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We study the synchronization and stability of power grids within the Kuramoto phase oscillator model with
inertia with a bimodal natural frequency distribution representing the generators and the loads. The Kuramoto
model describes the dynamics of the ac voltage phase and allows for a comprehensive understanding of
fundamental network properties capturing the essential dynamical features of a power grid on coarse scales. We
identify critical nodes through solitary frequency deviations and Lyapunov vectors corresponding to unstable
Lyapunov exponents. To cure dangerous deviations from synchronization we propose time-delayed feedback
control, which is an efficient control concept in nonlinear dynamic systems. Different control strategies are tested
and compared with respect to the minimum number of controlled nodes required to achieve synchronization and
Lyapunov stability. As a proof of principle, this fast-acting control method is demonstrated for different networks
(the German and the Italian power transmission grid), operating points, configurations, and models. In particular,
an extended version of the Kuramoto model with inertia is considered that includes the voltage dynamics, thus
taking into account the interplay of amplitude and phase typical of the electrodynamical behavior of a machine.
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I. INTRODUCTION

Synchronization phenomena in nonlinear dynamical net-
works are of major interest to a wide field of applications
in natural and technological systems [1,2], e.g., neural net-
works in the human brain, or supply and communication
networks and power grids, which naturally have a strong
link to the economy. Research in these fields has revealed
diverse phenomena related to synchronization, ranging from
partial synchronization patterns to asynchronous states [3–5].
In particular, scenarios leading from full synchronization to
asynchronicity via solitary states, i.e., single nodes which
are desynchronized from the rest, play an important role for
complex dynamical systems [6,7], and in this work we will
show that they are fundamental also for power grids.

Infrastructure, e.g., public transportation, medical care, and
a vast number of other everyday life applications, rely on
electrical power supply. Given the fact that modern power
transmission grids, notably if they include renewable energy
sources, differ significantly from conventional power grids
with regard to topology and local dynamics [8–11], it is nec-
essary to identify, understand, and cure the arising challenges
and problems. In particular, malfunctioning grids can be the
result of power outages, which occur for various reasons,
including line overload or voltage collapse. Here we will
focus on the loss of synchrony. In normal operation, a power
grid runs in the synchronous state in which all frequencies
equal the nominal frequency (50 or 60 Hz) and in which
steady power flows balance supply and demand at all nodes.
When parts of a power grid desynchronize, destructive power
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oscillations emerge. To avoid damage, affected components
must then be switched off. However, such switchings can
in turn desynchronize other grid components, possibly pro-
voking a cascade of further shut-downs and ending in large
area outages of electric supply networks: Recent examples
are reported in Refs. [12,13] while extensive studies on large-
scale blackout are reported in Refs. [14–17].

The failure of a transmission line during a blackout can
be determined not only by the network topology and the
static distribution of electric flow but also by the collective
transient dynamics of the entire system where the timescale
of system instabilities is of seconds [18,19]. In general, grids
are designed such that the synchronous state is locally stable,
implying that a cascade-triggering desynchronization cannot
be caused by a small perturbation. However, even if the syn-
chronous state is stable against small perturbations, the state
space of power grids is also populated by numerous stable
nonsynchronous states to which the grid might be driven by
short circuits, fluctuations in renewable energy generation, or
other large perturbations [18,20–22]. Therefore it is of funda-
mental interest to explore the relation between network prop-
erties and grid stability against large perturbations [18,23,24].
Yet many intriguing questions on the relation between grid
topology and local stability are still not understood. Decen-
tralized grids tend to be less robust with respect to dynamical
perturbations but more robust against structural perturbations
to the grid topology [25]. However, adding new links may
not only promote but also destroy synchrony, thus inducing
power outages when geometric frustration occurs [26,27].
The local stability can be improved by relating the specifics
of the dynamical units and the network structure [28–30]
or predicting a priori which links are critical via the link’s
redundant capacity and a renormalized response theory [31].
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In this paper we will demonstrate the role played by the
solitary nodes in driving the populations out of synchrony
and the necessity to control these nodes when restoring both
stability and synchronization. Solitary nodes can be related
to local instabilities via the application of a standard stability
toolbox (i.e., Lyapunov exponents and Lyapunov vectors) and
to topological properties of the network, like dead ends, thus
complementing the analysis reported in Ref. [30]. Once we
have identified the critical power grid nodes which undermine
stability and synchronization, we will apply time-delayed
feedback control to a small subset of these nodes in order to
cure a desynchronized and unstable power grid. Time-delayed
feedback is an efficient mechanism known in nonlinear dy-
namics and often used to control unstable systems [32,33].
Generator and consumer dynamics will be described in terms
of (i) Kuramoto oscillators with inertia [34] and (ii) extended
model of Kuramoto rotators with nontrivial voltage dynamics
or synchronous machines [35]. As a specific example, we
consider the topology of the German ultra-high-voltage power
transmission grid (220 kV and 380 kV).

II. MODEL AND METHODS

A. The Kuramoto model with inertia

The Kuramoto model with inertia describes the phase and
frequency dynamics of N coupled synchronous machines,
i.e., generators or consumers within the power grid, where
mechanical and electrical phase and frequency are assumed
to be identical:

θ̈i + αθ̇i = Pi

IiωG
+ K

IiωG

N∑
j=1

Ai j sin(θ j − θi ), (1)

with the phase θi(t ) and frequency θ̇i(t ) = dθi
dt of node i =

1, . . . , N . Both dynamic variables θi(t ), θ̇i(t ) are defined
relative to a frame rotating with the reference power line
frequency ωG, e.g., 50 Hz for the European transmission grid.
The distribution of net power generation (Pi > 0) and con-
sumption (Pi < 0) is bimodal; it corresponds to the inherent
frequency distribution in the Kuramoto model with rescaled
parameters (see Appendix A for a detailed discussion on the
parameter selection). The power balance requires

∑
i Pi = 0.

We assume homogeneously distributed transmission capac-
ities K . The adjacency matrix Ai j takes values 1 if node i
has a transmission line connected to node j and 0 otherwise.
Moreover, α is the dissipation parameter and takes typical
values of 0.1–1 s−1 [30,36]. Finally, the moment of inertia
Ii of turbine i is Ii = I = 40 × 103 kg m2, corresponding to
generation capacities of a single power plant equal to 400 MW
[30,37]. With the above definitions, the frequency synchro-
nization criterion reads θ̇i(t ) = 0, ∀i = 1, . . . , N , i.e., devi-
ations from the reference frequency are zero.

B. Synchronous machine

Equation (1) has been derived in Ref. [34] from the swing
equation governing the rotor’s mechanical dynamics [36]
by assuming constant voltage amplitude and constant me-
chanical power Pi. The former assumptions make the model
incapable of modeling voltage dynamics or the interplay of

amplitude and phase. However, it is possible to extend the
model straightforwardly by including the voltage dynamics,
thus taking into account the machine’s electrodynamical be-
havior. In the following we consider a lossless network of
synchronous machines whose dynamics is described by the
extended model derived in Ref. [35]. The coupled dynamics
of the phases {θi} and magnitudes {Ei} of the complex nodal
voltages {Ei = Eieiθi}i∈{1,...,N} are given by

θ̈i + αθ̇i = Pi

IiωG
+ K

IiωG

N∑
j=1

Ai jEiE j sin(θ j − θi ), (2)

mvĖi = −Ei + E f ,i + Xi

N∑
j=1

Ai jE j cos(θ j − θi ), (3)

where θ̇i is the individual frequency of the ith oscilla-
tor. Pi denotes the mechanical input or output power and
KAi jEiE j sin(θ j − θi ) is the electrical real power transferred
between machines i and j. The susceptance matrix coeffi-
cients Ai j allow for variations concerning the network topol-
ogy; as for the previous model, Ai j = 1 if node i has a
transmission line connected to node j and 0 otherwise. In
particular the diagonal entries of Ai j are chosen such that the
matrix has zero row sum

∑N
i=1 Ai j = 0, and mv , E f ,i, Xi take

into account machine and line parameters. In particular these
parameters are set to be homogeneous and of the same order of
magnitude as in Ref. [35]: mv = 1, E f ,i = 1, Xi = 1, while the
remaining quantities, already discussed in the original model
Eq. (1), are chosen as α = 2 s−1, Ii = I = 40 × 103 kg m2,
and ωG = 2π50 Hz.

C. German power grid and power distributions

In our numerical example we extract the topology Ai j from
the Open Source Electricity Model for Germany (elmod-de)
[38], which describes the German ultra-high-voltage transmis-
sion grid using N = 438 nodes connected by 662 transmission
lines [see Fig. 1(a)].

In many previous studies using the Kuramoto model with
inertia to model power grid networks, the distribution of net
power generation and consumption Pi is set to be a bimodal δ

distribution [25,26,30,39–41]. Here we consider more com-
plex distributions: First, an artificial bimodal Gaussian dis-
tribution PG [42,43] is generated, whose probability density
function p(P) is given by the superposition of two Gaussians
centered at ±P0 with standard deviation σ ,

p(P) = 1

2σ
√

2π

[
e− (P−P0 )2

2σ2 + e− (P+P0 )2

2σ2
]
. (4)

Figure 1(b) shows a histogram of the realization PG used in the
numerical simulations of this study. The second distribution
PR shown in Fig. 1(c) is calculated based on data provided by
elmod-de [38] and will be referred to as real-world distribu-
tion.

According to the data documentation [38], elmod-de is an
open-source nodal dc load flow model, minimizing generation
costs, for the German electric power transmission grid. In the
following, we point out how the information in elmod-de is
translated into realistic values for the parameters used in our
network of Kuramoto oscillators with inertia. As anticipated
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FIG. 1. (a) Map of the German ultra-high-voltage power grid,
consisting of 95 net generators (green squares) and 343 net con-
sumers (red dots) connected by 662 transmission lines (black lines).
[(b) and (c)] Histograms showing distributions of net power: (b) Re-
alization of an artificial bimodal Gaussian; P0 = 105 MW, σ = P0/2.
(c) Based on the German power grid. The light green (dark red)
bars correspond to generators (consumers). Panels (a) and (c) are
constructed from elmod-de data reported in Ref. [38].

above, the data set contains nodal information on N = 438
network nodes within the 220-kV and 380-kV ultra-high-
voltage transmission grids, of which 393 are substations.
The remaining nodes are used to model interactions with
neighboring countries (22) and auxiliary nodes (23), e.g.,
points in the grid without a transformer station. The nodes are
connected with 697 transmission lines, 35 of them appearing
twice in the data set, which will be neglected, such that
662 unique transmission lines remain. We will furthermore
assume identical power transmission capacities for all trans-
mission lines, resulting in a generic coupling strength for the
network, thus reducing the values of the coupling matrix to 0
or 1. Besides geographical locations of all nodes, local power
demand values pi are given in parts of the total power demand
of Germany at off-peak times:

PTotal =
N∑

i=1

piPTotal = 36 GW. (5)

Following these definitions the absolute power demand at
node i = 1, . . . , N = 438 is given by piPTotal. The spatial

FIG. 2. Spatial distribution of nodal power demands constructed
from elmod-de data reported in Ref. [38]. The size of the circles
indicate the value of piPTotal.

distribution of piPTotal is illustrated in Fig. 2. Furthermore,
562 conventional power plants, e.g., coal or atomic plants,
are listed. Information on the topological location of plants,
i.e., to which node i they belong, and their maximum power
generation capacities is provided. Let ni be the number of
power plants associated with node i. The maximum capacity
of plant k = 1, . . . , ni located at node i will be denoted by Ck

i .
In order to obtain nodewise generation capacities Ci, Ck

i will
be aggregated for each node:

Ci =
{∑ni

k=1 Ck
i ni > 0

0 ni = 0
. (6)

The spatial distribution of Ci is illustrated in Fig. 3. The total
generation capacity CTotal reads:

CTotal =
N∑

i=1

Ci = 88.354 GW. (7)

Due to the fact that plants being operated at 100% of their
maximum generation capacities would cause a large oversup-
ply of power generation and break power balance, we will
assume each plant to be operated at 41% of its maximum ca-
pacity, since PTotal/CTotal ≈ 0.41. With this intermediate level
of power generation, the power balance is fulfilled and the net
generation or consumption Pi at node i is given by:

Pi = 0.41Ci − piPTotal. (8)

D. Macroscopic indicators and Lyapunov analysis

We consider a scenario where, due to an arbitrary dynam-
ical perturbation, some critical nodes have become desyn-
chronized, where we define as critical those nodes with-
standing self-organized resynchronization. Synchronization is
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FIG. 3. Spatial distribution of nodal generation capacities con-
structed from elmod-de data reported in Ref. [38]. The size of the
circles indicate the value of Ci.

first gained by performing an adiabatic transition from the
asynchronous to the synchronized state for increasing cou-
pling constant: Starting with random initial conditions θi(0) ∈
[−2π, 2π ), θ̇i(0) ∈ [−1, 1) at K = 0, the coupling strength K
is increased adiabatically up to KMax, where the system shows
synchronized behavior. For each investigated value of K , the
system is initialized with the final conditions found for the
previous coupling value, and then the system evolves for a
transient time TA, such that it can reach a steady state. After
the transient time TA, characteristic measures are calculated
in order to assess the quality of synchronization and the
stability of the underlying state {θi(TA), θ̇i(TA)}. In particular
the time-averaged phase velocity profile 〈ωi〉t ≡ 〈θ̇i〉t provides
information on frequency synchronization of individual nodes
i, whereas the standard deviation of frequencies

�ω(t ) ≡ 1

N

√√√√ N∑
i=1

[ωi(t ) − ω̄(t )]2 (9)

is used to estimate the deviation from complete frequency
synchronization [ω̄(t ) indicates the instantaneous average grid
frequency].

Once a desired synchronized state is reached, a pertur-
bation can occur leading the state out of synchrony. In this
situation the overall stability of the power grid might be lost,
and therefore it is necessary to analyze the time evolution of
small dynamic perturbations δθi := θ∗

i − θi around the steady
state θ∗

i , whose dynamics is ruled by the linearization of
Eq. (1) as follows:

δθ̈i + αδθ̇i = K

IωG

N∑
j=1

Ai j cos(θ j − θi )(δθ j − δθi ). (10)

For the extended model, the linearization of Eqs. (2) and (3)
reads as

δθ̈i + αδθ̇i = K

IωG

N∑
j=1

Ai j[EiEj cos(θ j − θi )(δθ j − δθi )

+ (δEiEj + EiδEj ) sin(θ j − θi )] (11)

mvδĖi = −δEi + Xi

N∑
j=1

Ai j[−Ej sin(θ j − θi )(δθ j − δθi )

+ δE j cos(θ j − θi )]. (12)

The exponential growth rates of the infinitesimal pertur-
bations are measured in term of the associated Lyapunov
spectrum {λk}, with k = 1, . . . , 2N , numerically estimated by
employing the method developed by Benettin et al. [44]. In
particular one should consider for each Lyapunov exponent
λk the corresponding 2N-dimensional tangent vector T (k) =
(δθ̇1, . . . , δθ̇N , δθ1, . . . , δθN ) whose time evolution is given by
Eq. (10) [respectively, Eqs. (11) and (12) for the extended
model]. Important information about the sources of instability,
and, in particular, about the oscillators that are more actively
contributing to the chaotic dynamics, can be gained by calcu-
lating the time-averaged evolution of the tangent vector T (1),
here referred to as maximum Lyapunov vector. The Euclidean
norm of each {θi, θ̇i} pair in T (1), averaged in time, is mea-
sured for each oscillator as ξi := 〈

√
[δθi(t )]2 + [δθ̇i(t )]2〉t ,

once the tangent vector is orthonormalized, i.e., ||T (1)|| = 1.

E. Time-delayed feedback control

In order to enhance frequency synchronization and stability
when the system is subject to a dynamical perturbation, the
Kuramoto model with inertia is extended by time-delayed
feedback control which is an efficient control concept, well
known in nonlinear dynamic systems [32,33] but not com-
monly employed in power grid engineering [45–47]:

θ̈i + αθ̇i = Pi

IωG
+ K

IωG

N∑
j=1

Ai j sin(θ j − θi )

− giα

τ
[θi(t ) − θi(t − τ )], (13)

where gi is the control gain of node i and τ is the delay time.
While primary control sets in to stabilize the frequency and
to prevent a large drop within few seconds after a shortage,
secondary control is necessary to restore the frequency back
to its nominal value of 50 or 60 Hertz within few minutes. On
the other hand, our delayed feedback control is able both to
stabilize the frequency of the power plant at the origin of the
perturbation and to restore the frequency back to its nominal
value within few seconds.

Equivalently, for the extended model, the introduction of
time-delayed feedback control reads

θ̈i + αθ̇i = Pi

IiωG
+ K

IiωG

N∑
j=1

Ai jEiE j sin(θ j − θi )

− giα

τ
[θi(t ) − θi(t − τ )],

mvĖi = − Ei + E f ,i + Xi

N∑
j=1

Ai jE j cos(θ j − θi ). (14)
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(a)

(b)

FIG. 4. Power characteristics of time-delayed feedback using
the extended model and the German grid with PR: (a) Frequencies
ωi(t ) and (b) control powers ci of controlled solitary nodes versus
time t . The vertical line indicates the onset of control. The set
of controlled nodes (Nc = 10) is chosen according to the strategy
shown in Fig. 14(b). Delay time τ = 4 s. The feedback gain gi

is set to gi = 1.3 for controlled nodes and gi = 0 for other nodes.
Parameters: mv = 1, Ef ,i = 1, Xi = 1, K = 1307 MW, α = 2 s−1,
Ii = I = 40 × 103 kg m2, ωG = 2π50 Hz.

For both models it turns out that the control is ro-
bust against changes in the parameters τ, gi, as shown in
Appendix A. In particular, control performance at large
enough gain is comparable for a wide range of delay times,
therefore, without loss of generality we have chosen τ = 4
and g = 1, where the chosen delay time lies within that range.
The control term introduced in Eq. (13) [and equivalently in
(14)], i.e., 1

τ
[θi(t ) − θi(t − τ )], represents a running frequency

average:

〈ωi〉t := 1

τ

∫ t

t−τ

θ̇i(t
′)dt ′ = 1

τ
[θi(t ) − θi(t − τ )], (15)

where phases are measured cumulatively. Since in the Ku-
ramoto model with inertia only phase differences are impor-
tant for the dynamics, we do not require phases to be in [0, 2π ]
(or [−π, π ]).

Moreover, the control strength that we use is realistic (e.g.,
≈ 900 MW for a single node at the onset of control for the
setup shown in Fig. 14) and within the order of magnitude
of power characteristic requirements reported in Ref. [48].
Details of the power characteristics are given in Fig. 4 for the
extended model with voltage dynamics [Eqs. (14)], simulated
on the German high-voltage grid, with real-world natural fre-
quency distribution. In particular the control power, reported
in Fig. 4(b), is defined as

ci(t ) := −giαIωG

τ
[θi(t ) − θi(t − τ )]. (16)

In our simulations the power ci of controlled nodes does not
exceed the maximum control power treatable by frequency
primary control in Germany (data for frequency and volt-

age control ancillary services in Germany are reported in
Ref. [48]).

Finally, it is worth highlighting that the control scheme is
applied to a subset of nodes, chosen according to suitably
designed strategies. The possibility to control few nodes out
of a big network makes the stabilization of the network
faster: The control in principle can be switched on for all
emerging critical nodes and it turns off automatically when
the node is synchronized again. Since the control vanishes at
full synchronization, it does not double the dissipation rate
permanently.

III. RESULTS FOR A NETWORK OF KURAMOTO
OSCILLATORS WITH INERTIA

A. Emergence of solitary states

In general we have performed sequences of simulations
by varying adiabatically the coupling parameter K with two
different protocols. Namely, for the upsweep protocol, as
described in the previous section, the series of simulations is
initialized for the decoupled system by considering random
initial conditions both for phases and frequencies. Afterward
the coupling is increased in steps of �K until a maximum cou-
pling strength KMax is reached. For the downsweep protocol,
starting from the maximum coupling strength KMax achieved
by employing the upsweep protocol simulation, the coupling
is reduced in steps of �K until K = 0 is recovered. At each
step the system is simulated for a transient time TA followed
by a time interval TW during which the average frequencies
〈ωi〉t , as well as the components of the Lyapunov vector ξi

and the maximum Lyapunov exponent λ1, are calculated. An
example of the results obtained by performing the sequence
of simulations of upsweep followed by downsweep is shown
in Figs. 5 and 6 for the bimodal Gaussian distribution PG and
the real-world distribution PR, respectively.

In both cases, at low coupling, a large fraction of the net-
work is unsynchronized [Figs. 5(a) and 6(a)] and the system is
chaotic, i.e., λ1 > 0 [Figs. 5(b) and 6(b)]. A considerable part
of the oscillators rotates with average frequency |〈ωi〉| > 0,
while relatively few oscillators are locked at average zero
frequency [Figs. 5(c) and 6(c)]. Other clusters at |〈ωi〉| �= 0
may emerge. The solitary nodes, which are desynchronized
from the rest of the network, and oscillate with high frequency,
are those mostly responsible for the lack of synchronization.
This is revealed by the analysis of the components of the
maximum Lyapunov vector ξi, which assume large values
for those nodes which are solitary, thus indicating that the
directions identified by solitary nodes are the most unstable
in the network [as shown in Figs. 5(f) and 6(f)].

For intermediate K values, the majority of nodes is syn-
chronized on average, with a small set of nodes being solitary,
for instance, 9 for the Gaussian and 11 for the real-world
distribution [see Figs. 5(a) and 6(a) and then Figs. 5(d) and
6(d)]. The system is still chaotic [Figs. 5(b) and 6(b)] and
the components of the Lyapunov vector ξi are still localized
around solitary nodes [Figs. 5(g) and 6(g)]. The number
of solitary nodes diminishes for increasing coupling values,
since more and more nodes join the main synchronized cluster
at zero average frequency. Just before full synchronization
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FIG. 5. German power grid with bimodal Gaussian distribution
PG: (a) Average frequency deviation 〈�ω〉t and (b) largest Lyapunov
exponent λ1 versus coupling strength K . The solid (dashed) lines
correspond to the adiabatic upsweep (downsweep) of K . [(c)–(e)]
Average frequencies 〈ωi〉t and [(f)–(h)] Lyapunov vector components
ξi versus node index i for the K values marked by black circles in the
top panels from left to right. Parameters: 0 � K � 3142 MW in steps
of �K ≈ 21 MW with α = 5/6 s−1, Ii = I = 40 × 103 kg m2, ωG =
2π50 Hz. Averages taken over 100 s after discarding a transient
time of 400 s. Lyapunov exponents and vectors calculated for a
duration of 4 × 105 s. Lyapunov exponents are expressed in units of
�t−1 = 5 s−1.

[see Figs. 5(e) and 6(e)], one solitary node is left and no
instability emerges in the system [Figs. 5(h) and 6(h)]. The
fully synchronized state (〈�ω〉t = 0) is stable and it is charac-
terized by a single cluster with no solitary nodes. In particular
complete frequency synchronization with 〈�ω〉t = 0, λ1 = 0
is achieved at K � 1320 MW (K � 4200 MW) for PG (PR).

FIG. 6. German power grid with real-world distribution PR:
Same as in Fig. 5. Parameters: 0 � K � 4500 MW in steps of
�K ≈ 25 MW with α = 2 s−1. Other parameters as in Fig. 5.

When K is decreased starting from the synchronized states,
the systems remains synchronized for a larger K interval, due
to the hysteretic nature of the transition, and the synchronized
state loses stability (i.e., 〈�ω〉t > 0) for a coupling value
smaller than the one found during the upsweep protocol [see
Figs. 5(a) and 6(a)]. The system is multistable and partially
synchronized states [as those shown in Figs. 5(d) and 6(d)]
coexist with the synchronized one. Depending on the initial
state of the system, the dynamics can approach either the
synchronized state or one of the upper branch states. This
also means, that, starting from the synchronized states, large
perturbations can kick the system out of synchrony. In order
to visualize this scenario in terms of running power grids,
we can resort to the infinite bus model, commonly used in
engineering literature to analyze the return to synchrony after
a frequency perturbation at a node: The standard analysis ne-
glects the back-reaction of the dynamics at node i on the other
nodes and keeps them fixed, i.e., θ̈i + αθ̇i = Pi−K sin(θi )

IiωG
. When

decoupling this system (K = 0) the oscillator rotates freely
with frequency Pi/(αIiωG). When the coupling is switched
on, this limit cycle persists, and in the absence of losses
its average frequency stays close to Pi/(αIiωG). This might
be seen as a simple model for solitary states, where the
infinite bus represents the remaining synchronous component.
If they occur in a running grid, the solitary nodes are normally
switched off as soon as their frequency falls outside a certain
range around the nominal value.

The goal of this paper it to give a proof of principle that
once such a partially synchronized state is approached, our
control method is capable of synchronizing and stabilizing the
system. Thus in the following we consider the two unstable
states present in Figs. 5(d), 5(g) and Figs. 6(d), 6(g), which
we aim to control.

B. Application of time-delayed feedback control

To facilitate understanding we report in Fig. 7 the main
features of the unstable states, briefly introduced in the previ-
ous section, that we aim to control. In particular Fig. 7 shows
the time-averaged standard frequency deviation 〈�ω〉t and the
maximum Lyapunov exponent λ1 for each value K of the
adiabatic increase for the bimodal Gaussian [Fig. 7(a)] and
for the real-world distribution [Fig. 7(b)] and highlights the
considered operating points via dashed black lines.

If a perturbation pushes the system out of synchrony at
an intermediate state with finite values of 〈�ω〉t , in a chaotic
regime characterized by λ1 > 0, then would it be possible to
enhance synchronization and stability by controlling a small
subset of nodes? In the following we will give a positive
answer to this question by exploring the dynamics of the
system at K ≈ 817 MW (K ≈ 729 MW) for PG (PR), where
deterministic chaos is present, i.e., λ1 = 0.0187 (λ1 = 0.096),
and the system is not perfectly frequency synchronized:
〈�ω〉t ≈ 0.34 Hz (〈�ω〉t ≈ 0.91 Hz), modeling a strongly
perturbed power grid [49]. Even though we are considering a
partially synchronized regime with an intermediate transmis-
sion capacity value, as a resulting regime in case of strongly
perturbed grid, we made sure not to artificially drive the
system to an unrealistic range of capacity values. Indeed,
the operating point at which we are working is in a realistic
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FIG. 7. Time-averaged standard frequency deviation 〈�ω〉t (blue
dots) and maximum Lyapunov exponent λ1 (orange line) versus
coupling strength K for the bimodal Gaussian PG (a) and for the real-
world distribution PR (b), calculated for the upsweep protocol. The
dashed black lines highlight the operating K points. Time-averaged
phase velocity profile 〈ωi〉t (dark blue dots) and Lyapunov vector
components ξi (light orange triangles) versus node index i for the
bimodal Gaussian at K ≈ 817 MW (c) and for the real-world dis-
tribution at K ≈ 729 MW (d). Data are ordered in descending order
of ξi. The insets show a zoom for small i. Large circles (triangles)
mark 〈ωi〉t (ξi) of solitary nodes. For PG 0 � K � 3142 MW in steps
of �K ≈ 21 MW with α = 5/6 s−1. For PR 0 � K � 4500 MW in
steps of �K ≈ 25 MW with α = 2 s−1 [50]. Other parameters as in
Fig. 5.

regime when considering the average transmission capacity
(≈1500 MW) at which the German ultra-high-voltage trans-
mission grid works, according to the elmod-de data set.

From the average frequency profile shown in Fig. 7(c)
[Fig. 7(d)] for PG (PR), we can see that a major part of
the power grid is frequency synchronized while few nodes
have a significant frequency deviation and are identified as
solitary states: nine nodes for PG and 11 nodes for PR. (Note
that the three solitary nodes i = 1, 2, 3 can only be resolved
in the blown-up inset.) Solitary nodes oscillate with their
own average frequency and do not resynchronize in a self-
organized way at a given coupling strength, being thus critical
for desynchronization. Note that the solitary nodes include
those with the largest ξi but not only those.

In order to enhance frequency synchronization and sta-
bility at the intermediate coupling strength discussed above,
we introduce time-delayed feedback control as in Eq. (13).
The modus operandi of the control method is shown in
Fig. 8, where all solitary states are controlled for both natural
frequency distributions, PG and PR. In particular Fig. 8(a)
[Fig. 8(b)] shows the instantaneous deviation �ω(t ) before
and after the control is activated in presence of PG (PR) for
the set of controlled nodes. In approximation, the deviation

(a) (b)

FIG. 8. Time-delayed feedback control: Standard deviation of
frequencies �ω(t ) versus time t . The insets show the frequencies
ωi(t ) versus time t of five arbitrary solitary nodes. Panel (a) corre-
sponds to the distribution PG with PMax ≈ 817 MW and (b) to PR

with PMax ≈ 729 MW. The dashed vertical lines indicate the onset
of control; delay time τ = 4 s. The feedback gain gi is set to gi = 1
for solitary nodes and gi = 0 for other nodes; other parameters as in
Fig. 5(d) for panel (a) and Fig. 6(d) for panel (b).

�ω(t ) exponentially decays (∝et/tc ) as soon as the control is
activated and reaches �ω(t ) = 0 with a characteristic time
tc ≈ 2.58 s (tc ≈ 0.92 s). When the control is turned off at
t = 40 s, the synchronized states persist and are Lyapunov
stable (λ1 = 0). In other words by applying the proposed
control method on few solitary nodes out of a big network, we
have the possibility to synchronize and stabilize the network.
The control is not necessarily active all the time, since it
can be switched on when solitary nodes emerge and it turns
off automatically when the node is synchronized again, i.e.,
ωi(t ) = 0.

In the following we propose to apply the control term
only to a small subset of nodes selected according to their
dynamical properties. In particular we aim at designing a
control strategy based on the dynamical properties of the
system that allows us to attain synchronization by controlling
few nodes only (i.e., fewer nodes than the ensemble of solitary
nodes shown in Fig. 8), thus speeding up the efficiency of
control. In order to find such a set, different control strategies
are proposed in the following: (i) The first strategy takes into
consideration all solitary nodes, sorted in descending order of
ξi; (ii) the second strategy orders the solitary nodes by their
absolute average frequency |〈ω〉t |; and (iii) the third strategy
consider all nodes, not only solitary ones, randomly picked.
The outcome of the different strategies is shown in Figs. 9(a)–
9(c) and 9(d)–9(f) for the bimodal Gaussian distribution PG

and the real-world distribution PR, respectively. First, strategy
(i) is able to achieve stability if just one node is controlled
and frequency synchronization if the number of controlled
solitary nodes is sufficiently large: eight controlled nodes for
both PG and PR. Strategy (ii) requires four controlled nodes
for stabilization and eight for synchronization in the case of
PG and one controlled node for stabilization and nine nodes
for synchronization in case of PR. The third strategy is not able
to frequency-synchronize and stabilize; it can at most mitigate
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FIG. 9. Efficiency of time-delayed feedback control: Time-
averaged frequency deviation 〈�ω〉t (blue dots) and maximum Lya-
punov exponent λ1 (orange triangles) vs number of controlled nodes
Nc following different control strategies: [(a) and (d)] Solitary nodes
sorted in descending order of ξi. [(b) and (e)] Solitary nodes sorted
in descending order of |〈ωi〉t |. [(c) and (f)] Randomly picked nodes.
At each step of each control strategy, one more node is controlled,
picked from one of the three mentioned lists, and both the level of
synchronization and the instability are recalculated via 〈�ω〉t and λ1.
Panels (a)–(c) correspond to the distribution PG and (d)–(f) to PR.
The dashed line marks 〈�ω〉t = 0, the dotted line denotes λ1 = 0.
Control acts for a duration of 40 s and is then turned off; delay
time τ = 4 s, feedback gain g = 1, time averages over 80 s, and
operating points K ≈ 817 (K ≈ 729) for PG (PR). Other parameters
as in Fig. 5(d) for (a)–(c) and Fig. 6(d) for (d)–(f).

to some extent the desynchronization and the instability. For
the given setup, strategy (i) is the best choice: It is particularly
efficient since the Lyapunov vector is recalculated every time
when an additional solitary node is controlled, thus taking into
account the interplay between solitary states and emerging
instabilities. However, both strategies (i) and (ii) highlight the
role played by solitary nodes, a role that will be clarified in
more detail in the next section.

C. Lyapunov analysis

The presence of solitary nodes deeply influences the dy-
namics emerging in the system, since they behave almost
independently, adding complexity and conveying the insta-
bility. In particular the role played by the solitary nodes
can be understood by the change in the Lyapunov spectrum
when the control strategy (i) is applied, i.e., when solitary
nodes are controlled, ordered according to their Lyapunov
vector component (for the definition of the other strategies see
previous section).

If we first consider the bimodal Gaussian natural frequency
distribution, the uncontrolled state is characterized by a cluster
of synchronized oscillators plus nine solitary nodes. The
system is chaotic and the maximum Lyapunov exponent is
positive [see Fig. 10(a)]: The interplay between solitary nodes
and cluster state gives rise to low-dimensional chaos in the
system. When the first solitary node is controlled [Fig. 10(b)],
the dynamics becomes quasiperiodic and the collective be-
havior is a high-dimensional torus, as can be deduced by
the consistent number of eight Lyapunov exponents that are
exactly zero. Each solitary node, at the microscopic level,
moves with an average velocity which is different from the
velocity of the cluster and from the velocity of the other soli-
tary states: The self-emergent dynamics, at the macroscopic

FIG. 10. Bimodal Gaussian natural frequency distribution, con-
trol strategy (i): Lyapunov exponents λn versus n for K = 817 MW.
For simplicity only the first 13 exponents of the spectrum are plotted.
Panels (a) to (j) are arranged according to the number of controlled
nodes Nc increasing by one from Nc = 0 to Nc = 9. Lyapunov
exponents are expressed in units of �t−1 = 5 s−1.

level, is a quasiperiodic motion characterized by multiple
incommensurable frequencies. When solitary nodes are con-
trolled and frequency synchronized to the cluster, they do no
longer contribute to the collective dynamics with their own
frequency, thus decreasing the dimensionality of the macro-
scopic behavior. Thus, the further control of more solitary
nodes has the effect of stabilizing the system: Negative ex-
ponents becomes more and more negative while the zero ones
become negative. When five solitary states are controlled, the
macroscopic dynamics evolves on a two-dimensional torus
[see Fig. 10(f)]. This can be explained considering that in the
system under investigation one might expect two Lyapunov
exponents to be zero due to the symmetries of the system: One
is always present for a system with continuous time, while the
second zero exponent is related to the invariance of the model
under uniform phase shift. Therefore when five solitary nodes
are controlled, two exponents are zero due to symmetries,
while the other two zero exponents identify the emergent
quasiperiodicity. Finally, when the system is synchronized,
thanks to the control of eight solitary nodes, the typical
spectrum of a stable periodic synchronized state appears, with
a negative plateau at λn = −α/2 (for 1 < n < 2N − 1) and
λ1 = 0 [see Figs. 10(i) and 10(j)]. The synchronized state is
degenerate and the phase shift of all the phases corresponds
to a perturbation along the orbit of the fully synchronized
state, which explains why the two invariances, and thus the
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FIG. 11. Real-world natural frequency distribution, control strat-
egy (i): Lyapunov exponents λn versus n for K = 729 MW. For
simplicity only the first 13 exponents of the spectrum are plotted.
Panels (a) to (j) are arranged according to the number of controlled
nodes Nc increasing by one from Nc = 0 to Nc = 11. Lyapunov
exponents are expressed in units of �t−1 = 5 s−1.

Lyapunov exponents, coincide, as already shown in Ref. [51]
for a globally coupled network.

A similar behavior can be observed for the real-world
natural frequency distribution case, where the initial uncon-
trolled state is chaotic (λ1 > 0) and 11 solitary nodes emerge
from the synchronized cluster state [see Fig. 11(a)]. When the
solitary state with largest Lyapunov component is controlled
and synchronized to the cluster, the system is no longer
unstable, which indicates that the instability was conveyed
by the selected solitary node [see Fig. 11(b)]. Due to the
interaction of the remaining solitary states, characterized by
different average frequencies, the collective dynamics of the
system turns out to be quasiperiodic and high dimensional.
The dimensionality of the quasiperiodic motion is reduced
by controlling more and more nodes and results in a two-
dimensional torus when five solitary nodes are controlled
[see Fig. 11(f)]. Finally, the system is synchronized when
eight solitary states are controlled [see Fig. 11(i)], while the
additional control of further nodes does not alter nor enhance
the synchronization.

D. Topological features vs extreme events

In Ref. [30] numerical evidence was given that dead ends
and dead trees undermine basin stability of nodes in Kuramoto
power grid networks, which means that the basin of attraction
of the frequency synchronized solution for single nodes tends

FIG. 12. Source of solitary nodes: Lyapunov vector components
ξi versus maximum neighborhood degree Di for (a) PG and (b) PR.
Only solitary nodes are shown, and filled circles identify nodes which
belong to dead trees. [(c) and (d)] Absolute time-averaged frequency
|〈ωi〉t | versus node index i for PG, where 4�P is added to the inherent
frequency of an arbitrary nonsolitary node k (green diamond). In
(c) dead-tree nodes (filled circles) adjacent to k are controlled and
in (d) k is controlled. The black line indicates the synchronized
cluster. The instantaneous frequencies ωi(t ) of node k (light green)
and dead-tree nodes adjacent to k (dark red) versus time are shown
in the insets. Vertical dashed lines mark activation and deactivation
of control. Parameters as in Figs. 4 and 7, time averages over 80 s.

to be small if a node is placed at a dead end, thus making
such nodes hard to synchronize. The general pattern of these
most peripheral nodes looks very similar to the pattern of most
sensitive nodes numerically found in Ref. [52] and partially
explained on the basis of resistance distance centralities in
Ref. [53].

Indeed, in the case of the bimodal Gaussian distribution
PG, all the identified solitary nodes belong to a dead tree
[see Fig. 12(a)]. However, this trend cannot be observed for
the real-world distribution PR, where just 3 of the 11 solitary
nodes belong to a dead tree [see Fig. 12(b)] and dead trees
do not correspond to the most unstable nodes. In general we
have observed that the most unstable solitary nodes, for PG,
are dead ends adjacent to well connected nodes, whereas for
PR they are nodes with Pi > 4�P, where �P is the standard
deviation of the distribution. The discrepancy between the two
cases can be explained if, starting from PG, we arbitrarily add
4�P to the net power (=̂ inherent frequency) of a nonsolitary
node k. This altered node then becomes solitary and causes
other adjacent nodes to become solitary, some of them belong-
ing to dead trees. If we control all the newly emerged solitary
dead trees, then the system does not synchronize and the
dynamics of node k is almost unchanged [Fig. 12(c)], whereas
we can achieve synchronization via controlling node k only
[Fig. 12(d)]. This means that dead trees are fundamental
in determining the power grid stability whenever the power
distribution does not contain fat tails or extreme events, which
is the case for PG; for the real-world distribution PR, however,
nodes with significant power difference are common and the
stability is undermined by these nodes rather than by dead
trees.
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FIG. 13. German power grid with real-world distribution PR

using the extended model: (a) Average frequency deviation 〈�ω〉t

and (b) largest Lyapunov exponent λ1 versus coupling strength K .
The solid lines (dashed lines) correspond to the adiabatic upsweep
(downsweep) of K . [(c)–(e)] Average frequencies 〈ωi〉t and [(f)–(h)]
Lyapunov vector components ξi versus node index i for the K values
marked by black circles in the top panels from left to right. Param-
eters: mv = 1, Ef ,i = 1, Xi = 1. Lyapunov exponents and vectors
calculated for a duration of 8 × 103 s. Lyapunov exponents are
expressed in units of �t−1 = 5 s−1. Other parameters as in Fig. 6.

IV. RESULTS FOR A LOSSLESS NETWORK OF
SYNCHRONOUS MACHINES

Applying the same procedure as previously done for the
standard Kuramoto model with inertia with different natural
frequency distributions, we perform an adiabatic parameter
scan in K , thus identifying the synchronization transition of
the system during the upsweep and downsweep protocols.
The system is initialized at K = 0 with uniformely distributed
initial conditions not only for phases and frequencies {θi, θ̇i}
but also for the voltage amplitudes {Ei}, that are set uniformly
random: Ei(0) ∈ [0.5, 1.5).

As for the previously investigated setups, the system under-
goes a hysteretic transition to synchronization [see Fig. 13(a)].
It shows an asynchronous state for low coupling values K
and partially synchronized states for intermediate K values
[Figs. 13(d) and 13(e)]. In particular the number of whirling
nodes diminishes with increasing K and it is possible to
identify a state, in proximity of the synchronization transition,
where almost all nodes are synchronized, while few of them
are solitary nodes still oscillating with average frequency
different from zero [Fig. 13(e)]. Similarly to the previous
setups, the Lyapunov vector is (mostly) localized around soli-
tary nodes [see Figs. 13(c)–13(h) corresponding to different
stages of the adiabatic upsweep], thus indicating that solitary
nodes are leading the synchronization transition even when
considering voltage dynamics. Finally, the system is chaotic
for a larger K interval [Fig. 13(b)] as compared to the original
Kuramoto model with inertia.

Strategies (i) and (ii) to synchronize and stabilize the
system are applied to the partially synchronized state at K ≈

FIG. 14. Efficiency of time-delayed feedback control for the Ger-
man power grid with real-world distribution PR using the extended
model: Time-averaged frequency deviation 〈�ω〉t (blue dots) and
maximum Lyapunov exponent λ1 (orange triangles) vs number of
controlled nodes Nc following different control strategies: (a) Soli-
tary nodes sorted in descending order of ξi; (b) solitary nodes sorted
in descending order of |〈ωi〉t |. The dashed line marks 〈�ω〉t = 0 and
the dotted line denotes λ1 = 0. Control acts for a duration of 40 s
and is then turned off; delay time τ = 4 s and feedback gain g = 1.3,
K ≈ 1307 MW [middle point of Fig. 13(a)]. Other parameters as in
Fig. 13.

1307 MW [see Fig. 13(d) and 13(g)], where 13 solitary nodes
are present: A comparison of the strategies is shown in Fig. 14.

The first strategy requires control of one node in order
to stabilize the system and 11 to synchronize, whereas the
second strategy performs worse when stabilizing the system
(4 nodes required) but performs better when synchronizing
(10 nodes). However both control schemes require not all soli-
tary nodes to be controlled in order to achieve synchronization
and stability. All in all our approach is not only applicable to
the example systems presented in Sec. III but works for dif-
ferent models. In Appendix B, the generality of the approach
will be further explained considering different topologies and
different operating points. Even though it is not possible to
provide an analytical proof of the efficiency and generality
of our control approach, our results indicate how powerful
and robust time-delayed feedback control is and that it can be
applied to a diversity of topologies and power grid models.
The hysteretic nature of the transition to synchronization,
the bistability of the system, and the emergence of solitary
states driving the dynamics are fundamental ingredients for
enhancing the stability of power grids, which, as far as we
know, have not been recognized until now.

V. CONCLUSIONS

In conclusion, we have proposed a time-delayed feedback
control scheme to restore frequency synchronization and sta-
bility of the power grid after perturbations. To this purpose
we have first studied the Kuramoto model with inertia in the
presence of two different bimodal distributions of generator
and load power (an artificial distribution, and one adapted
from the real German high-voltage transmission grid), which
both lead to a fully frequency synchronized, stable network
for large transmission capacities K . We have focused on the
operating regime of intermediate K characterized by a number
of solitary nodes whose mean frequency deviates from that of
all other nodes.

We have shown that stability and synchronization can be
enhanced by time-delayed feedback control in this K regime
by applying delayed feedback to a small subset of nodes:
Frequency synchronization and stability can be restored in a
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short time and persist even if control is turned off. Different
control strategies were tested. For the shown setup the best
strategy is to control the most unstable solitary nodes, charac-
terized by the largest Lyapunov vector components. However,
both strategies (i) and (ii) are efficient, being based on the
solitary nodes that turn out to be fundamental in regulating the
dynamics of the system. Solitary nodes exhibit independent
dynamics, giving rise to low-dimensional chaos that turns
into high-dimensional quasiperiodic motion when the most
unstable node is controlled, until synchronization is achieved.
Therefore, due to their independence, the set of controlled
nodes cannot be much smaller than the number of solitary
nodes.

The proposed fast-acting control method might offer an
interesting approach to cure disturbances in real-world power
grids, due to its general applicability and validity, as shown in
Sec. IV, where we have applied our control strategy to a more
sophisticated model including the voltage dynamics [35] and,
more in general, as shown in Appendix B, where we have
extended our analysis to a different network (i.e., the Italian
grid) and to different operating points keeping the German
grid topology.

Finally, the main message of the paper does not rely on
the specific control method in use but rather on the designed
control strategy based on the dynamical properties of the
system (i.e., the emergence of solitary states), which allows
us to attain synchronization by controlling few nodes, thus
speeding up the efficiency of control. To sustain this affir-
mation we have compared the efficiency of delayed feedback
control and feedback control proportional to the instantaneous
frequency, thus showing that both control methods are able to
synchronize the grid with our strategy. Time-delayed feedback
control remains preferable since it is effective even at smaller
gain couplings, as shown in Appendix A.
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APPENDIX A: PARAMETER CHOICE

1. Kuramoto model with inertia

As already detailed in Sec. II A, the Kuramoto model with
inertia describes the phase and frequency dynamics of N
coupled synchronous machines, i.e., generators or consumers
within the power grid, where mechanical and electrical phase
and frequency are assumed to be identical. The N dynamic
equations describing the time evolution of the phase θi(t )
and frequency θ̇i(t ) = dθi

dt of node i = 1, . . . , N are given by
Eq. (1). In particular α represents the dissipation parameter
and takes typical values of 0.1–1 s−1 [30,36]. However, in a
realistic power grid there are additional sources of dissipation,
especially Ohmic losses, and losses caused by damper wind-
ings [36], which are not taken into account directly in the cou-
pled oscillator model. Therefore, for this parameter we have
chosen slightly higher values: α = 5/6 s−1 when a bimodal
Gaussian distribution is considered and α = 2 s−1 when the

real-world distribution is taken into account to describe the
distribution of the net power Pi. Different dissipation values
are necessary for the different distributions in order to ob-
tain comparable setups, i.e., unstable, partially synchronized
states at comparable coupling strengths, K = 817 MW for
the bimodal Gaussian distribution and K = 729 MW for the
real-world one.

For both net power distributions, the coupling strength K ,
which represents the maximum power transmission capacity
of transmission lines, was set homogeneously throughout the
grid. A more realistic approach would have been to use a
coupling matrix Ki j , containing not only the topology but
also individual transmission capacities to schematize different
transmission line lengths. However, the goal of the present
paper is to gain insight into the principal behavior of large
power grids depending on the network topology and their
capability to synchronize by controlling a minimal set of
nodes and, for a proof of principle of our control approach,
the choice of identical transmission lines suffices. The choice
of using simplified homogeneous transmission line capacities
(coupling constants) turned out to be a good compromise
when using heterogeneous power distributions, whose realis-
tic values were available in the open data source as opposed
to the transmission line data.

Equation (1) can be simplified by rescaling the parameters
m := 1

α
, �i := Pi

IiωGα
, κ := K

IiωGα
, thus giving

mθ̈i + θ̇i = �i + κ

N∑
j=1

Ai j sin(θ j − θi ). (A1)

In comparison with Eq. (1), the inertial mass m now represents
the inverse of the dissipation α in the grid, and the coupling
constant κ now represents the maximum power which can
be transmitted between two connected nodes. Moreover, each
node i, when uncoupled, oscillates with an angular frequency
�i, referred to as natural frequency or inherent frequency.
Therefore the distribution of natural frequencies and the dis-
tribution of net power Pi are equivalent, up to a constant factor.

Finally, adiabatic simulations (upsweep of κ) are per-
formed to measure the level of synchronization in the network
starting from the asynchronous state toward the partially syn-
chronized state. In particular the rescaled coupling strength
κ is increased from κ = 0 to κ = 60 in steps of �κ = 0.4
(from κ = 0 to κ = 60 in steps of �κ = 0.2) for the bimodal
Gaussian distribution (real-world distribution, respectively).
Specifically, for the bimodal Gaussian distribution with α =
5/6 s−1, Ii = 40 × 103 kg m2, ωG = 2π50 Hz, and �κ =
0.4/�t one obtains �K = �κIiωGα ≈ 21 MW if a time unit
�t = 0.2 s is considered.

2. Time-delayed feedback control

The main message of the manuscript is the importance of
the designed control strategy, based on the investigation of
the dynamical properties of the system, to enhance power grid
synchronization and stability. In particular the designed strat-
egy allows us to affirm that some nodes are more important
than the others and we can attain synchrony by controlling
only those. Then we have used time-delayed feedback because
it is a common control method in nonlinear dynamics but
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TABLE I. Control performance using the German grid with PR:
Each cell shows the number of remaining solitary nodes after control,
using instantaneous feedback and delayed feedback with different
delays τ and feedback gains g. The nodewise gain gi is set to gi = g
for solitary nodes and gi = 0 for other nodes. Without control the
system contains 11 solitary nodes. Control acts for a duration of 40 s
and is then turned off; other parameters as in Fig. 6(d).

τ ↓ g → 0.25 0.50 1.00 1.50 2.00 3.00

Instantaneous 7 4 1 1 0 0
1 s 8 4 0 0 0 0
2 s 8 4 0 0 0 0
4 s 5 3 0 0 0 0
6 s 5 1 0 0 0 0
8 s 5 1 0 0 0 0

quite new in the context of power grids; however, any other
reasonable control term could have been used equivalently.
In the following we report a comparison between delayed
feedback control versus instantaneous feedback control to
prove the importance of the obtained findings as a general
result in the nonlinear dynamics framework. The dynamics of
the Kuramoto model with inertia in presence of instantaneous
feedback control reads

θ̈i + αθ̇i = Pi

IωG
+ K

IωG

N∑
j=1

Ai j sin(θ j − θi ) − giαθ̇i. (A2)

The comparison shows that both in the Kuramoto model
with inertia (see Table I) as well as in the extended model
(see Table II) a larger feedback gain is required for instan-
taneous feedback in order to synchronize all solitary nodes.
Delayed feedback allows the control term to lag behind with
respect to the instantaneous frequency, thus sustaining larger
levels of control input after control activation. However, the
control strategy works even with a different control method
and synchronization can be always attained. Without loss of
generality we have chosen in the main text τ = 4 s and g = 1,
if not stated differently.

TABLE II. Control performance using the extended model and
the German grid with PR: Each cell shows the number of remain-
ing solitary nodes after control, using instantaneous feedback and
delayed feedback with different delays τ and feedback gains g. The
nodewise gain gi is set to gi = g for solitary nodes and gi = 0 for
other nodes. Without control the system contains 13 solitary nodes.
Control acts for a duration of 40 s and is then turned off; other
parameters as in Fig. 13(d).

τ ↓ g → 0.25 0.50 1.00 1.50 2.00 3.00

Instantaneous 9 7 5 2 2 0
1 s 9 7 5 1 0 0
2 s 9 6 1 0 0 0
4 s 9 6 1 0 0 0
6 s 9 6 1 0 0 0
8 s 9 5 1 0 0 0

FIG. 15. Efficiency of time-delayed feedback control for a differ-
ent operating point: Time-averaged frequency deviation 〈�ω〉t (blue
dots) and maximum Lyapunov exponent λ1 (orange triangles) vs
number of controlled nodes Nc following different control strategies:
[(a) and (c)] Solitary nodes sorted in descending order of ξi; [(b) and
(d)] solitary nodes sorted in descending order of |〈ωi〉t |. Panels
(a) and (b) correspond to the distribution PG and (c) and (d) to
PR. The dashed line marks 〈�ω〉t = 0 and the dotted line denotes
λ1 = 0. Control acts for a duration of 40 s and is then turned off;
delay time τ = 4 s and feedback gain g = 1.5 (g = 1) for PG(PR).
Other parameters as in Fig. 5 for the top panels (Fig. 6 for the bottom
panels). In comparison to Fig. 9, the coupling strengths K are smaller
(K ≈ 565 MW and K ≈ 578 MW for PG and PR, respectively) and
the initial sets of solitary nodes are bigger, thus being more difficult
to control.

APPENDIX B: GENERALITY OF THE RESULTS

In order to show that the efficiency of our proposed control
strategies is not restricted to the setups shown in the main
text, we will present additional results: (a) keeping the setups
shown in the main text but analyzing different operating
points and different configurations by considering different
coupling strengths and (b) taking into consideration a different
topology.

1. Different operating points

In this section we present the results for a different operat-
ing point, thus giving rise to a different configuration of soli-
tary nodes. In particular, keeping the same setups presented in
the main text, we show a comparison between the strategies
(i) and (ii) obtained when the system is evaluated at different
coupling strengths, thus investigating different working points
with respect to the results shown in the main text. For the
bimodal Gaussian distribution PG, we investigate the state at
K ≈ 565 MW, which is a partially synchronized state found
during the upsweep protocol, characterized by 19 solitary
nodes. This configuration is unstable, with λ1 = 0.0144 ±
0.0005. Regarding the real-world distribution PR, the different
working point that we have investigated is characterized by
K ≈ 578 MW, 19 solitary nodes, and λ1 = 0.116 ± 0.005.

The outcome of the control schemes is shown in Fig. 15.
For the PG distribution strategy (i) requires the control of 2
solitary nodes to stabilize the system and 15 to synchronize,
while strategy (ii) requires the control of 8 nodes to stabi-
lize and 19 to synchronize the system. For the real-world
distribution both strategies require one controlled node to
stabilize. Synchronization is reached with 13 and 14 nodes
using strategy (i) and (ii), respectively.
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FIG. 16. (a) Map of the Italian ultra-high-voltage power grid,
consisting of 127 nodes connected by 171 transmission lines (red
lines) [54]. (b) Histogram shows a realization of an artificial bimodal
Gaussian distribution of net power with N = 127, P0 = 105 MW,
σ = P0/2. The light green (dark red) bars correspond to generators
(consumers).

2. Italian grid

In this section we apply our control strategy to a dif-
ferent grid topology. The dynamics of the single node is
still described by Eq. (1), but we now consider the Italian
high-voltage (380 kV) power grid (Sardinia excluded), which
is composed of N = 127 nodes, divided into 34 generators
(hydroelectric and thermal power plants) and 93 consumers,
connected by 171 transmission lines [54]. This network is
characterized by a quite low average connectivity 〈Nc〉 =
2.865, due to the geographical distributions of the nodes along
Italy [see Fig. 16(a)]. Since we have no access to a distribution
of generator powers and nodal power consumption, we restrict
the application of our method to the artificial distribution,
using a bimodal Gaussian distribution [shown in Fig. 16(b)]
with the same probability density function as the one used for
the German grid [see Eq. (4) of the main text].

Like for the German grid, the synchronization transition
is hysteretic [see Fig. 17(a)], but the formation of frequency
clusters at different stages of the upsweep protocol is more
pronounced since the local architecture favours a splitting
based on the proximity of the oscillators. At K ≈ 461 MW
[middle black point of Fig. 17(a)] the system is partially

FIG. 17. Italian power grid with Gaussian distribution PG:
(a) Average frequency deviation 〈�ω〉t and (b) largest Lyapunov ex-
ponent λ1 versus coupling strength K . The solid lines (dashed lines)
correspond to the adiabatic upsweep (downsweep) of K . [(c)–(e)]
Average frequencies 〈ωi〉t and [(f)–(h)] Lyapunov vector components
ξi versus node index i for K values marked by the black circles in
the top panels from left to right. Lyapunov exponents and vectors
calculated for a duration of 2 × 104. Other parameters as in Fig. 5.

synchronized and unstable (λ1 > 0): It represents a big cluster
of locked oscillators with zero average frequency and 20
unsynchronized whirling oscillators [see Fig. 17(d)]. Besides
the main frequency-synchronized cluster, two other clusters
can be found: one with positive and one with negative average
frequency, consisting of eight and five nodes, respectively. The
remaining seven nodes are solitary. As before, we will take
this state as an example to be controlled using our proposed
strategies. For smaller coupling the system is unstable, but
completely asynchronous [see Figs. 17(b) and 17(c)], while
for larger coupling the system is (almost) completely synchro-
nized [see Fig. 17(e)]: One solitary state corresponding to the
last node in Sicily hardly synchronizes due to the peripheric
position in the network.

FIG. 18. Efficiency of time-delayed feedback control for the Ital-
ian grid: Time-averaged frequency deviation 〈�ω〉t (blue dots) and
maximum Lyapunov exponent λ1 (orange triangles) vs number of
controlled nodes Nc following different control strategies. (a) Solitary
nodes sorted in descending order of ξi. (b) Solitary nodes sorted
in descending order of |〈ωi〉t |. The dashed lines mark 〈�ω〉t = 0
and the dotted lines denote λ1 = 0. Control acts for a duration of
40 s and is then turned off; delay time τ = 4 s and feedback gain
g = 1, K ≈ 461 MW (middle point of Fig. 17). Other parameters as
in Fig. 17.
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In Fig. 18 a comparison of strategies (i) and (ii) is pre-
sented. First, as for the German grid, the delayed feedback
control is able to synchronize and stabilize the grid when
enough nodes are controlled. Strategy (i), which controls
preferably the most unstable nodes, sorted according to their
Lyapunov vector component ξi, needs two nodes to stabi-
lize and three controlled nodes to synchronize the system
[Fig. 18(a)]. On the other hand, by employing strategy (ii),

which orders the controlled nodes with respect to their fre-
quency deviation |〈ωi〉t |, the control of one node is required to
stabilize and two controlled nodes to synchronize the system
[Fig. 18(b)]. In both cases a remarkably small fraction of
the 20 whirling nodes has to be controlled to gain the suit-
able conditions for operating power grids, thus highlighting
the role played by solitary nodes in driving the network
dynamics.
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