within the period-doubling cascade regions in
each) of the 1D cubic and the 2D Henon and Ikeda maps.

Figure 9(a) portrays the network size V (m) for various
values of m using maximal overlap. It is evident that the
condition m > 2k−1 is required to ensure the recovery of the
original periodicity. Otherwise, the network’s size will be
equal to a submultiple of the original period and a random
walk will produce symbol sequences of lower periodicity.
This is due to the fact that an increasingly finer resolution
of state space is necessary to encode the correct period. This
signifies the requirement for an infinitely fine partition to
fully encode the original dynamics if the accumulation point
of transition to chaos (2∞ periodicity) is under examination.

FIG. 9. Network size and link density as a function of pattern
length m. Ordinal networks computed from the periodic trajecto-
ries of Fig. 8. Left: maximal overlap (w = 1). Right: zero overlap
(w = m).

Such an unrealistic condition in practice motivates further the
case for stochastic descriptions and Markovian modeling of
low-dimensional dynamics. Additionally, there are two other
comforting aspects. First, even if the detected periodicity
is lower than the underlying, ordinal symbolization never
fails to incorporate the periodic nature of the dynamics into
the network topology. Second, for maximally overlapping
symbols, OPNs exhibit no sensitivity to the value of m as
long as it is selected above the threshold value of half the
original period, i.e., m = 2k−1 or larger. The existence of a
limiting topology in the periodic case using maximal overlap
is confirmed by looking at the corresponding link densities in
Fig. 9(c). Dynamics are fully captured in this case.

The situation is radically different for the other extreme
of the range of w, nonoverlapping OPN variants. Counting
patterns with zero overlap leads to network topologies of
varying size, as shown in Fig. 9(b), and link density, as
portrayed in Fig. 9(d), which depend on an algebraic relation-
ship between the underlying period and the length of ordinal
patterns. Convergence to a limiting structure as m increases
can, thus, never be established. There is no threshold value of
m beyond which OPNs attain a constant structure. Both size
and link density are fluctuating in an oscillatory fashion with
increasing m, a fact that is true for all values of the slide lag
w 	= 1. In fact, the network collapses to a single node if m is
a whole multiple of the underlying period, with link density
attaining the maximum allowed value of 1 (set to unity by
convention since the network comprises a single node linked
to itself).

2. Continuous-time dynamics

Encapsulation of periodic dynamics within an ordinal rep-
resentation manifests in a different manner in the case of
continuous-time flows. We discuss an example drawn from
the Rössler equations. In particular, OPNs computed from
trajectories of a periodic and a 4-periodic (Fig. 10) regime
for various m do not lead to the directed k-cyclic structures
observed for periodic regimes of discrete-time flows. Instead,
resultant networks exhibit a ‘ring’-resembling topology when
m is large.

The reason for this type of imperfect—but simultaneously
strongly recurrent, almost regular—topology is twofold. First,
the continuous-time flows underlying the networks were sam-
pled at approximately, and not exactly, 20 points per cycle
(T periodic

mean = 6.1746, T 4−periodic
mean = 6.2078 and �t = 1

20 Tmean).
Therefore, integer m is required to be either a multiple of the
mean cycle period Tmean or an exact factor (since Tmean ∈ R,
by “exact factor” we mean a divisor such that the quotient
is a positive integer). of Tmean. Second, comparatively larger
values for m are necessary to reveal the original periodicity
than in the case of discrete dynamics. For instance, were we
able to sample the periodic regime at exactly 20 points per
cycle, a value of m = 20 would be necessary to ensure that
the corresponding network is (the correct) trivial structure
of a single node and a single self-loop. One simple way to
overcome this issue is by studying an appropriate Poincaré
map, often referred to as Poincaré Surface of Section (PSS),
of the continuous flow. We computed the xmax return map for
the Rössler regimes using the T ISEAN package [70] (here
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(a) (b)

(c) (d)

(e) (f)

FIG. 10. Ordinal network structure using w = 1, τ = 1 for a
4-periodic trajectory (a, b, c) = (0.377, 2, 4) of the Rössler flow ẋ =
−(y + z), ẏ = x + ay, ż = b + (x − c)z for (a) m = 3, (b) m = 5,
(c) m = 10, (d) m = 20, (e) m = 25 and (f) m = 30. Mean cycle
duration is Tmean = 6.2078 and sampling interval �t = 1

20 Tmean.

the PSS corresponds to the x axis in tangent space [41]) to
verify this. We observed that depending on precision of its
values, an appropriate thresholding, i.e., a cut-off of decimal
points exceeding the number of significant digits, leads to the
recovery of the directed k-cyclic graphs observed for discrete-
time flows.

B. Sensitivity analysis

Three methodological free parameters are involved in the
construction of an OPN. The length of ordinal patterns m
dictates the size of the symbolic alphabet (equal to m!), the
level of resolution of the ordinal partition—which admits an
inverse relationship with the alphabet’s size (equal to 1/m!)—
and the dimension of embedding space. The time delay τ

dictates the lag involved in the embedding transformation.
Slide lag w is equal to the number of nonoverlapping points
between successive patterns within the itinerary sn. The main
examples chosen for the purpose of our demonstrations are
the logistic map [71] and the Lorenz flow [72] within well-
studied parameter regimes (see Appendices B and C for the
full collection of tested systems in discrete and continuous
time).

The existing OPN studies suggest different procedures for
selecting parameters. Small [7] propose using the graphical
inflexion of the V (m) curve or the maximum of the network
link entropy (average node-link entropy) curve for identifying

the optimal value of m. The values τ = 1 and w = m are
used for the other two parameters without providing strong
reasoning. Sun et al. [26] performed their analysis with an
arbitrary choice of m = 8 by arguing that networks computed
with increasing m should in principle belong to the same class.
The authors use τ = 1 and w = 1 without providing a ratio-
nale behind this choice. McCullough et al. [19] suggest the
interval m ∈ [6, 10] as the most useful choice based on their
empirical findings from testing model systems. The value for
lag τ is selected based on the first zero of the autocorrelation
function, whereas the slide lag w = 1 is picked without any
motivation. Masoller et al. [27] select values based solely on
the premise that large m will lead to undersampling. Hence,
the arbitrary choice m = 4 is favored due to the small alphabet
that it produces. The focus of this study is to examine short
experimental time series, therefore no further consideration
is given to determining parameter values and the choice
(τ,w) = (1, 1) is not discussed. Similarly for Kulp et al. [10]
who only propose a mechanism for selecting m by increasing
it until a nonzero CFP is observed. McCullough et al. [9]
vary τ , use w = 1 without discussing and pick m a posteriori
by computing some metric on the network and observing its
variation with increasing m. Zhang et al. [28] opt for m = 2
as its interpretation is simpler than higher values within the
multivariate framework, τ = 1 and w = 1 without supporting
arguments. Guo et al. [29] do not discuss parameter selection.

In contrast, we make recommendations based on the sen-
sitivity analysis that we conducted. Just as network visual-
ization suggests (e.g., see structures computed with different
m for the 4-periodic Rössler regime portrayed in Fig. 10),
the value of m is of critical significance. A spectrum of
values lying within a scaling region is appropriate. We, thus,
recommend the ensuing analysis (Sec. V B 2) as a first step
of application to a newly presented dataset. Furthermore,
we posit that the set (τ,w) = (1, 1) is optimal based on
arguments of (a) observing false admissible patterns and
(b) exploiting short-term correlations to impose constraints
on the admissible transitions. Additionally, we investigate the
effects of undersampling and discuss facets related to this
constraint.

1. Time delay

In this section we motivate the particular choice of the
value τ = 1 for the time delay, irrespective of the dataset at
hand. In the case of discrete-time flows, the value of unity
comprises a natural choice since sample points are essentially
obtained at arbitrary precision (or, in practice, as far as numer-
ical precision will allow). The first (and global) minimum of
the mutual information between the time series and its history
occurs at the value of 1 for discrete chaotic maps.

In the case of continuous-time flows, the decision is more
complicated. If a longer time delay is required, then several
heuristics for appropriate choice exist in the literature, most
notably the first zero of the autocorrelation series (Ch. 1,
Sec. 1.3 [73]) and the first minimum of the mutual information
(Ch. 1, Sec. 1.4 [73]). System-dependent choices have also
been proposed in the ordinal network literature [19]. Some-
times it is preferable to vary the time delay—especially when
faced with multiscale dynamics—to identify the various time
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FIG. 11. Network size (total number of nodes) as m increases for
τ = 1 and w = 1 on semi-logarithmic scale axes. Ordinal patterns
computed from the chaotic (r = 4) logistic trajectory. Inset: The
same V (m) curve on linear axes.

scales, as in the complexity-entropy causality plane analysis
by Zunino et al. [74] or the ordinal analysis implemented by
McCullough et al. [9] and applied to human cardiac dynamics.

We propose to opt for the τ = 1 value via examination of
an associated PSS. This renders the choice as natural as in
the case of discrete-time flows. Our choice enables avoiding
undesired aliasing effects [9], which is important to prevent
the presence of false admissible patterns which do not reflect
the actual deterministic dynamics. The absence of aliasing in
itinerary sn ensures the more accurate approximation of tran-
sition probabilities and connectivity in the resulting network.

2. Pattern length—Embedding dimension

Various ways for finding an optimal value for m have
been suggested in the literature, most notably the graphical
inflexion and maximum network link entropy propositions
in the original paper [7]. McCullough et al. [19] suggested
an alternative which considers the first two moments of the
degree (vertex connectivity) distribution in combination to
visual inspection. However, numerical evidence in this assay
suggests that useful information may be obtained by con-
sidering various m values within an “optimal range.” Our
results indicate the existence of a scaling region. It is the
equivalent of a combination of the scalings observed for var-
ious embedding dimensions and spatial scales ε in traditional
embedding practice towards invariants’ estimation. Therefore,
we propose that instead of looking for an optimal value,
it is more informative to focus on this region in parameter
space and consider the interplay between mutually conflicting
practical considerations, such as undersampling, on the one
hand, and increasingly finer partitioning, on the other hand.
All values of m within this region are satisfactory and then
computational considerations may be the determining factor,
i.e., picking the smallest possible value.

Figure 11 shows a plot of the total number of nodes for
2 � m � 35 on a semilogarithmic scale. The corresponding
OPNs were computed from a time series of N = 107 points
generated by the logistic rule xn+1 = 4xn(1 − xn). The inset
figure on the bottom right portrays the V (m) curve on linear
axes. We observe a sigmoidal curve, whereupon it seems that

V increases slowly initially (for small values m � 12), then
much faster until the inflexion point (intermediate values,
13 � m � 19) is reached, subsequently the rate of forma-
tion of new nodes decreases (20 � m � 24) and, finally, a
saturation occurs once m is sufficiently large (m � 25 here).
The size of the network saturates to approximately the total
number of time series points, N = 107 in this case.

The semilogarithmic plot shows that V is actually in-
creasing exponentially fast for all m until the presaturation
region 20 � m < 25. Entering this region of parameter space
signifies the transition from exponential to linear growth.
Increasing m by a single unit produces one to two million
additional nodes. We hypothesize that an OPN can provide
a meaningful simplification to the underlying dynamics until
some stage past the inflection point in the V (m) curve. In the
case of the chaotic Lorenz flow (sampled at discrete times,
not the PSS), the inflection point usually occurs when m is
slightly larger than an average period of the system. Although
the rate of information incorporation into the network starts
decreasing at this stage, some information about dynami-
cal evolution may still be encoded within. Once m > 25,
the network size exhibits gradual saturation to a constant
value equal to N − m + 1 � N , the total number of segments
extracted from the time series. This transition signifies the
collapse of the network representation to a single string. In
this formulation, all nodes have strictly two connections to
those representing the preceding and succeeding dynamical
state, with the exception of the initial and final state which
have one only. It is a completely trivial type of network
without much use. Thus, once m represents a sufficiently large
history of a trajectory in state space, the network is no longer
a useful representation of the dynamics. The culprit is data
length insufficiency. There is a limited amount of transitional
information in the sense that far more connections between
dynamical states occur due to the increasingly finer partitions
but at a much lower frequency (recall that m affects the
resolution limit (m!)−1 in this type of partition).

To explain these observations, consider the pruning rule of
forbidden patterns associated with deterministic systems [56].
Given infinitely long data and as m increases, the number of
admissible patterns grows exponentially while the number of
forbidden patterns grows at a super-exponential rate. There-
fore, although the V (m) curve is monotonically increasing,
the relative count of admissible patterns P (m)

a is actually
decreasing rapidly. Finiticity of data renders this effect more
pronounced, which implies we are possibly sampling only a
portion of the real network. Undersampling occurs if m is
larger than a certain threshold given fixed data length N . The
heuristic condition N � m! + m − 1 is required to ensure an
adequately large data set in comparison to a specified partition
resolution (m!)−1. Hence, up to m � 10 we have may sampled
the network in full (10! = 3, 628, 800 and N = 107), while
only partially for larger m.

Furthermore, admissible patterns grow exponentially as m
increases. Bandt et al. [23] proved that for piecewise mono-
tone one-dimensional maps the rate approaches the topolog-
ical entropy of the evolution operator hTOP(φ). In the case
of continuous-time flows, this relates to the entropy of the
discrete map sampled at regular intervals acting as the numer-
ical approximation of the continuous system. Therefore, the
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FIG. 12. Link density ρE as m increases (τ = 1 and w = 1) on
semi-logarithmic scale axes for the ordinal networks computed from
the chaotic (r = 4) logistic trajectory.

linear fit, d
dm {log [V (m)]}, provides an estimate of hTOP(φ),

with a value approximately equal to 0.79085 for the logistic
system. This can be contrasted to the actual value equal to
log (2) � 0.6931. Disagreement between the linear fit and
the true value also holds for Lorenz. In Ref. [34] we show
that a network-based measure is better equipped to accurately
capture this evasive dynamical invariant.

In summary, the domain of the parameter m contains
three nontrivial qualitatively different regions in terms of the
generated network topology—and a trivial one (saturation).
First of all, if the pattern length m is not sufficiently large, then
the size of the symbolic alphabet is too small to uncover the
true complexity of the dynamics. This is akin to a histogram
of very coarse resolution in traditional partitioning of time
series data. The simplification is inadequate. Second, when
m is larger than a critical value—presumably dependent on
the dimensionality of the system and in particular the active
degrees of freedom as established by Sauer et al. [61] in
traditional embedding theory—the ordinal partition is finer
and can capture the dynamical evolution of the system in a
more elaborate manner. Very fine transitions from a dynamical
state to another, which could not be captured by choosing
smaller m, can now be incorporated into the network represen-
tation. In a practical setting, given finite data of possibly rather
limited length (e.g., notoriously, geoscientific measurements),
a heuristic rule consists of choosing as long a pattern length as
the time series length will permit so that severe undersampling
does not occur. Finally, within the third qualitative region,
the network grows linearly with m and fewer newly formed
nodes appear beyond the inflexion point. This point signifies
that the difference between V (minflexion ) and V (minflexion − 1)
is maximal. The ensuing decreasing rate of information in-
corporation into the network representation may then give
rise to issues similar to those of over-embedding [7]. Due
to this phenomenon and increasingly greater undersampling,
the produced networks can no longer provide a meaningful
simplification of the actual dynamics in play.

The above is further supported by looking at the link
density of the computed networks which drops with increas-
ing m, as depicted in Fig. 12. In fact, the semi-logarithmic
scale plot indicates exponential decay. This result relates to
the “existence” of forbidden transitions between symbols of

FIG. 13. Variation of network size (left) and link density (right)
with respect to the slide lag between successive overlapping ordinal
patterns. Networks computed for 4 � m � 12 from the chaotic r = 4
logistic trajectory.

the alphabet associated with given deterministic dynamics.
Such pruning concerns the product space of ordered pairs of
patterns rather than the space of ordinal patterns itself. Note
that the absolute value of the decay exponent in link density is
very close to the growth rate exponent of the network’s size.

An similar situation transpires for the nonoverlapping vari-
ant which suffers even more significantly for large m. A
radical drop occurs at approximately m = 25. In both variants,
for m � 25, we observe a decay to 10−7, which occurs due
to the summation term in Eq. (A1) approaching V − 1 since
the network comprises a long string of V = 107 nodes con-
nected by single directed links between predecessor-successor
pairs of patterns. In fact, the large rise (and drop) in V (m)
(ρE (m)) discerned in Fig. 11 (Fig. 12) is also detected by
measures such as PE, sorting entropy (SE; see Ref. [22])
and the entropy of the joint distribution of pairs of patterns
in an analogous fashion (results omitted). The observations
for w = m networks, in contrast to w = 1, suggest a greater
sensitivity displayed by the joint distribution of ordered pairs
of patterns—in comparison to the more robust distribution of
patterns—on the amount of overlap, as demonstrated in the
following section.

3. Slide lag

Figure 13 depicts the two fundamental network observ-
ables for all possible overlap scenarios. It is evident that
the effects on the network size V are negligible. However,
measures which depend on the joint probability distribution
of successive pairs of patterns exhibit sensitivity to the amount
of overlap. This is highlighted by link density ρE in the right
panel of Fig. 13. It increases with increasing slide lag, i.e.,
decreasing amount of overlap. This inverse relation implies
an increasing diversity of forward-time transitions (and hence
links in the network) as successive patterns become decreas-
ingly overlapping and therefore less and less correlated.

Another interesting observation is the saturation of ρE

beyond a certain slide lag. This may be explained by the fact
that the number of forward-time transitions does not vary in
total once the level of correlation between successive patterns
has decayed to zero. This effect can only be observed for
higher m values which allow complete decorrelation between
consecutive symbol pairs. Since the value is similar irrespec-
tive of m once m is sufficiently large, it cannot merely be
attributed to undersampling. This artefact has an interesting
repercussion; it may be used as an indicator of the correlation
time of a chaotic system and act as an ordinal alternative
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to commonly employed estimates such as the first zero (or
decay time) of the autocorrelation function—which is always
zero after a single step for discrete-time flows examined here
since there is no linear correlation, the first minimum of the
self-mutual information and the quarter-period length.

Consequently, variation of w has no impact on the distribu-
tion of ordinal patterns, but it does affect the joint distribution
of ordered pairs of successive patterns, on which correlation
and/or undersampling effects are manifested in a pronounced
manner with increasing m. While w = m produces a richer
diversity of admissible transitions, this is not necessarily
beneficial. We therefore suggest the use of maximal overlap,
thereby restricting the set of possible successor patterns. The
networks produced are less sensitive to changes in m. Also,
whereas the number of admissible patterns eventually ob-
served is the same irrespective of w (see Sec. V B 4), reaching
the true number of patterns for a fixed pattern length occurs
for a much smaller sample size N in the case of the maxi-
mally overlapping variant. The conditioning on predecessor-
successor pairs helps reduce undesired effects due to the
Markovianity of the dynamics not being fully preserved in the
projection to the symbol space—as with any dimensionality
reduction procedure—unlike the embedding transform where
topological conjugacy can be guaranteed.

4. Time-series length

It is self-evident that the longer a dataset, the more in-
formation an observer possesses about a system. In practice,
however, measurements constitute small to intermediate-sized
datasets in several disciplines. In the framework of ordinal
patterns, small samples may lead to undersampling due to the
super-exponential growth of the symbol space as m increases,
e.g., 10! is approximately 3.6 million. Essentially, there is an
interplay between finer resolution and insufficiently sampled
regions in the ordinal partition Q. The situation is even worse
given that our aim is to estimate dynamical invariants from a
single long trajectory rather than an ensemble of trajectories
from randomly sampled initial conditions. This depends not
only on the ergodicity of the underlying system, but also
the capacity of the ordinal probability measure to preserve
the ergodic property. The following results demonstrate that
ordinal representations can prove faithful in the case of low-
dimensional chaotic dynamics.

The relevant literature on the topic of undersampling
mainly revolves around forbidden patterns and their out-
growth ratios [56] or PE, mostly in the context of white
noise. An analytical treatise [75] illuminated the exact relation
between PE of a Gaussian noise scalar time series to m and N ,
which obeys a χ2-distribution of (m − 1)! degrees of freedom.
Several results on PE of fBM, fGN, and ARMA processes
were obtained by Bandt and Shiha [76], but without any
consideration of the dependence on the number of sample
points N .

Here we are mainly interested in the effects of N when
computing OPNs of increasing m from chaotic or hyper-
chaotic dynamics. The most commonly employed heuristic
for avoiding undersampling is to choose a value for m such
that the sample size is significantly larger than the number
of symbols, equal to m!. For maximal overlap (w = 1), this

FIG. 14. Number of nodes vs. sample size N . Evolution of the
network’s size as the time series length increases. Network construc-
tion using maximal overlap (w = 1; solid lines with markers) and
zero overlap (w = m; dashed lines) between successive patterns with
m = 8, 10, 12, 14, 16.

leads to N � m! + m − 1 [56]. In the general case, N �
w(m! + 1) + m which has also led to the recommendation
N � 5m! [57,77]. However, our numerical experiments indi-
cate that undersampling may be avoided even at a fraction of
these sample sizes in the case of both dissipative as well as
expanding low-dimensional chaotic flows.

Figure 14 shows the network size of OPNs computed from
the (r = 4) logistic time series for various m as a function
of N . When N is small, the network size increases linearly
in the double-logarithmic scale of Fig. 14. This indicates
a power-law relationship between sample size N and the
number of distinct admissible ordinal patterns. In the maximal
overlap case, the exponent is approximately equal to 1, i.e.,
there is a linear growth. In the nonoverlapping case, V ∼ N

1
10 ,

which shows slow growth and confirms the necessity for much
longer trajectories (result omitted).

These findings are also evidenced by the saturation to lim-
iting values (different for each m as expected), whereupon the
maximal overlap variant attains a constant profile much faster.
The surprising robustness to undersampling effects is apparent
by considering m = 8 (circular markers) for instance. Al-
though 8! = 40320, even approximately 2000 sample points
are sufficient to obtain an accurate estimate of the network
size. This is confirmed by looking at the corresponding link
density in Fig. 14(b), whereby the saturation is now at lower
values since the network becomes less dense relative to its
size. For m = 8, a limiting link density is attained at about
3000 samples points. Finally, we remark that the differences
resulting from the amount of overlap are perspicuous in these
two fundamental structural network characteristics. There is,
however, convergence between the two extremes of maximal
and no overlap for adequately long time series.

C. Network topology

A comparison between networks computed from trajec-
tories of different dynamics shows that a different topology
is obtained—with the exception of when two regimes are
topologically equivalent. A different size and link density
is observed for the logistic map and time series from a
chaotic cubic map, a Gauss map, the bent Baker’s map,
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FIG. 15. (a) Number of nodes and (b) link density of networks
computed from chaotic time series generated by various 1D and 2D
discrete maps.

or the two-dimensional Lozi, Henon, and Ikeda maps. In
contrast, the one-dimensional tent map and the dyadic (or
bit-shift/doubling) map led to networks exhibiting similar
structure. Computations on scalar x-component time series of
a subset of these are displayed in Fig. 15. The exponential
scaling behavior observed previously is apparent for all the
maps considered, although at different rates. This, we conjec-
ture, relates to the complexity characterizing the underlying
dynamics. However, the width of the scaling region can be
elongated in dynamics where the diversity of symbols is lower
(smaller topological entropy), e.g., the chosen chaotic regime
in the Lozi map exhibits a particularly long scaling region
and markedly fewer patterns for respective m values. Its two-
dimensional attractor is very thin with a particularly small
Lebesgue measure.

We observed that similar conclusions hold for the two
different types of PSS that we investigated in the case of
the Lorenz attractor. Irrespective of the observable, all three
components—and even the time series of the corresponding
return times—produced similar network topologies. Figure 16
displays a visualization of the OPN computed with m = 7
from a N = 1-, 133-, 155-long trajectory of the z = 27 PSS
of the Lorenz attractor (see Appendix C).

Evidently, spatial characteristics of the original attractor
are present in the networks’ structure depiction. The size of
the network and link density as a function of m (Fig. 17)

FIG. 16. Ordinal network computed with m = 7 from the first
component of an N = 1-, 133-, 155-long 2D time series generated
by the z = 27 PSS of the Lorenz attractor.

resemble the behavior that we observed for the logistic map.
This is not so surprising in the case of the zmax PSS since it
is very similar to the tent map (which we have also tested and
obtained full agreement to these results) as the two discrete
maps are topologically conjugate. However, the remarkable
observation concerns the capacity of both types of PSS, the
one-dimensional zmax as well as the two-dimensional z = 27,
to generate very similar network topologies. Furthermore, any
associated observable, for instance the corresponding x and
y coordinates of the successive z maxima produce almost
the same network. This result is further supported by exact
quantitative estimates of the Lyapunov exponent [33] and the
topological entropy [34] of the system. Unexpectedly, even
series of recurrence times extracted from either type of PSS
can also be used to procure similarly useful network topolo-
gies which are representative of the dynamics underlying the
Lorenz attractor.

1. Out-strength distribution of directed multigraph W

In Sec. IV C we demonstrated an analytical connection
between the node-wise relative out-strength distribution kout

W
of directed multigraph W and the stationary distribution of
S. This connection is illustrated numerically for the logistic
map example on the top panel of Fig. 18. First of all, observe
the fat-tails characterizing this empirical distribution. A linear
fit is shown on the inset logarithmic-scale plot. The slope is
rather steep (estimated exponent γ � 4.21 which is outside
the typical range of 2 < γ < 3), but the structure resembles

FIG. 17. (a) Network size and (b) link density as a function
of m. Networks computed from seven observables generated by
two Poincaré sections on the Lorenz attractor corresponding to
the parameter regime (σ, ρ, β ) = (10, 28, 8

3 ). The seven time series
comprise the (I) x and (II) y components of the z = 27 Poincaré
map, the (III) x, (IV) y, and (V) z components of the zmax return
map and (VI–VII) the time series of recurrence time for each map,
respectively.
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FIG. 18. (a) Relative out-strength distribution of directed multi-
graph W computed from the N = 107-long chaotic r = 4 logistic tra-
jectory for (m, τ, w) = (12, 1, 1). Inset plot displays the correspond-
ing logarithmic-scale plot. (b) Cumulative out-strength distribution
function. (c) Number of time series segments x(m)

i which have been
mapped to the largest hubs, i.e., the nodes with the highest number of
outgoing connections (kout

W larger than 5 000 and 6 000); each class
constitutes of only one node out of the approximately 10 000 total.

an empirical power law, i.e., a scale-free distribution. This
observation is further supported by the associated plot of
the cumulative distribution function, shown in the left-bottom
panel.

We do not posit that OPNs computed from chaotic time
series possess scale-free properties, as statistical analysis on
empirical distributions has refuted many of the claims on
reported scale-free networks and seriously questioned others
[78]. In addition, simplistic mechanisms such as preferential
attachment have absolutely no meaning within our context. In-
stead, we focus on the connection to the Markovian stationary
distribution. It is likely that the scaling near the tails of the kout

W
distribution is a consequence of the singularities in the natural
measure of the logistic map near the end-points of the domain.
Since a higher concentration of mass occurs in these two
regions of the one-dimensional state space, trajectories pass
through this portion of space more frequently. Therefore, the
symbolic itinerary sn produced by an accurate embedding
onto a higher-dimensional space should, in principle, reflect
this property. This, in turn, would produce a higher number
of adjacent links to the corresponding nodes of the network,
i.e., those nodes which represent the relevant ordinal patterns
in sn—and by extension the elements of the partition Q of
MIMG.

Furthermore, the bottom-right panel of Fig. 18 reinforces
this hypothesis. It displays the number of time series segments
x(12)

i , which have been mapped to the two largest hubs of the
network. As hubs we chose to collect the nodes whose number
of outgoing connections kout

W is larger than 5 000 (there are

two of them) and 6 000 (one of these two). Mapping back
to the original state space, via labeling of the first coordinate
of the 12-dimensional space, is illuminating. All trajectory
points which the OPN algorithm has mapped to the partition
element represented by the node with kout

W > 6 000 are found
very close to the end-points of interval [0,1], i.e., near the
singularities of the invariant measure. Points mapped to the
5 000 < kout

W < 6 000 node are found in the vicinity of the
most dominant unstable periodic orbit (of order 1), i.e., the
least unstable, which occurs at the fixed point x = 0.75.

2. Projection of ordinal partition onto 1D state space

To examine the above hypothesis in a more elaborate
manner and understand the mechanism behind the proposed
connection between kout

W and the invariant density of the
underlying dynamics, we present some indicative results on
mapping back nodes to the original state space. Specifically,
we illustrate the projection of a higher-dimensional ordinal
partition back onto the original one-dimensional state space
[0,1] of the logistic map for the intuitively simple and acces-
sible cases of pattern length m = 2, 3, and 4.

All nodes of the resulting network have been projected
back onto the original state space by inspection of the first
coordinate of the two-, three-, and four-dimensional embed-
ding space, respectively. The location of these points is shown
on the horizontal axis of the three panels of Fig. 19, while the
vertical axis represents the index of the node/pattern that these
points correspond to, normalized by network size V so as to
constrain the range within the interval [0,1]. These values are
arbitrary and have been so chosen purely for visual purposes
and facilitation of distinction between the different elements
of the projection. For instance, the top-left panel portrays
the projection of the m = 2 partition. There are two nodes,
say v1, v2, corresponding to ordinal patterns π1, π2 and par-
tition elements Q1, Q2 (shown in Fig. 4) of two-dimensional
embedding space. In this case, V = 2 and index i = 1 or 2.
Consequently, the vertical axis which represents i/V can take
values from the discrete set { 1

2 , 1}. We have juxtaposed the
zeroth, first, second and third iterates of the logistic function
as well, respectively, on the plot of each panel.

Concentrating, first, on the m = 2 case, we notice that
the “map-back” projection has separated the state space into
two uneven intervals of Lebesgue measure equal to 0.75 for
pattern π1 and 0.25 for pattern π2. The separation point occurs
at the location x = 0.75, i.e., where the unstable fixed point
lies. This is the point of intersection between the identity
line x = f 0(x) and the logistic function f (x) = f 1(x). This is
expected as a manifestation of the exchange of order relations
between points in a single segment of length m = 2. On the
left interval [0,0.75], we always have x < f (x), and vice versa
for all points contained in the interval [0.75,1].

The same observations can be extracted by inspection of
the top-right panel which displays the projection of the m = 3
ordinal partition onto interval [0,1]. In this case, there are
five intervals out of 3! = 6 possible. The forbidden pattern
{3, 2, 1}, which represents the order relation f 3(x) > f 2(x) >

f (x), corresponds to the yellow region of Fig. 5. Recall that
this portion of embedding space can never be visited by
the trajectory. Additionally, as in the m = 2 case, projected
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FIG. 19. Projection of the ordinal partition onto the one-
dimensional state space of the logistic map. Top: m = 2 partition into
2 regions. Middle: m = 3 partition into 5 regions (recall that the pat-
tern (3,2,1) is forbidden). Bottom: m = 4 partition projection which
consists of 12 elements. The vertical axis represents the index of each
node v1, . . . , v12 divided by the network’s size V = 12 so that the
range is bounded within [0.1,1]. The first iterates f 0(x), . . . , f m−1(x)
are juxtaposed.

intervals have unequal length. Three of the four boundaries
between these five intervals occur at the location of all the
unstable periodic points of order 1 and 2. Namely, at the
2-periodic point x = 0.3455 whereby f 2(x) = x, at the 1-
periodic (i.e., fixed) point x = 0.75 whereby f 2(x) = f (x) =
x, and at the 2-periodic point x = 0.9045 whereby f 2(x) = x.
The fourth boundary occurs at the eventually 1-periodic point
x = 0.25 whereby f 2(x) = f (x), which is mapped to 0.75
after one iteration. In this panel, the variable on the vertical
axis can take values from the set { 1

5 , 2
5 , 3

5 , 4
5 , 1}.

FIG. 20. Histogram of nodes with nonzero nodal clustering in
the ordinal network computed with m = 12. Input: chaotic (r = 4)
logistic trajectory.

Finally, the same trends are observed for the m = 4 parti-
tion projection, portrayed in the bottom panel of Fig. 19. Here
there are 12 admissible patterns and another 12 forbidden
ones. As previously, boundaries between elements of the
projection coincide with either (a) periodic points of order
1, 2, and 3 or (b) eventually periodic points. An important
observation is related to the length of each interval which,
although unequal to the others, displays a decreasing length
in comparison to length of the elements in the m = 2, 3
projections. This implies that the diameter of all elements of
the ordinal partition projection onto the original state space
decreases with increasing pattern length m. This is of signifi-
cant value to the accuracy of the stochastic approximation, the
Markov process S, to the underlying deterministic dynamics.
Refinement of partition producing smaller elements in the
Lebesgue measure constitutes a common requirement for
traditional transfer operator approaches [30,31]. Note that one
difference between the m = 4 case and the former two is that
three elements of the projection, in particular those corre-
sponding to the regions Q4, Q6, and Q9 in four-dimensional
embedding space—vertical coordinate equal to 4

12 � 0.333,
6

12 = 0.5, and 9
12 = 0.75, respectively, in the bottom panel of

Fig. 19—comprise the union of two disjoint intervals. This
does not alter results or create any issues, but it does pose a
peculiar property related to such partitioning schemes as with
ordinal symbolization.

One final remark is that the inverse mapping procedure
described above, can be used to identify the location of all
periodic points of arbitrary order within a dataset. This also
holds true for the location of all eventually periodic points. In
contrast, if the underlying dynamics is dictated by a system of
higher dimensionality, this procedure is no longer efficient for
localising periodic orbits.

3. Nodal clustering

Very few nodes have nonzero local clustering coefficients
(proportion of triangles over triplets passing through). For
example, the OPN computed from the logistic map with m =
12 contains 10 525 nodes, while only 19 out of these do
not exhibit zero clustering. Figure 20 displays the histogram
of all such nodes, divided in two classes. The set of nodes
with very low clustering (C < 0.1) appears in red, whereas
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FIG. 21. Histogram of points that have been mapped to symbols
corresponding to those nodes in the network with low clustering
coefficient (C < 0.1). Gray dashed lines represent the 6 unstable
periodic points of prime period 3.

nodes with higher clustering are shown in blue. We noticed
that time-series points located in close proximity to the two
fixed points of the map have been mapped to the latter class
of symbols/nodes (blue).

In contrast, the former class (red) consists of symbols onto
which points that lie close to the two 3-periodic orbits have
been mapped. In fact, all six points with prime period 3 are
encapsulated by this set of nodes. The histogram in Fig. 21
can be used to verify this as the gray dashed lines represent
the exact location of all nondegenerate 3-periodic points.

This result is very indicative of the type of information
encoded within the cyclic structure of OPNs. We delve deeper
in the following section by considering cycles of arbitrary
length. In summary, nodes characterized by nonzero cluster-
ing represent either fixed points of the underlying dynamics
(higher values) or points with prime period 3 (lower values).

4. k-cycles in unweighted directed network A

Detecting the paths composed of k links from a node to
any other within a network comprises a rather simple and
efficient procedure. Given knowledge of the adjacency matrix,
one need only look at the kth power of the matrix. Its (i, j)
entry provides the number of all such walks from node i
to node j. If specifically interested in the cyclic paths, i.e.,
those paths which end on the starting node whereby we have
j = i, the so-called k-cycles, then the main diagonal of the
kth power is required. Within the ordinal context, detecting
k-cycles is rendered by the connectivity matrix, the adjacency
matrix of the unweighted directed network A. Ak determines
all the possible dynamical transitions from region Qi to Qj in
embedding space within k time steps.

Figure 22 shows the base-2 logarithm of the number of
k-cycles for the OPN computed from the logistic trajectory
with 3 � m � 12. It is clear that increasing m shifts the
empirical curve closer to the diagonal, i.e., the expected
curve since there exist 2k unstable k-periodic points when
r = 4. We utilize this result to detect the location of unstable
periodic points in discrete maps via finer sieving obtained by
increasing the pattern length.

We illustrate our results by considering the situation of
k = 4 for the logistic map, which is amenable to an analytical

FIG. 22. Number of k-cycles in the ordinal network as m
increases.

approach for all r values [71]. As a proof-of-concept for our
conjecture, Fig. 23 displays a 64-bin histogram of those time
series points which have been mapped to ordinal symbols
belonging to 4-cycles in the computed network (m = 6). Gray
dashed lines represent the 16 locations shown in Table II. It
is evident that the vicinity of unstable periodic points of order
k = 4 can be captured by the connectivity pattern of an OPN.

Increasingly finer sieving should, in principle, produce
more precise results and shed light to the voluminous image
portrayed in Fig. 23. As expected, Fig. 24 demonstrates that
longer patterns (m = 12 here) are able to produce networks
whose cycles encapsulate unstable periodic points embedded
within a chaotic attractor—using the term slightly loosely here
since the “attractor” in the logistic (and any expansive) map
is composed of the entire state space, but see the following
section for an example of a dissipative continuous-time flow.

The histogram of Fig. 24 illustrates three important facets
of the described procedure. First, the aforementioned preci-
sion which implies that ordinal partitions of finer resolution
allow one to detect unstable periodic points from a scalar time
series with arbitrary precision. Second, the frequency (height)
of each bin is dictated by the order of the periodic point, i.e.,
the lower the order, the more dominant the unstable periodic

FIG. 23. Histogram of points (in 64 bins) that have been mapped
to symbols corresponding to those nodes in the network (m = 6)
which form 4-cycles. Computations drawn from the chaotic (r = 4)
logistic trajectory.
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FIG. 24. Histogram (512 bins) of time series points mapped to
network nodes which form part of 4-cycles for higher resolution
ordinal partition (m = 12) than in Fig. 23. The location of all 4-
periodic points of the logistic r = 4 chaos computed analytically
are shown in gray dashed lines with indicative labels for fixed and
periodic points.

point. Hence, more time series points may be found in the
local neighborhood thereof. Finally, four points have been
missed which indicates that a longer trajectory may be re-
quired to approach these periodic points sufficiently close and
thereby allow the network to detect their location. Sec. V D
illustrates the effectiveness of the proposed technique towards
detection of unstable periodic orbits (UPOs) in continuous-
time flows.

D. Detecting unstable periodic orbits in 3D chaotic flows

We use the Lorenz system as an example, in particular the
two-dimensional z = 27 PSS. Ordinal networks were com-
puted from the first component for various values of m and
we focus on 4-cycles as previously. There are 18 such entries
which are nonzero in the case of m = 14 which we use as a
case study (Fig. 25). Collecting all the time series segments
x(14)

i mapped to the diagonal entries of A4, the plot displays
a histogram of the first of the 14 coordinates in embedding
space.

FIG. 25. Histogram of first component of segments x(14)
i mapped

to the 18 nodes (out of V =106 586) which form part of 4-cycles in
the ordinal network computed from the x-component of the Lorenz
z = 27 PSS. Peaks correspond to the two unstable fixed points and
the lowest order unstable periodic orbits.

FIG. 26. Two-dimensional state-space plot of the positive part of
the z = 27 PSS. Markers represent the location of time series points
which have been mapped by the transform to the network nodes
v1, v9, v11, and v17 from the collection of 18 nodes which form part
of 4-cycles. Points mapped to v1 are located near the fixed point
around which the right lobe of the Lorenz attractor is centered. Points
mapped to v9 and v11 lie close to a symmetric and an asymmetric
4-periodic orbit, while points mapped to v17 are located in the vicinity
of the lowest order unstable 2-periodic orbit. See Fig. 27.

For comparison purposes (see Fig. 27 below), we have
chosen to show frequency, and not its relative counterpart,
on the vertical axis—as opposed to the results on the
logistic map. Clearly, the symmetry of the Lorenz attractor is
captured in this figure. We propose that the peaks represent
the local neighborhood of the unstable fixed points around
which the lobe dynamics of the attractor are revolving,
as well as the lowest-order UPOs. Moreover, the highest
peaks correspond to points of the PSS through which the
elliptic trajectories near the fixed points transverse. The
coordinates of the latter are, respectively, given by xFP,1 =
(
√

β(ρ − 1),
√

β(ρ − 1), ρ − 1) � (8.4853, 8.4853, 27) and
xFP,2 = (−√

β(ρ − 1),−√
β(ρ − 1), ρ − 1) � (−8.4853,

−8.4853, 27). The second-highest peaks are due to points in
the vicinity of the only UPO of order 2, the most dominant
of all the periodic orbits. It is symmetric with respect to
the z axis and somewhat resembles the ∞ symbol, shown
in the inset figure of the bottom-right panel of Fig. 27. The
next-highest peaks correspond to UPOs of order 4 and so
forth. Evidence in support of our conjecture are provided via
Figs. 26 and 27.

Figure 26 displays the right (positive) branch of the z = 27
PSS. Markers of four different colors and shapes have been
placed at the location of all time series points that have been
mapped to nodes v1, v9, v11, and v17 from the set of the 18
nodes that form part of 4-cycles in the network. Nodes v1, v18

are also identified as cycles of order 1, hence they correspond
to the two fixed points. Nodes v2, v5, v15, v17 form cycles of
order 2. Therefore, we expect that v1 encodes the neighbor-
hood around fixed points, v17 the neighborhood around UPOs
of order 2 and v9, v11 the neighborhood around UPOs of order
4. Blue circles represent the points mapped to v1, whose x and
y coordinates may be compared to the first two components of
xFP,1. We conjecture that green triangular markers (mapped
to v17) correspond to points near the symmetric UPO of
order 2, while red squares (v9) and black diamonds (v11),
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FIG. 27. Histogram of first component of segments x(14)
i mapped to nodes (a) v1, (b) v9, (c) v11, and (d) v17 from the collection of 4-cycles

in the ordinal network computed from the x component of the Lorenz z = 27 PSS. Inset plots: Numerical integration of example points in the
histogram for a couple of cycles (Tmean = 0.95757).

respectively, represent the state-space points in the immediate
neighborhood of one of the two asymmetric UPOs and the
single symmetric UPO of order 4. To examine the validity
of our hypothesis, we inspect individual histograms of the
x component of all points mapped to each of the nodes
v1, v9, v11, and v17. Furthermore, we have randomly sampled
these 4 sets of points drawn from the z = 27 PSS, picked a
single example point and numerically integrated the Lorenz
equations for 2–3.5 time units.

The results of the procedure described above are pre-
sented in the four panels of Fig. 27. In the case of node
v1, there exists a multitude of time series points that have
been mapped to this particular ordinal pattern, in the order
of (103) or less (see the vertical axis of the histogram on
the top-left panel of Fig. 27 which displays frequency). Since
the sample size of the input time series is N = 1, 133, 155,
these points form approximately 0.1% of the total. In stark
contrast, points mapped to the other three nodes represent a
very small proportion of the time series. Specifically, only
25 points have been mapped to v9 (top-right panel), 3 to v11

(bottom-left panel), and only 2 to v17 (bottom-right panel).
Additionally, notice how close the x coordinate (horizontal
axis) of the points in each of these classes is to the rest of
the members of the class. The inset figures in each panel
demonstrate that the randomly sampled test points (one drawn
from each class) are indeed extremely close to the aforemen-
tioned UPOS of order 4 (v9 asymmetric and v11 symmetric)
and the single one of order 2 (v17). These results indicate that
an OPN computed from a scalar time series is indeed capable
of detecting the most-dominant UPOs embedded within the
chaotic attractor of a continuous-time flow at sufficiently good
precision.

VI. DISCUSSION

Ordinal partition networks comprise mappings from a
scalar time series to a complex network. The input data is
assumed to be generated by a deterministic dynamical source
and our formulation is focused on ergodic systems. Network
construction is conducted via a very simple, computation-
ally efficient algorithm drawn from symbolic dynamics. It
involves counting ordinal patterns, i.e., permutations of the
numbers 1, 2, . . . , m that represent order relations between
points within short subsequences of the time series. The
premise behind our proposition lies on a Markovian model
which provides a stochastic approximation to the underlying
dynamics. Our findings indicate that (i) the topology of the
computed network encapsulates useful information about the
dynamical features of the system and (ii) the mapping can be
used to distinguish between different dynamical regimes.

In this work, we set out to test the extent to which infor-
mation from the original time series is retained by the OPN
transformation. Numerical experiments were conducted on
an ensemble of systems and dynamical regimes. Our results
suggest that the representation is faithful in the sense that
connectivity patterns reflect characteristics of the dynamics
and different dynamical regimes produce distinctions in the
topological structure of the network. In addition, we only
examined scalar time series and evidence suggests that any
projection of a multidimensional flow can be used to extract
a network representative of the underlying system. It can be
deduced that any nonlinear monotonic transformation of any
state variable will also exhibit the same ordinal structure.
We presented an interpretation of OPNs that has a particular
meaning within the context of ergodic theory and transfer
operators. Through this lens, the network constitutes a natural
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representation of a discrete-time finite-state Markov chain.
This allowed us to relate the topology to either the periodicity
or the hierarchy of unstable periodic orbits embedded within
an attractor, in the case of periodic and chaotic dynamics,
respectively. In addition, our framework sets the stage for
using OPNs to estimate characteristic indicators of chaotic
behavior [33,34].

Three different flavors of OPNs were introduced and all
can provide insight into the governing dynamics. The relative
out-strength distribution over all nodes of the directed multi-
graph W is equal to the stationary Markovian distribution,
obtained by the �1 normalized left eigenvector of T . The
transition graph T contains information about the transition
probabilities between the elements of the ordinal partition
in embedding space Rm, where m the denotes the length of
ordinal patterns. In Ref. [33], we illustrate the capabilities
of this flavour in a quantitative manner by estimating the
Lyapunov exponent of the chaotic system which has generated
the time series.

The connectivity matrix A represents all possible transi-
tions from any element in the ordinal partition of embedding
space to any other. We utilized it to localize the most dominant
(lowest-order k) UPOs of the underlying chaotic dynamical
regime. This was achieved via identification of the time series
points which have been mapped to cycles of order k in the net-
work. This technique is effective both for discrete maps and
continuous-time flow data by means of Poincaré sections. Any
type of section that provides a sufficiently accurate depiction
of the underlying dynamics may be used, even something as
simple and computationally efficient as recording successive
maxima from any component of a multidimensional system.
Additionally, in Ref. [34] the authors show how it can be
used to estimate the topological entropy of the underlying
discrete-time flow. The above highlights the benefits of using
this network-based technique over simply collecting statistics
from the symbolic itinerary and the complementary insight
obtained.

Finally, our aim being to provide a computationally cheap
tool to augment traditional time-series analysis, we have
created a guide for application of this toolkit to given data.
Examination of methodological parameters suggests that the
embedding lag (τ ) and the amount of overlap between suc-
cessive windows of the dataset segmentation (m − w) admit
an optimal value. The former should be set to unity to avoid
the aliasing effect, i.e., the occurrence of false admissible
patterns that are not induced by the underlying dynamics. The
latter parameter should be maximal, i.e., w = 1, to capture all
possible information from the empirical joint distribution of
time-ordered pairs of patterns. This leaves one free parameter,
namely the pattern length (m) which also dictates the reso-
lution of the ordinal partition, as well as the dimension of
embedding space. Instead of an optimal value, we put forth the
argument that there exists a scaling region, similarly to tradi-
tional embedding practice, where the resulting OPN captures
the underlying dynamics sufficiently well. Within this region
in parameter space, an OPN provides a useful stochastic ap-
proximation which can extract meaningful dynamical features
from a scalar time series. An interplay between the sample
size and the chosen value of m dictates the size of the optimal
scaling region. Plotting the number of nodes as a function of

the sample size N—for given time series using increasingly
larger subcomponents thereof—for various values of fixed m
can be used to determine this region.
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APPENDIX A: NETWORK METRICS

1. Network size

Denoted by V = |V|, it is equal to total number of admis-
sible patterns (permutations of order m) N (sn, m) observed in
the symbolic itinerary sn.

2. Link density

Denoted by ρE , it constitutes the second fundamental
network characteristic. Traditionally defined by

ρE = 1

V (V − 1)

∑
i, j, i 	= j

Ai j, (A1)

whereby self-loops (links from a node to itself) are not consid-
ered. This is equivalent to removing the main diagonal from
adjacency matrix A. We have repeated the entirety of our anal-
ysis with a variant which includes self-loops. The normalizing
constant changes to V 2 in this case. No differences in results
were observed, with the exception of absolute density values.

3. Out-degree

Denoted by kout
A (i), it is defined as the total number of

outgoing links adjacent to node i according to connectivity
matrix A. Also referred to as degree centrality.

4. Out-strength

Denoted by kout
W (i), it comprises the extension of the out-

degree metric to weighted networks. It equals the number
of outgoing links from each node in the multigraph W , i.e.,
total number of transitions from a given pattern observed
in itinerary sn. In the case of the transition graph, we have
kout

T (i) = 1 by definition.

5. Clustering coefficient

The coefficient of nodal clustering is defined as the pro-
portion of directed 3-cycles over all possible directed node
triplets passing through a node in the network. In set builder
notation it is given by

C( j) = |{(i, k) : Ai j = 1 ∩ Ajk = 1 ∩ Aki = 1}|
|{(i, k) : Ai j = 1 ∩ Ajk = 1}| . (A2)

Note that the denominator equals kin
A ( j) · kout

A ( j), i.e., the num-
ber of serially connected 3-node subgraphs passing through j.
The clustering coefficient of the network is the first moment
of the distribution of C over all nodes, i.e., Cclust = 1

V

∑
j C.
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TABLE I. Dynamical behavior exhibited by iteration of the logistic map in different parameter regimes.

Regime Stable node Period 2 Period 3 Period 4 Period 8 Period 16 Period 32 Period 2∞ Chaos

r 1.5 3.4 1 + √
8 � 3.8284 3.5 3.56 3.566 3.5695 3.57 4

6. Closeness centrality

It represents the relative ease/speed of reaching any other
node from a specified node in the network on average. It is
defined as

CC(i) = 1∑
j di j

, (A3)

where di j denotes the number of links that the shortest path
from node i to j is composed of.

7. Eigenvector centrality

A natural extension of the concept of out-degree to include
connections of length greater than unity. Within a social
context and in undirected networks, it quantifies the indirect
importance of a node via its links to other important nodes—a
measure of influence. Within our setting, EC provides a mea-
sure of centrality for each symbol in sn—hence, each element
of partition Q—by taking into consideration arbitrary-length
transitions to other elements of Q. This highlights basins of
attraction according to the Markov model. It is given by the
right eigenvector of the connectivity matrix A, i.e.,

EC(i) =
∑

j

Ai jEC( j). (A4)

8. k-cycles

Paths from a specified node to itself that consist of k links.
This is equivalent to self-loops when k = 1 and bidirectional
links when k = 2.

APPENDIX B: ITERATED MAPS

1. Logistic map (1D)

The one-dimensional (1D) logistic map with parameter r ∈
[0, 4] is given by the equation

xn+1 = f (xn; r) = rxn(1 − xn), xn ∈ [0, 1]. (B1)

We focus on the r = 4 regime, whereby dynamics produce
(i) expanding properties (true for all r > 1), i.e., volume-
generating in the sense of the Lebesgue measure, (ii) chaotic
behavior (true for all r > rc � 3.57), (iii) strong mixing prop-
erties, and (iv) the existence of 2k unstable k-periodic points
that are dense in the unit interval as k → ∞. It constitutes a
measure-preserving transformation of the 1D state space [0,1]
to itself that is ergodic. The unique natural invariant measure,
which is absolutely continuous with respect to the Lebesgue
measure, is given by the density function

P (x) = [πx(1 − x)]−
1
2 , (B2)

which admits two singularities near x = 0, 1.

In discrete-time flows, fixed points satisfy xn+1 = xn and,
in this case, are located at Fix( f ; r) = {0, 1 − 1

r }. The ori-
gin exists ∀r ∈ [0, 4] and is stable for r ∈ [0, 1), while the
nontrivial fixed point only exists (in a physically meaningful
sense) for r > 1 and is stable for r ∈ (1, 2). The set of
periodic points occur when xn+k = xn. If they are of prime (or
nondegenerate) period k, then we denote them by Perk ( f ; r) =
{x| f k (x) = x, f j (x) 	= x for 0 < j < k}. The set Per2( f ; r)
consists of points which satisfy the equation −r2x2

n + r(r +
1)xn − (r + 1) = 0, namely,

x2P,1 = 1

2
+ 1

2r
[1 +

√
(r + 1)(r + 3)],

x2P,2 = 1

2
+ 1

2r
[1 −

√
(r + 1)(r + 3)],

while Per4( f ; r) is composed of points satisfying a 12th-order
equation (omitted).

Table I shows a gamut of parameter values which generate
inherently different dynamical regimes in the logistic map.
Table II shows the exact locations of fixed points and periodic
points of prime period 2 and 4 when r = 4.

2. Dyadic/bit-shift/doubling map (1D)

We examine the chaotic regime produced by iteration of

xn+1 = 2xn mod 1. (B3)

3. Gauss map (1D)

We examine the chaotic regime for (α, β ) = (6.2,−0.486)
via iteration of the equation

xn+1 = e−αx2
n + β. (B4)

TABLE II. All 4-periodic points for the r = 4 logistic map.

Fix( f ; 4) Per2( f ; 4) Per4( f ; 4)

0 0.3455 0.0338
0.75 0.9045 0.0432
– – 0.1305
– – 0.1654
– – 0.2771
– – 0.4539
– – 0.5523
– – 0.6368
– – 0.8013
– – 0.9251
– – 0.9891
– – 0.9915
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4. Cubic map (1D)

We mainly examined the regime of “postmerge crisis”
(PMC) chaos when a = 4, whereby the equation

xn+1 = (a − 1)xn − ax3
n (B5)

generates behavior which admits the existence of an abso-
lutely continuous measure (with respect to Lebesgue).

Regime Period 2 Period 4 Period 8 Chaos PMC Chaos

a 3.1 3.26 3.295 3.42 4

5. Tent map (1D)

We examined iterations of the equation

xn+1 = fμ(xn) =
{

μxn, if xn < 1
2

μ(1 − xn), if xn � 1
2 ,

(B6)

which produces chaos for μ = 2 − 10−8 and approximates
behavior generated by f2. Integer parameter values lead
rapidly to convergence to the origin x = 0.

6. Lozi map (2D)

We examined chaotic behavior produced with (a, b) =
( 6

5 ,− 2
15 ) via iteration of

xn+1 = yn,

yn+1 = 1 + bxn − a|yn|. (B7)

7. Henon map (2D)

We examined the chaotic map given by

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn, (B8)

in the traditional chaotic parameter set (a, b) = (1.4, 0.3),
as well as the Benedicks-Carleson chaotic regimes (a, b) =
(1.96, b) for b > 0 very small. The latter regimes have been
shown to be ergodic and to generate a nonhyperbolic attractor
which admits a unique SRB measure.

APPENDIX C: CONTINUOUS-TIME FLOWS

1. Lorenz system

The three-dimensional (3D) continuous-time flow gener-
ated by simulation of the Lorenz equations

ẋ = σ (y − x),

ẏ = x(ρ − z) − y, (C1)

ż = xy − βz,
is investigated using the original parameter values (σ, ρ, β ) =
(10, 28, 8

3 ) which produce a “butterfly”-shaped fractal chaotic
attractor. We compute two different types of a PSS. A 2D map
can be obtained via recording the successive crossings of the
Lorenz trajectory in the ż > 0 direction with the z = 27 plane.
Three time series are stored, the x and y component of the
location of the crossings, as well as the recurrence times. A
one-dimensional Poincaré map can be obtained by the famous
technique set forth by Lorenz [72] using the maxima of the
trajectory in one direction, e.g., the sequence of successive
maxima in the z component of the continuous flow. We store
all three components associated with the zmax PSS, as well as
corresponding return times.

2. Rössler system

We examined the system of equations given by

ẋ = −(y + z),

ẏ = x + ay, (C2)

ż = b + (x − c)z,

mainly for (a, b, c) = (0.398, 2, 4). This choice generates
“broadband” chaos. Different regimes for (b, c) = (2, 4) can
be obtained by setting the value of a according to Table III.

3. Chua circuit

Another well-studied example is the three-dimensional
system of equations used to describe the dynamics of a simple
electronic circuit made from standard components only (resis-
tors, capacitors, and inductors). It exhibits classic chaotic be-
havior for the set of parameters (α, β, m0, m1, E ) = (9, 14 +
2
7 ,− 8

7 ,− 5
7 , 1). The resulting chaotic attractor is the so-called

‘double-scroll’ due to its shape. The system is given by

ẋ = α[y − x − φ(x)],

ẏ = x − y + z, (C3)

ż = βy,

where the function φ—which describes the electrical response
of the nonlinear resistor—is given by

φ(x) = m1x + 1
2 (m0 − m1) · (|x + E | − |x − E |). (C4)

TABLE III. Dynamical regimes in the Rössler system.

Regime Periodic Period 2 Period 3 Period 4 Period 5 Period 8 Broadband Fourband

a 0.3 0.35 0.41 0.377 0.4 0.3848 0.386 0.398
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APPENDIX D: MATLAB CODE

1 function [adj] = OrdinalPartitionNetwork(xt,m,w)

2 %ORDINALPARTITIONNETWORK computes an ordinal network from a time series using

3 %patterns of specified length and overlapping segments of given lag

4 %

5 % FORMAT

6 % ======
7 % [adj] = OrdinalPartitionNetwork(xt,m,w)

8 %

9 % INPUT

10 % =====
11 % xt: time series

12 % m: pattern length

13 % w: number of non-overlapping points between temporally successive segments

14 %

15 % OUTPUT

16 % ======
17 % adj: adjacency matrix of ordinal partition network

18

19 % length of input time series

20 N = length(xt);

21 % total number of segments

22 J = floor((N-m)/w) + 1;

23 % time series segmentation (embedding in m-dimensional Euclidean space

24 % using a single-point time delay)

25 Segments = zeros(m,J);

26 for j = 1 : J

27 Segments(:,j) = xt((j-1)*w+1:(j-1)*w+m);

28 end

29 % sequence of ordinal patterns corresponding to each time series segment

30 [∼,s] = sort(Segments,1,’ascend’);

31 % corresponding index sequence (database of distinct symbols)

32 [∼,∼,SymSeq] = unique(s’,’rows’);

33 % sequence of single-step transitions (pairs of successive symbols)

34 Tij = [SymSeq(1:end-1) SymSeq(2:end)];

35 % distinct transitions

36 [Tij,∼,idx] = unique(Tij,’rows’);

37 % frequency of each disctinct transition

38 Tij(:,3) = histcounts(idx,’binMethod’,’integer’);

39 % adjacency matrix (directed, weighted, with self-loops)

40 n = max(max(Tij(:,1)),max(Tij(:,2)));

41 adj = sparse(Tij(:,1),Tij(:,2),Tij(:,3),n,n);

42

43 end
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