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The analysis and characterization of human mobility using population-level mobility models is important for
numerous applications, ranging from the estimation of commuter flows in cities to modeling trade flows between
countries. However, almost all of these applications have focused on large spatial scales, which typically range
between intracity scales and intercountry scales. In this paper, we investigate population-level human mobility
models on a much smaller spatial scale by using them to estimate customer mobility flow between supermarket
zones. We use anonymized, ordered customer-basket data to infer empirical mobility flow in supermarkets, and
we apply variants of the gravity and intervening-opportunities models to fit this mobility flow and estimate the
flow on unseen data. We find that a doubly-constrained gravity model and an extended radiation model (which is
a type of intervening-opportunities model) can successfully estimate 65%–70% of the flow inside supermarkets.
Using a gravity model as a case study, we then investigate how to reduce congestion in supermarkets using
mobility models. We model each supermarket zone as a queue, and we use a gravity model to identify store
layouts with low congestion, which we measure either by the maximum number of visits to a zone or by the
total mean queue size. We then use a simulated-annealing algorithm to find store layouts with lower congestion
than a supermarket’s original layout. In these optimized store layouts, we find that popular zones are often in
the perimeter of a store. Our research gives insight both into how customers move in supermarkets and into how
retailers can arrange stores to reduce congestion. It also provides a case study of human mobility on small spatial
scales.
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I. INTRODUCTION

Understanding human mobility is important for city plan-
ners, policy makers, transportation researchers, and many
others. Motivated by practical applications and the desire to
explore fundamental phenomena in human sciences, many
researchers have developed and analyzed population-level
models, such as gravity [1] and intervening-opportunities (IO)
models [2,3], to study human mobility [4].

Population-level mobility models characterize the flow of
people or other entities between locations using local at-
tributes, such as their populations or the distance between the
locations. They have been used for many applications, includ-
ing modeling commuter flow between locations [5], trade flow
between countries [6], and traffic flow inside a city [7]. These
applications are diverse, but they are all on large spatial scales,
ranging from an intercountry scale of thousands of kilometers
(e.g., estimating trade flow [6,8]) to city and regional scales of
tens of kilometers (e.g., estimating commuting patterns [9]).
For even smaller spatial scales [10] (e.g., building level), the
prevalent approach in most studies is to use pedestrian models,
such as mobility models for individuals (e.g., random walks
[11]) or models of crowd dynamics [12].

We consider the problem of modeling mobility flow be-
tween zones inside supermarkets and investigate how the flow
changes when we rearrange store layouts. We therefore ex-
amine aggregate flow, which (despite the small spatial scales
of these systems) makes population-level mobility models

more suitable than random walks [13] or crowd-dynamic
models. The small, building-level spatial scale may affect the
fundamental features of mobility dynamics (and therefore the
performance of the models) in important ways. For example, it
has been reported that some models (such as radiation models)
perform worse on small spatial scales than on large ones [9]. A
possible reason for this observation is that the spatial “force”
is much smaller on small scales than on large ones due to the
smaller cost of making a trip in the former situation, so other
nonspatial “forces” that are not captured by these models
may instead be the primary factors that underlie the flow. In
a supermarket, for example, the distance between two zones
(the spatial “force”) may be less relevant than the number
of their complementary items (a nonspatial “force”) for the
flow between the two zones. Furthermore, these models
are inherently memoryless, as they describe mobility flow
from an origin location to a destination location using local
attributes of these locations, without considering the location
from which (or how) a person who leaves the origin location
entered it in the first place. When one models humans walking
inside a building (e.g., in a supermarket or a museum), the
direction from which a person comes likely influences where
that person goes next, so there is memory in the system. For
example, Farley and Ring [14] observed that customers in
supermarkets tend to move from the entrance unidirectionally
along the outer perimeter after entering a store.

In the present paper, we conduct a detailed case study
of mobility models in an investigation of congestion in
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FIG. 1. We divide (a) a store into (b) zones and represent it as (c) a network. We depict the shelves in gray. We encode the ordered shopping
basket, which we highlight in green in panel (c), of a customer who purchases an item (e.g., bread) in zone 10, another item (e.g., milk) in zone
16, a third item (e.g., butter) in zone 28, and a fourth item (e.g., pasta) in zone 26 as a shopping journey (1, 10, 16, 28, 26, 53) and then divide
the journey into five origin–destination (OD) trips: (1, 10), (10, 16), (16, 28), (28, 26), and (26, 53). Each green arrow (and accompanying arc)
in panel (c) represents an OD trip.

supermarkets, a practical problem that is influenced by the
layout of a store. Reducing congestion is important not only
for improving the shopping experience of customers, but also
for reducing the fulfillment time and cost of online orders.
(In many supermarkets, staff members go around a store
alongside customers and pick up items that were ordered
online.) Congestion may delay such orders and thereby incur
additional costs to a business and inconvenience customers in
a store. In our study, we integrate mobility models with a con-
gestion model—such that each supermarket zone is a queue
and we make the simplifying assumption that customers
traverse shortest paths between purchases—to estimate con-
gestion in supermarkets. We then use a simple optimization
algorithm to find store layouts with low congestion.

Our article has three main contributions. First, we show
that several different mobility models can successfully esti-
mate the majority of observed trips in supermarket customer-
flow data, demonstrating that these models can work on small
(specifically, building-level) spatial scales. Second, we show
how to combine these models with a congestion model based
on queuing networks to estimate congestion in customer flow.
Third, we demonstrate how to optimize store layouts to reduce
congestion.

Our article proceeds as follows. In Sec. II, we describe
our mathematical setup. In Sec. III, we describe the data set
from which we infer the origin–destination (OD) trips in 17
supermarkets. In Sec. IV, we describe the mobility models and
goodness-of-fit measures that we use in our investigation. We
also describe how we estimate the parameters of our models.
In Sec. V, we present our results when applying these models
to supermarket store data, using both (in-sample) fitting and
(out-of-sample) estimation of customer flows. In Sec. VI,
we describe an application of a human mobility model to
estimate customer congestion and determine store layouts that
reduce it. Specifically, we discuss our congestion model, our
optimization method, and the results of the optimization. We
conclude and discuss future research directions in Sec. VII,
and we give some additional details about our work in appen-
dices.

II. MATHEMATICAL SETUP

In this section, we set up our approach for analyzing
mobility flow in supermarkets. We discuss how we discretize
space in a supermarket, how we model shopping journeys, and
how we characterize flow between zones of a supermarket.
We will discuss our data in Sec. III and mobility models in
Sec. IV.

In our investigation, we employ mobility models that re-
quire us to discretize space (i.e., a supermarket), which we
divide into a discrete number of disjoint locations, with an
associated measure of distance between distinct locations.
To do this, we manually divide each store into rectangular
zones of approximately equal size. (See Appendix A for
details.) We then represent a store as a network G with n
nodes (representing the zones) and m edges, which connect
neighboring zones (see Fig. 1). We distinguish an entrance
zone (labeled 1) and a till zone (labeled n). A store network G,
which is embedded in space, is undirected. Although there are
distances between supermarket zones, the network G itself is
unweighted. For the location of each node, we use the centroid
of its corresponding zone. For each edge (i, j), we assign an
edge length li j , which we take to be the Euclidean distance
between its two incident nodes i and j. (The edge length
approximates the walking distance between two nodes [15].)
We define an n × n distance matrix � that is associated with
G. The entry di j of � is equal to the shortest-path distance
between i and j; this distance is the minimum length of a
path between i and j. We define the length of each zone as
the length of the longer side of the rectangle that encloses the
zone.

One customer’s shopping journey is a sequence of K + 2
zones (s0, . . . , sK+1), where K is the number of items that
the customer buys, s0 = 1 (entrance), sK+1 = n (tills), and
s1, . . . , sK are the zones at which the customer picks up
items, which we order by their pick-up times. A customer
can purchase multiple items in the same zone, so s0, . . . , sK+1

may not be distinct. Each consecutive pair (sk, sk+1) of distinct
zones (so sk �= sk+1) for 0 � k � K constitutes an origin–
destination (OD) trip (or simply a trip). That is, a trip is
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TABLE I. Key quantities and their descriptions.

Symbol Description

G Store network
� Distance matrix (with entries di j) associated with the graph G
li j Length of edge (i, j) in the graph G
di j Shortest-path length between zones i and j in the graph G
l Mean zone length (excluding entrance and tills)
n Number of nodes in the graph G
m Number of edges in the graph G
τ Time period
ρ Fraction of baskets in the data set (i.e., the number of baskets in the data set in

a time period divided by the total number of baskets during the same time period)
Ti j Number of origin–destination (OD) trips from zone i to zone j
T OD matrix with entries Ti j

Ok Number of OD trips that start at zone k (it equals the sum of the entries in the kth row of T )
Dk Number of OD trips that terminate at k (it equals the sum of the entries in the kth column of T )
fi j Attraction factor of zone j to a customer in zone i
Si j Number of intervening opportunities of the OD pair (i, j) (it equals

∑
{k:dik<di j } Dk)

N Number of trips (it equals
∑

i, j Ti j)
C Number of shopping journeys
μk , μ Service rate of zone k (we use μ when it is independent of k)
vk Estimated number of visits to zone k
λk Rate of customer arrival at zone k
Q Total mean queue size
λmax Maximum arrival rate

a segment of a customer’s shopping journey that is either
between consecutive purchases in different zones, from the
entrance to the first purchase, or from the last purchase to
the tills. We are interested in the number Ti j of OD trips in a
store from each origin zone i to each destination zone j (over
some duration τ ). We do not consider flow within a zone and
thus set Tkk = 0 for k = 1, . . . , n. The n × n matrix T , with
entries Ti j , is called an origin–destination (OD) matrix [4]; its
off-diagonal entries record mobility flow between zones. We
denote an empirical OD matrix by T data and an OD matrix
from a model by T model. Throughout our paper, we denote an
origin node of a trip by i and a destination node of a trip by j;
we index other nodes using the symbol k. We summarize and
describe our key quantities in Table I.

III. DATA

We use anonymized, ordered customer-basket data from 17
large stores of a major United Kingdom supermarket chain
(Tesco) over a common three-month period (91 days). The
data consist of a fraction ρ ≈ 0.07 of all customer baskets
in these stores. We summarize the properties of the data in
Table II.

For each store, we infer the number T data
i j of OD trips from

zone i to zone j over the τ = 91 days from the data as follows.
Each ordered customer basket is a list of item purchases,
which we order by pick-up time. We use item-location data to
map each ordered list of purchases to their associated zones in
a supermarket. For example, we map a list of purchases (e.g.,
bread, milk, butter, and pasta) to its corresponding shopping
journey (1, 10, 16, 28, 26, 53), where the entrance is in zone 1,
bread is in zone 10, milk is in zone 16, butter is in zone
28, pasta is in zone 26, and the tills are in zone 53 [see

Fig. 1(c)]. In this example, each item has a unique location,
so we can recover the corresponding shopping journey in a
straightforward way. However, about 10% of the purchased
items have unknown locations and about 8% of the purchased
items have multiple locations. We refer to the latter items
as multilocated items, and we remove items with unknown
locations from customer baskets. For each basket with one or
more multilocated items, we consider all combinations of pos-
sible purchase locations for those items. (For example, there
are 2r combinations for a basket with r multilocated items
with two locations each.) For each combination, we calculate
the sum of the shortest-path distances between the locations
of consecutive purchases in the basket. We then choose a
combination of the purchase locations that minimizes this
sum. We do not possess data to validate that customers tend
to buy multilocated items at locations that minimize the sum
of the shortest-path distances between consecutive purchases,
but this assumption likely has only a small impact on the
results of our analysis (see Sec. V for these results), as only
about 8% of the items are multilocated.

TABLE II. Summary of our data set, which comes from 17 Tesco
stores. For each quantity, we give the minimum, mean, and maximum
values across the 17 stores.

Min Mean Max

Number of zones (n) 61 123 197
Number of edges (m) 128 236 401
Number of baskets 2479 13 672 29 201
Mean zone length, 6.42 m 6.91 m 7.65 m

excluding entrance and
tills (l)
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We decompose each customer shopping journey into its
sequence of OD trips and estimate the total number T data

i j of
trips from zone i to zone j by counting all OD trips (i, j)
from the data. [For example, the previous example shopping
journey (1, 10, 16, 28, 26, 53) consists of 5 trips: (1, 10),
(10, 16), (16, 28), (28, 26), and (26, 53).] Assuming that the
observed mobility patterns in our data set are representative of
the mobility of all customers, we rescale T data

i j by multiplying
it by 1/ρ (where ρ is the number of baskets in the data set in
a time period divided by the total number of baskets during
the same time period) to estimate the mobility flow of all
customers who visit a store.

IV. MOBILITY MODELS

We examine several mobility models, which we use to
estimate T data. Let Odata

k = ∑
j T data

k j and Ddata
k = ∑

i T data
ik ,

respectively, be the empirical numbers of trips that depart
from and arrive at each node k. (Note that Odata

k and Ddata
k

are the row and column sums, respectively, of T data.) We
consider a class of models that yield an n × n OD matrix
T model from Odata

k , Ddata
k , the store network, and either one or

zero fitting parameters. The goal of the models is for T model

to be “close” to an empirical OD matrix T data. (We discuss
diagnostics for comparing T model and T data in Sec. IV E.) The
models use 2n pieces of information of T data to estimate the
(n − 1) × (n − 1) off-diagonal entries of T data.

In our problem, Odata
k = Ddata

k for all nodes k, except for
k = 1 (the entrance) and k = n (the tills), as every customer
who finishes a trip in zone k (except for k = 1 and k = n)
continues their journey with a trip that starts from k. Note
that Odata

1 �= Ddata
1 , because each shopping journey starts at

node 1, so the first trip (which starts at 1) of each shopping
journey does not have a preceding trip that ends at 1. Similarly,
Odata

n �= Ddata
n , because each shopping journey ends at node n,

so the last trip (which ends at n) does not have a subsequent
trip that starts at n. The quantity Odata

k also gives the number
of shopping visits at k (except for k = 1 and k = n). It is thus
equal to the total number of times that customers visit k to
purchase one or more items. The number C of journeys in the
data satisfies both C = Odata

1 − Ddata
1 and C = Ddata

n − Odata
n ,

as every journey starts at node 1 and ends at node n. Note
that Ddata

1 and Odata
n need not be equal to 0, as the entrance

and till nodes can contain items. Therefore, one is able to
determine {Odata

k }n
k=1 and {Ddata

k }n
k=1 from {Odata

k }n
k=1 and Ddata

1 .
In practice, we estimate these values from sales data (see
Appendix D). Therefore, we assume that we know {Odata

k }n
k=1

and {Ddata
k }n

k=1.
We use doubly-constrained (also called production–

attraction-constrained) versions [16] of mobility models. In
these models, the mobility flow T model satisfies

Odata
k = Omodel

k , (1)

Ddata
k = Dmodel

k , (2)

where Omodel
k = ∑

j T model
k j and Dmodel

k = ∑
i T model

ik . That is,

T model has the same row sums and column sums as T data.
This, in turn, implies for each node k that both the number
of trips that arrive at k and the number of trips that depart

from k are equal to their empirical values. Therefore, for
notational simplicity, we drop the superscripts on Ok and Dk

for the remainder of our paper. Because Ok = Dk for k =
2, . . . , n − 1, the number of people at each node (except for
the entrance and till nodes) is also conserved in the models.

For each origin node i, there is a vector of “attraction
values” fi j for each possible destination j. We calculate these
values from a model-specific function fmodel that takes Oi,
{Dk}n

k=1, and information (such as the distance between two
nodes) from a store network as inputs. The function fmodel

is the same for each origin node i. (Allowing this function
to be heterogeneous for different nodes would allow us to
incorporate different types of supermarket zones into our
models.) The mobility flow in a doubly-constrained model is

T model
i j = (AiOi ) × (BjDj ) × fi j , (3)

where Ai, Bj � 0 are “balancing factors” to ensure that
Eqs. (1) and (2) are satisfied. Given Ok, Dk , and fi j , we
determine Ai and Bj using an iterative proportional-fitting
procedure [17]. See Appendix B for more details.

We can interpret T model
i j as the mean aggregate flow that

arises from a continuous-time random-walk model at station-
arity. In our models, customers arrive at node 1 (i.e., the
entrance) at a rate of λ = C/τ . In contrast to a standard
random walk on a network [18], customers do not choose a
random neighbor at each step. Instead, each customer at node
i chooses a random destination j, which need not be adjacent
to i, with probability Pi j = Ti j/

∑
k Tik = Ti j/Oi = AiBjDj fi j

when Oi �= 0 (and Pi j = 0 when Oi = 0), and it then takes a
trip from i to the chosen destination j. That is, the customer
traverses some path from i to j. For simplicity, we assume that
customers take a shortest path from node i to node j, where
we choose this path uniformly at random from all shortest
paths between these two nodes. (Other routing models are
possible; one possibility is a standard random walk that starts
at node i and reaches an absorbing state at node j.) We remove
customers who finish a trip at node n at rate λ; this ensures that
the mean number of customers in the system is constant. The
quantity T model

i j thus gives the mean number of trips from zone
i to zone j over a time period τ . Our model assumes that there
is no memory in customer mobility; the next destination of
each customer depends only on its present location.

We present each model in a scale-invariant form, such that
the parameters are dimensionless and the attraction values fi j

are invariant under the scalings Ok �→ aOk and Dk �→ aDk

for a > 0 and for all k. Because Ok and Dk scale with the
number C of journeys in the data set (and therefore with τ ),
scale invariance ensures that the model parameters and the
transition probabilities Pi j are independent of C and τ [19].

In Table III, we summarize the choices of fi j and the
number of parameters for each of the four models that we
employ. We discuss these models in the following subsections.

A. Gravity models

Gravity models of mobility [1,20–22], which are named
after Newton’s law of gravity, have been used to model a va-
riety of systems, including human migration [22–24], cargo-
ship movement [25], intercity telecommunication [26], spatial
accessibility of health services [27], and trade flow [6,8].
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TABLE III. Summary of the four mobility models that we employ. The OD matrix of each model is given by Eq. (3), with different
functional forms for the attraction values fi j .

Model fi j Parameter Parameter range References

Gravity Dj (di j/l )−γ γ [0, ∞) [1,20,21]

Intervening opportunities (IOs) exp (− L
N Si j ) − exp (− L

N (Si j + Dj )) L [0, N] [3,30]

Radiation
OiD j

(Oi+Si j )(Oi+D j+Si j ) – – [5,9,36]

Extended radiation
[(Oi+Si j+D j )α−(Oi+Si j )α ]((Oi )α+Nα )

((Oi+Si j )α+Nα )[(Oi+Si j+D j )α+Nα ] α [0, ∞) [38]

In a gravity model, the mobility flow between two locations
depends only on the distance between the locations and on
the “mass” (i.e., “population”) of the two locations. In our
models, each node k has two types of populations: there
is an origin population Ok (the number of trips that depart
from zone k) and a destination population Dk (the number
of trips that arrive at zone k). We use the origin population
when we calculate the mobility flow from k (i.e., the outflow
from k) and the destination population when we calculate the
mobility flow to k (i.e., the inflow to k). Because Ok = Dk for
k ∈ {2, . . . , n − 1} in our problem, the two population values
are the same, except for the entrance (k = 1) and till (k = n)
nodes.

We use a doubly-constrained gravity model, with

fi j = fg(Oi, Dj, di j ) = OiDj (di j/l )−γ , (4)

where l > 0 is a spatial normalization factor (which we
choose to be the mean zone length, excluding the entrance and
till zones) and γ � 0 is a dimensionless fitting parameter. We
exclude the entrance and till zones in calculating mean zone
length, because typically they are much larger than the other
zones in a store. See Appendix A for more details.

The expression (di j/l )−γ is an example of a “deterrence
function,” for which an exponential function is also a common
choice [4]. In contrast to other studies on small spatial scales
[5,28,29], we find that a power-law deterrence function gives
a (slightly) better fit to our data than an exponential deterrence
function (see Appendix C).

B. Intervening-opportunities models

In intervening-opportunities (IO) models, which were first
proposed by Stouffer in 1940 [2], each location (i.e., node) has
opportunities, which (depending on their number and/or qual-
ity) give some amount of “popularity” to that location. The
key concept in IO models is the notion of intervening oppor-
tunities. The intervening opportunities Si j of an OD pair (i, j)
consist of all opportunities in nodes k that satisfy dik < di j .
(Note that Si j �= S ji in general.) In IO models, the mobility
flow between two locations (i.e., zones in our application)
depends on the number of intervening opportunities (rather
than on the distance) between the two locations and on the
“populations” (which play the same role as in gravity models)
of the two locations. A larger number of intervening opportu-
nities of an OD pair (i, j) entails a smaller mobility flow from
zone i to zone j, because customers are more likely to find
what they are looking for (or to be diverted) before they reach
j. Intervening-opportunities models and their variants have
been used in many applications, including models of intracity

mobility [30], interstate migration [31–33], rioting behavior
[34], and the creation of social ties in a city [35].

We measure the number of opportunities at each node k
by Dk , the number of trips that arrive at k. The number Si j of
intervening opportunities of an OD pair (i, j) is then

Si j =
∑
k �= i

dik < di j

Dk . (5)

Therefore, the “opportunities” in our problem are opportuni-
ties for customers to stop and purchase something. Note that
Si j �→ aSi j when we scale Dk �→ aDk for all k, so the number
of opportunities scales linearly with C.

In Stouffer’s original IO formulation (StIO), the number
of people who move a given distance is proportional to the
number of opportunities at that distance and is inversely
proportional to the number of intervening opportunities. The
attraction values fi j are

fi j = fStIO(Dj, Si j ) = Dj

Si j + cN
, (6)

for some c > 0 (to avoid dividing by 0), where N = ∑
i, j Ti j

is the total number of trips. In Eq. (6), we use cN instead
of c to ensure scale invariance. Additionally, fi j is only
approximately inversely proportional to Si j (because of the cN
term).

In our investigation, we use Schneider’s reformulation of
the IO model [3], because it is more popular than Stouffer’s IO
formulation [4] and is underpinned by a mechanistic model. In
this reformulation, the attraction values fi j are

fi j = fIO(Dj, Si j ) = e− L
N Si j − e− L

N (Si j+Dj ) > 0 , (7)

where L ∈ [0, N] is a dimensionless fitting parameter. The
quantity fi j equals the number of customers at node i who
take a trip to node j divided by the number of customers who
leave i under the following mechanistic model. Each customer
at i considers opportunities in nondecreasing order of distance
from i, and they accept each opportunity with probability L/N .
They take a trip to the node j that has the first opportunity that
they accept. One can show that the number of customers who
take a trip from i to j divided by the total number who leave i
is equal to the right-hand side of Eq. (7) (see Appendix E).
However, because we use a doubly-constrained version of
the IO model, fi j gives only the attraction value of zone j
to a customer in zone i. In a doubly-constrained model, the
quantity T model

i j /Oi = AiBjDj fi j equals the actual number of
customers who make a trip from i to j divided by the total
number of trips that originate at i.
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C. Radiation model

The original radiation model [5], which was proposed as
an alternative to gravity models, is a parameter-free variant of
the IO model with attraction values

fi j = frad(Oi, Dj, Si j )

= OiDj

(Oi + Si j )(Oi + Dj + Si j )
. (8)

The radiation model and its variants have been used for
studies of commuter flows [5,36], human migration [24],
mobile-phone calls [5], and other applications. An advantage
of this version of the radiation model is that it has no parame-
ters. However, it does not appear to do a good job of capturing
human mobility on small spatial scales [9,29,37].

D. Extended radiation model

Yang et al. [38] proposed an extension of the radiation
model that includes an exponent α � 0. In this model, the
attraction values fi j are

fi j = fext (Oi, Dj, Si j )

= [(Oi + Si j + Dj )α − (Oi + Si j )α]((Oi )α + Nα )

((Oi + Si j )α + Nα )[(Oi + Si j + Dj )α + Nα]
. (9)

Yang et al. claimed that this extended radiation model fits
empirical OD matrices better than the original radiation model
for intracity commuting flow and observed that their cali-
brated values of α decreased as they considered systems with
smaller spatial scales. When α = 1, one recovers a variation
of the original radiation model from Eq. (8) (specifically, with
each occurrence of Oi replaced by Oi + N).

E. Goodness-of-fit measures

1. Common part of commuters (CPC)

The common part of commuters (CPC) score is the pro-
portion of trips that the OD matrices T data and T model have in
common:

CPC(T data, T model) =
∑

i

∑
j min

{
T data

i j , T model
i j

}
∑

i

∑
j

1
2

(
T data

i j + T model
i j

) . (10)

It was introduced in Refs. [37,39] and has been used in studies
of human mobility [28,38,40]. The CPC score is based on
the Sørensen index [41]; it varies from 0 (when there is no
agreement between the model and data) to 1 (when T data

and T model are identical). Because our models are doubly-
constrained,

∑
i, j T data

i j = ∑
i, j T model

i j . Therefore, we interpret
the CPC score as the fraction of customers whose trip is
assigned correctly by a model.

There are various other goodness-of-fit measures, such as
normalized root-mean-squared error, information gain, com-
mon part of edges, cosine distance, and Pearson product-
moment correlation. However, in past studies, these measures
often gave similar results as CPC when comparing the perfor-
mance of mobility models [28,40], so we primarily use CPC,
which has an intuitive interpretation in our modeling context.

2. Error in estimated number of zone visits

In addition to CPC, we also consider an application-
specific goodness-of-fit measure NRMSEv , which measures
the normalized root-mean-square error (NRMSE) in the num-
ber of visits to each node. When we examine congestion in
supermarkets in Sec. VI, we use measures of congestion that
depend on the number of visits to each node, so a mobility
model should have low values of NRMSEv for it to be viable
for our application to congestion. Given an OD matrix T , we
estimate the number of visits by assuming that each customer,
for an OD trip (i, j), takes a shortest path, which we choose
uniformly at random among all shortest paths from i to j. Each
customer who takes a trip from i to j visits each node along
the chosen shortest path. The estimated number vk of visits to
each node k is the weighted sum of the number Ti j of trips
with OD pairs (i, j) for all i and j, where the weight ωik j is
the fraction of shortest paths from i to j that traverse k. (We
use the convention that the starting and terminal nodes, i and
j, are traversed as part of a shortest path from i to j.) That is,

vk = vk (T ) =
∑
i, j

ωik jTi j . (11)

The number vk of visits is closely related to geodesic node
betweenness centrality [42], which we recover when Ti j = 1
for all (i, j). We can compute all vk values in O(nm) time
using a straightforward adaptation of a fast algorithm for
computing geodesic betweenness centrality [43].

To measure the model error in the estimated number of
visits, we calculate the NRMSE in vk (T ) with the formula

NRMSEv =
{∑n

k=1[vk (T data ) − vk (T model )]2

nvmax(T data )2

} 1
2

, (12)

where vmax(T ) = maxk [vk (T )] is the number of visits to the
most-visited node.

Our shortest-path assumption is a modeling choice and
seems likely to be somewhat unrealistic for describing the
precise trajectories between purchases. For example, in one
study [44], it was reported that customer trajectories between
purchases are, on average, about four times as long as a
shortest path. However, to the best of our knowledge, there
does not exist a model that accurately describes how cus-
tomers move between purchases. We use the shortest-path
assumption as a null model, and we note that it is possible
to replace this assumption with a more intricate model that
estimates the number of visits to each node. Additionally, we
use the shortest-path assumption only to estimate the number
of visits to each node; we do not use this assumption when we
estimate OD matrices.

F. Parameter calibration

Following the approach in Ref. [37], we calibrate the model
parameters γ , L, and α of the gravity, IO, and extended radi-
ation models (respectively) for each data set by maximizing
the CPC score. We call a parameter value “optimal” when it
maximizes the CPC score for a given model and data set.
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FIG. 2. (a) CPC scores and (b) NRMSEv values when fitting the gravity, intervening-opportunities, radiation, and extended radiation
models to mobility-flow data from 17 supermarkets.

V. RESULTS

A. Fit to data

We test the four models in Sec. IV on each of the 17
stores. In our computations, the gravity model consistently
achieves the best CPC score across the stores, with a mean
of about 0.686 [see Fig. 2(a) and Table IV]. This value is
comparable with reported CPC scores in previous studies on
mobility systems with larger spatial scales [28,38,40]. The
performance of the extended radiation model, with a mean
CPC score of 0.672, is almost as successful on average.
The IO model consistently yields lower CPC scores than the
gravity and extended radiation models. The gravity model also
has the best (i.e., lowest) mean value of NRMSEv across the
17 stores (see Table IV), closely followed by the IO model and
then the extended radiation model. In terms of NRMSEv , the
relative performance of these three models is store-dependent
[see Fig. 2(b)]. In some stores, the gravity model has the
lowest value of NRMSEv; in other stores, either the IO model
or the extended radiation model achieves the lowest value.
For each store, the radiation model performs the worst among
the four models, yielding both the lowest CPC scores and
the highest values of NRMSEv across all 17 stores. The poor
performance of the radiation model is consistent with other
studies of mobility systems on small spatial scales [9,29,37].

TABLE IV. Mean CPC scores and NRMSEv values from fitting
the gravity, IO, radiation, and extended radiation models to mobility-
flow data from 17 supermarkets. We list the models in decreasing
order of their mean CPC score. We highlight the best value in each
column in bold.

Model Mean CPC Mean NRMSEv

Gravity 0.686 0.045
Ext. radiation 0.672 0.054
IO 0.655 0.047
Radiation 0.513 0.116

To further investigate the performance of the models, we
examine the results of a single store (which we call “Store
A”) in more detail. Specifically, we examine the estimated
OD matrix T model, the estimated number vk (T model ) of visits,
and the distance distribution of the OD trips for each of the
mobility models. The results for this store are qualitatively
similar to the results for the other stores.

In Fig. 3, we compare the empirical number T data
i j of trips

with the estimated number T model
i j of trips from each mobility

model for each OD pair (i, j) of nodes in Store A. To evaluate
the quality of T model

i j , we create logarithmic bins from 1 to
maxi, j[T data

i j ]. For each bin, we consider all OD pairs whose
empirical number of trips lies within the bin. We calculate
the mean, median, and interquartile range for the estimated
number T model

i j of trips for these OD pairs (i, j). See the black
box plots in Fig. 3.

On average, the estimated numbers of trips from all four
models are close to their empirical numbers, except for OD
pairs with a large number of trips. For these OD pairs, the
gravity, IO, and the extended radiation models underestimate
the number of trips. We tested whether this bias results from
the presence of many very short trips between neighboring
shelves on different sides of a zone boundary. However, this
does not appear to be the case. We also examined a more
general type of gravity model to explore whether it can
improve the fit and/or remove this bias, but it did not. The
underestimation by the models of the number of trips for
OD pairs with many trips is an interesting and unexplained
feature of the empirical data. The radiation model is effective
at estimating the mean number of trips for most of the bins, but
its overall performance is poor because of the large variance
in its estimates for each bin [see Fig. 3(c)].

In Fig. 4, we compare the estimated number vk (T model )
of visits that we compute from the OD matrix T model of the
models with the number vk (T data ) of visits that we estimate
using the empirical OD matrix T data for Store A. We find that
the gravity, IO, and extended radiation models are effective
at estimating the number of visits for most nodes, except for
some of the ones with a large number of visits. For these
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FIG. 3. Comparison (blue dots) between the number of trips in the data (T data
i j ) and the model estimates (T model

i j ) for the (a) gravity model,
(b) IO model, (c) radiation model, and (d) extended radiation model. We also plot the mean number of trips that are estimated by the model
(red dots) for each logarithmic bin of the data. The orange line is the identity line. Each box (in black) extends from the lower to the upper
quartile values of the binned model estimate; we draw a horizontal line at the median.

nodes, the three models overestimate the number of visits. The
radiation model underestimates the number of visits for most
nodes [see Figure 4(c)].

In Fig. 5, we compare the distributions of trip distances
in our models with the empirical distribution. The gravity, IO,
and extended radiation models have trip-distance distributions
that qualitatively resemble the empirical distribution. Among
the four models, the trip-distance distribution from the gravity
model is closest to the empirical distribution. The IO model
underestimates the number of long-distance trips (specifically,
those above 60 m), and the extended radiation model over-
estimates the number of these long-distance trips. The trip-
distance distribution of the radiation model is qualitatively
different from the empirical distribution (see Fig. 5).

In summary, among the models that we examine, the
gravity model best fits the empirical mobility-flow data. On
average, it successfully explains about 69% of the OD trips
in the data sets. It also is effective at estimating the number

of visits to each node, with NRMSE values of about 0.045
(see Table IV). The extended radiation and IO models are
close behind; on average, they successfully explain the data of
about 65%–67% of the OD trips. For the most part, these three
models also yield trip-distance distributions that look similar
to the empirical distribution. The radiation model does not fit
the data well, so we exclude it from further consideration.

B. Sensitivity analysis: Parameter dependence of models

We explore how the performance of the gravity, IO, and
extended radiation models depends on their respective model
parameter values. For each model, let popt to be the optimal
parameter value. We calculate the CPC scores for parameter
values between 0 and 10popt (see Fig. 6). For each of the
models, we observe progressively smaller CPC scores for
parameter values that are progressively farther away from popt,
so model performance depends on the parameter value. The
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FIG. 4. Comparison of the estimated number vk of visits for each node k between the data and the mobility models for the (a) gravity
model (for which NRMSEv ≈ 0.032), (b) IO model (for which NRMSEv ≈ 0.033), (c) radiation model (for which NRMSEv ≈ 0.115), and
(d) extended radiation model (for which NRMSEv ≈ 0.034). The orange line is the identity line. The gravity, IO, and extended radiation
models give good fits to the number of visits to each node.

decrease in CPC score with distance from popt is steepest
for the gravity model, second-steepest for the IO model, and
shallowest for the extended radiation model. Interestingly, the
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FIG. 5. Probability density function (PDF) of the trip-distance
distribution.

CPC score for the extended radiation model plateaus as α ↓ 0
at a value close to the maximum CPC score. This suggests that
a parameter-free special case of the extended radiation model,
which we obtain by setting α = 0, may perform well. (We do
not explore this special case in this article.)

C. Evaluation: Model performance on estimating trips in
unseen data

We conduct two series of tests to analyze the performance
of the gravity, IO, and extended radiation models at estimating
mobility flow for a time period for a store for which we do not
know the optimal parameter value. As we showed in Sec. V B,
the performance of each of these models depends on the value
of its associated parameter. In each test, we estimate mobility
flow using the optimal parameter value from a different time
period of the same store (in our first series of tests) or from
a different store for the same time period (in our second
series of tests). For each test, we compare the achieved CPC
value CPCa with the maximum CPC value CPCmax (which we
obtain when using the optimal parameter value) of a model.
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FIG. 6. CPC dependence on the model parameter for the (a) gravity, (b) IO, and (c) extended radiation models. We highlight the maximum
CPC score with a red dot. The orange vertical lines are at 0.5popt and 2popt.

We also compute their ratio

R = CPCa

CPCmax
∈ [0, 1] . (13)

A value of R that is close to 1 indicates that the estimated
mobility flow using a parameter value that is optimal for a
different time period or for a different store fits the empirical
data just as successfully as using the optimal parameter value.
In other words, these tests allow us to investigate whether
the optimal parameter values of a model differ significantly
between different time periods of the same store or between
different stores.

In the first series of tests, we split the 91-day data set of
each store into two parts. The first part is the mobility-flow
data from the first 60 days; for this subset of the data, we
find the optimal parameter value for each model. The second
part is the mobility-flow data of the remaining 31 days; we
estimate the mobility flow during this period using a mobility
model with the empirical values of Ok and Dk (i.e., the number
of OD trips that, respectively, start and end at zone k) from this
period and the optimal parameter value from the initial 60-day
period. We perform one test for each store, so there are 17 tests
per model. The mean value of R is about 0.98 for each of the
three models (see Table V). Therefore, the model parameter
values do not change much across different time periods of
the same store. It thus seems that our models are likely not
overfitting data, as was also noted recently for these types of
mobility models by Hilton et al. [45]. This also suggests that
to estimate mobility flow of a store during some (sufficiently
long) time period, we only need to know the values of Ok and
Dk (which we can estimate from purchase data) during that

TABLE V. Mean, median, and minimum values of R (i.e., the
ratio of our achieved CPC value to the maximum one) for the 17
stores in our first series of tests. In each test in this series, we use an
optimal parameter value from one time period of a store to estimate
mobility flow for a different time period of the same store.

Model Mean R Median R Minimum R

Gravity 0.975 0.975 0.959
IO 0.978 0.977 0.963
Ext. radiation 0.975 0.973 0.960

time period and the optimal parameter value for a different
(sufficiently long) time period of the same store.

In each test in our second series of tests, we estimate the
91-day mobility flow of one store using a mobility model
with the optimal parameter value of another store from the
same time period. We perform one test for each ordered pair
of distinct stores, so there are 17 × 16 = 272 tests in total
for each model. The mean value of R is above 0.99 for
each of the three models (see Table VI). This suggests that
the differences in model parameter values across stores are
small and have little effect on the performance of the models.
Therefore, we conclude that we can estimate the mobility flow
of one store using the optimal parameter value from another
store. This also suggests that if we change the layout of a
store, the optimal model parameter values should not change
appreciably.

VI. REDUCING CONGESTION IN SUPERMARKETS

We now use mobility models to estimate and reduce
congestion in supermarkets. Our approach has three compo-
nents:

(1) a congestion model, based on queuing networks, that
estimates congestion from mobility flow T ;

(2) a mobility model that estimates the change of the flow
T with a new store layout; and

(3) an optimization algorithm that finds store layouts with
less congestion.

We describe these components in detail in Secs.
VI A–VI C.

TABLE VI. Mean, median, and minimum values of R (i.e., the
ratio of our achieved CPC value to the maximum one) for the 272
tests in our second series of tests. In each test in this series, we use
the optimal parameter value from one store to estimate mobility flow
for a different store.

Model Mean R Median R Minimum R

Gravity 0.996 0.998 0.976
IO 0.994 0.996 0.926
Ext. radiation 0.999 1.000 0.980
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A. Congestion model

In our congestion model, each node acts as a queue. We
suppose that the congestion model, which resembles the one
in Ref. [46], is in a stationary state. (A key difference is
that our model uses continuous time, whereas the model in
Ref. [46] uses discrete time.) We take four inputs: (1) an OD
matrix T with entries Ti j , which we calculate using one of
the doubly-constrained mobility models in Sec. IV; (2) a time
period τ over which we measure or estimate T ; (3) a store
network G, with its associated distance matrix �; and (4)
service rates μk for each node k. As we describe later in this
section, we can estimate these rates from the mean customer
dwell time at k.

In Sec. IV, we interpreted T as the flow from a random-
walk model in which new customers arrive at a store’s
entrance and take trips to random destinations based on
a transition matrix P whose entries are Pi j = Ti j/

∑
k Tik if∑

k Tik > 0 and Pi j = 0 otherwise. In this section, we instead
interpret T as the mean mobility flow during a time period
of length τ under the following model. New customers arrive
at each node i (not just at the entrance) of a network (i.e.,
a supermarket) according to a Poisson process with rate∑

k Tik/τ . Each customer chooses a random destination j with
probability Pi j . Customers traverse the network by taking a
shortest path from zone i to zone j. Customers queue at
each node that they visit (for both traversal and shopping) to
be served, where each node k is a single-server queue with
exponential service rate μk [47]. After a customer is served at
the destination node j, we remove it from the network. The
quantity Ti j is then the mean number of customers who take a
trip from node i to node j during a time period of length τ .

We can view the model in the formulation of the present
section as a “decomposed’ variant of the model in Sec. IV.
There are n independent random walks, each of which starts
at a different node in a network and ends after taking exactly
one trip to a random destination, instead of a single random
walk that always starts at the entrance node and terminates
at the exit node after taking one or more trips. In the new
formulation, the mean rate at which customers finish a trip
at node k is the same as the mean rate at which new customers
start a trip at k. By contrast, in the random-walk perspective
of Sec. IV, the exact number of customers who finish at k is
equal to the number of customers who start a trip at k during
any time period. In other words, customers are “conserved” at
each node only in a stochastic sense (i.e., on average during
some period of time), rather than in an absolute sense.

We calculate vk for each node k from T using Eq. (11).
We need to separately consider situations with μk > vk/τ and
μk < vk/τ .

When μk > vk/τ for all k, the quantity vk is the mean
number of customer visits to k during a time period of length
τ . The arrival rate λk at each node k is then λk = vk/τ . We
call this situation a free-flow state. In this state, the queue size
at each node k at stationarity is a geometric random variable
with mean λk/(μk − λk ) and is independent of the queue sizes
of the other nodes [47]. The total mean queue size Q in this
state is [48]

Q =
n∑

k=1

λk

μk − λk
. (14)

When μk < vk/τ for some k, node k cannot serve cus-
tomers sufficiently fast, and the number of customers who
wait at the queue keeps increasing. Our system is in a con-
gested state and cannot be stationary.

If we have information about the mean customer dwell time
wk at each node k, we can infer the empirical service rate μk

of each node k using Little’s law, which states that the mean
queue size is equal to the mean dwell time multiplied by the
rate of arrivals:

wkλk = qk , (15)

where

qk = λk

μk − λk
(16)

is the mean queue size at k [48]. Combining Eqs. (15) and
(16), we obtain the following formula for the empirical service
rate:

μk = 1

wk
+ λk . (17)

Because we do not have empirical data for the service rate,
we assume for simplicity that the service rates are homoge-
neous. That is, μk = μ > 0 for all k, so we are in a free-flow
state if μ > λmax, where λmax = maxk[λk].

We use the maximum arrival rate λmax and the total mean
queue size Q as proxies to measure congestion. The measure
λmax, which does not depend on any parameters, is the mini-
mum service rate that ensures that the system is in a free-flow
state. It is also closely related to the traffic capacity ρc in the
traffic-dynamics model of Arenas et al. [49] that has been
used to model traffic on transportation and communication
networks [46,49–53]. The traffic capacity ρc is an important
performance measure of the traffic-dynamics model in [49]. It
represents the maximum rate at which walkers (which, in our
case, represent customers) arrive at a network from outside
the system before the system reaches a congested state. In the
traffic-dynamics model of Ref. [49], one fixes the service rate
μ but varies the rate at which walkers arrive from outside the
system (i.e., the external arrival rate). By contrast, we fix the
external arrival rate and vary μ.

The total mean queue size Q, which measures congestion
in a free-flow state, is equal to the total mean number of
customers in a store. By Little’s law [54], a store layout that
minimizes Q also minimizes the mean trip time. Unlike λmax,
the total mean queue size Q depends on μ, so we perform
separate optimizations for different values of μ.

The measures λmax and Q are correlated with each other, as
Q is a sum that is dominated by the terms from nodes k with
large values of λk , so store layouts with smaller values of Q
often also have smaller values of λmax.

B. Mobility model

We focus on the gravity model to estimate changes in the
OD matrix T model when changing a store’s layout, because
it provides the best fit to the data, both in terms of the CPC
score and in the estimated number vk of visits (see Table IV).
We assume that we can swap the locations of nodes (which
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FIG. 7. Location of popular nodes before and after optimization. We show (a) the original store layout, (b) the optimized store layout when
minimizing λmax, (c) the optimized store layout when minimizing Q with μ = 7500, and (d) the optimized store layout when minimizing
Q with μ = 15 000. Nodes of the same color are in the same aisle, and gray nodes are not part of any aisle. The size of each node k is
proportional to Ok + Dk (i.e., to the sum of the numbers of trips that start and end at zone k). We circle the entrance and till nodes in yellow
and red, respectively.

corresponds to swapping the contents of their shelves), but
that we cannot change the store network topology or edge
distances in any other way. To ensure that similar items stay
with one another in the same aisle, we add a further constraint
(which we call the aisle constraint) that we can only swap an
aisle (which consists of a set of nodes) with another aisle with
the same number of nodes. However, we do allow permuting
of nodes within the same aisle. (In Appendix G, we also report
our results when we relax the aisle constraint. These results
are of similar quality to our more constrained approach in
this section.) We do not consider adding or removing nodes
or edges, as such changes are often costly. We highlight the
nodes of an aisle in Fig. 7(a) by coloring them. Nodes of the
same color are in the same aisle, and gray nodes are not part
of any aisle.

Crucially, we need a hypothesis for how Ok and Dk (i.e.,
the numbers of trips to and from a node k) change when we
change the location of a node k. We assume that Ok and Dk

depend only on the items inside a zone and not on the zone’s
location. Therefore, when we change the location of a node
k, we assume that the node has the same values of Ok and
Dk in the new location. In other words, we are assuming that

the number of shopping visits at node k (i.e., the number of
times that customers visit k to purchase items) is independent
of its location. This is a key assumption of our model. For
nodes with many essential items, such as bread and milk, this
assumption seems justifiable, as customers buy such items
regardless of their location in a store. However, we anticipate
that this assumption breaks down for nodes in which most
items are either less essential or purchased with less (or no)
planning.

C. Optimization algorithm

We use a simulated-annealing (SA) algorithm [55] to find
permuted layouts of a store with smaller values of one of
the two objective functions (λmax or Q). Our SA algorithm
swaps two aisles, which we choose uniformly at random
from all pairs of aisles with the same number of nodes and
centroids that are less than 25 m apart. After swapping the
two aisles, we permute the nodes within each aisle, where we
choose the permutation uniformly at random from all possible
permutations. We list the parameters of the SA algorithm in
Appendix F.
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TABLE VII. Minimum and mean values of objective functions
of the final store layouts from 20 runs of the SA algorithm for
optimizing Store A. For each objective function, we show the original
value of the objective function, its minimum final value across 20
runs of the optimization algorithm, and its mean final value across
the 20 runs. In parentheses, we indicate the amount of improvement
as a percentage.

Objective function Original Minimum value Mean value

λmax 6575 5009 (−23.8%) 5042 (−23.3%)
Q (with μ = 7500) 38.10 29.10 (−23.6%) 29.28 (−23.1%)
Q (with μ = 15 000) 12.78 11.86 (−7.2%) 11.93 (−6.7%)

D. Optimization results

We optimize a store’s layout (specifically, the layout of
Store A) with the SA algorithm for three examples, in which
we minimize

(1) λmax,
(2) Q with μ = 7500, and
(3) Q with μ = 15 000.

For μ = 7500, each node serves incoming customers at a rate
of 7500 customers per day, which amounts to 12.5 customers
per minute in a store that is open for 10 hours. The maximum
arrival rate λmax in the original store layout is 6575, so a
service rate of μ = 7500 is an example in which the most
popular nodes have long mean dwell times. For example, in
a store that is open for 10 hours, the most popular node has
a mean dwell time of about 38 sec [which we calculate using
Eq. (15)]. Our example with μ = 15 000, a value much larger
than the original λmax, corresponds to a scenario in which
customers typically have short mean dwell times in all nodes.
(In this case, the most popular node has a mean dwell time of
about 4.2 sec.) We perform each optimization 20 times and
report our results in Table VII. For all three examples, the
SA algorithm produces store layouts with objective-function
values that are significantly smaller than their values in the
original store layout. The relative reduction in Q is smaller
for μ = 15 000 than it is for μ = 7500. This is not surprising,
because when μ = 7500, a larger fraction of the total mean
queue size Q comes from nodes with the highest arrival rates
in the original network. For example, the sum of the mean
queue sizes of the three nodes with the highest arrival rates
contribute 39% of the value of Q for μ = 7500. By contrast,
these three nodes contribute only 15% of the value of Q for
μ = 15 000. Therefore, store layouts that lower the arrival
rates of the most congested nodes (while the arrival rates of
the other nodes do not increase much) tend to have lower
values of Q for μ = 7500. For μ = 15 000, because the most
congested nodes contribute less to Q than for they do for
μ = 7500, achieving a major relative reduction in Q requires
reducing the arrival rates of a larger number of nodes. This is
potentially a very difficult task. Therefore, our observation of
a lower reduction in Q for μ = 15 000 than for μ = 7500 is
consistent with expectations.

We measure the popularity of node k by Ok + Dk (i.e., by
the sum of the numbers of trips that start and end at k). For
each node except the entrance and till nodes, Ok + Dk is equal
to twice the number of shopping visits to that node. In the
networks with the smallest Q with μ = 7500 and λmax, our

optimization tends to move popular nodes from the center of
Store A towards the left and top of the store [see Fig. 7(b)].
By contrast, when μ = 15 000, many popular nodes remain in
the center of Store A [see Figs. 7(c) and 7(d)]. However, our
optimization moves some of them to the store’s bottom-left
area, which previously was not a popular area.

VII. CONCLUSIONS AND DISCUSSION

We employed several population-level mobility models to
investigate customer mobility flow between zones in super-
markets, whose spatial scales are much smaller than in pre-
vious uses of these models. We estimated origin–destination
(OD) matrices, which describe empirical mobility flow, for 17
supermarkets from anonymized and ordered customer-basket
data (where a customer’s “OD trip” is either a trip between
consecutive purchases, a trip from the entrance to the first
purchase, or a trip from the last purchase to the tills). We fit
the mobility models to empirical distributions of customer OD
trips and examined the adjustment of store aisles to reduce
congestion in supermarkets.

Among the models that we studied, the gravity model gave
the best fit to the empirical mobility flow (it successfully
estimated about 69% of the flow on average), and the extended
radiation and intervening-opportunities (IO) models were al-
most as successful. This illustrates that one can successfully
use population-level mobility models for applications on spa-
tial scales of tens to hundreds of meters.

In our investigation, we estimated the number vk of visits
to each node k from mobility flow by assuming that each
customer traverses a shortest path, and we found that our
estimations from the OD matrices from the gravity, IO, and
extended radiation models agree well with the total number
of visits that we estimated from empirical OD matrices.
(We used the shortest-path assumption only to estimate the
number of visits; our estimates of mobility flow do not rely on
this assumption.) Additionally, the gravity, IO, and extended
radiation models yield trips with similar distance distributions
to the empirical distributions. However, consistent with other
studies on small spatial scales (which generally have been in
intra-urban settings) [9,29,37], the basic radiation model was
not successful at reproducing features of the data.

The gravity, IO, and extended radiation models each have
one parameter, and their performance depends on the value of
their parameter. In our investigation, we found that it is suffi-
cient to use the “optimal” model parameters that we calibrated
on a single store to give good estimates of the mobility flows
of all other stores. The only additional information that we
needed for the other stores is the number of trips from and to
each node; one can estimate these quantities from the purchase
data of these stores. For a given store, we were also successful
at using the models to estimate mobility flow during a time pe-
riod using a parameter value from fitting to data from another
time period of the same store. Given our success at translating
optimal parameter values across both stores and time periods,
our approach provides a potentially valuable test bed for
experimentation by supermarket companies using sales data
from existing stores before trying out new store layouts.

Finally, we showed how to use the gravity model in
conjunction with a congestion model—with tests using con-
gestion that we measured using either the maximum number

062304-13



FABIAN YING et al. PHYSICAL REVIEW E 100, 062304 (2019)

λmax of visits or the total mean queue size Q—and an opti-
mization algorithm to reduce congestion in supermarkets. We
considered a congestion model in which each node acts as a
queue with service rate μ, assumed that customers traverse a
shortest path between two nodes, and explored the space of
store layouts in which one can permute aisles (but one cannot
permute individual store zones, except within the same aisle).
We then used the gravity model to estimate how mobility flow
changes from permutations of a store layout. In the layouts
that we obtained by minimizing λmax or minimizing Q with
low service rate μ, popular nodes (as measured by the number
of trips from and to a node) move from the center of a store
to the left and upper perimeters. By contrast, in the layouts
that we obtained by minimizing Q with a high service rate μ,
some popular nodes move to a previously unpopular corner
of a store.

There are several ways to build on our work. Possibil-
ities include further development of mobility models and
congestion models, analyzing seasonal effects and customer
heterogeneity, allowing service rates to be heterogeneous,
exploring the effects of our choice of space discretization, and
applying our approach to situations other than supermarkets.
We discuss several of these items in the following paragraphs.

In our investigation, we inferred empirical mobility flow
from anonymized, ordered basket data of the mobility of a rel-
atively small sample of customers (approximately 7%) from
17 supermarkets. Naturally, this sample also has certain bi-
ases, as our data consist primarily of baskets from regular cus-
tomers. It is likely that these customers possess better knowl-
edge than other customers of the stores in which they shop
(given that they do so regularly), so their mobility patterns
may not be representative of all customers of a given store.

We have also neglected temporal information and seasonal
effects in our data by aggregating the mobility flow over
τ = 91 days. However, we expect mobility flow to be
different at different times of a day (and on weekdays versus
weekends) and at different times of a year (e.g., during certain
holidays). We also expect different zones of a store to be the
most congested ones at different times. Given sufficient data,
one can apply mobility models to data that is segmented by
the time of day or by the day of a year and then compare the
parameter values from independent fitting to data of different
time periods.

To study congestion, we used a simple routing and con-
gestion model (using queues in each zone of a store). We
assumed shortest-path routing, but some researchers have
noted that customers deviate from shortest paths between pur-
chases [44,56]. It is important to improve understanding of the
routes that customers take between purchases. One possible
approach is to use anonymized customer-trajectory data to
develop and calibrate a stochastic routing model (e.g., using
a variant of a random walk, perhaps with probabilities that
depend on heterogeneous fitness values for different zones
of a store). One can incorporate such a routing model in a
straightforward way into our framework to better estimate the
number vk of visits to each zone k. When we estimated the
mobility flow of different store layouts, we assumed that the
number of customer shopping visits at node k is fixed and
does not depend on the location of k. However, the location
of a zone that contains items that are typically bought in an

unplanned way likely affects the number of shopping visits to
that zone. One can incorporate increasingly accurate models
of the number and zone distribution of shopping visits into
our framework to improve estimates of the mobility flow from
different store layouts. Additionally, more empirical research
is necessary to attain a detailed mechanistic understanding
of the causes of congestion in supermarkets. We modeled
congestion as queues in a zone; if such a model is conceptually
accurate, we can incorporate more realistic types of queues
(e.g., with variable service rates or with customers who do not
enter a queue if it is too long). One can infer service rates
using a method that is analogous to what we described in
Sec. VI, provided one possesses data on customer dwell time
(or can somehow infer such times) for each zone of a store.

Another consideration is the choice of space discretization
and spatial resolution, and it is necessary to examine how
such choices affect qualitative results of both mobility models
and congestion models. (In our work, we divided each store
into zones of approximately similar size, with zone lengths of
about 7 m.)

One can apply our approach for modeling mobility flow
and congestion at any spatial scale, and we expect that one can
implement our methodology in practice in systems in which
one can modify the underlying spatial structure. Many such
applications have small spatial scales, as rewiring a small
system is often a lot less costly than rewiring a large one.
For example, when considering commuting flow, one cannot
change the locations of countries or buildings. However, one
can apply our tools for modeling mobility flow and congestion
in a museum and use our optimization procedure to sug-
gest better locations for the exhibits. Other examples include
poster sessions in academic conferences and food stations in
buffet restaurants. Applying our approach to these settings
will help reveal which of our findings are specific to mobility
flow in supermarkets and which ones apply more generally to
human mobility on small spatial scales.
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APPENDIX A: DEFINING ZONES IN A STORE

In this appendix, we discuss how we define the zones in a
store.

First, we manually identify the aisles in a store. Each aisle
is a long rectangle between two lines of shelves. The edges of
each aisle are either parallel to the horizontal axis or parallel
to the vertical axis on a floor plan. (In other words, there are
no tilted aisles.)

We then subdivide each aisle into Z rectangular zones of
equal dimensions, where we choose the number Z of zones
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such that the length of the zones in the aisle is as close as
possible to 7 m (our targeted mean zone length). We define
the “length” of a zone as the longer side of the rectangle that
encloses the zone. The number Z of zones can be different in
different aisles; it is typically either two or three. The width of
each aisle is smaller than 7 m, so if an aisle is horizontal (i.e.,
the longer edges of the aisle are parallel to the horizontal axis),
then all zones in the aisle are also horizontal. Similarly, if an
aisle is vertical (i.e., the longer edges of the aisle are parallel
to the vertical axis), all zones are also vertical.

We then manually place the entrance zone and the till
zone. We fill the remaining floor area of a store with long,
large rectangles whose widths are similar to those of the store
aisles. We divide each of these large rectangles into zones
of equal size (where zones for different large rectangles may
have different sizes). See Ref. [57] for a lengthier discussion
of how we define zones.

APPENDIX B: ITERATIVE PROPORTIONAL-FITTING
PROCEDURE FOR DETERMINING Ai AND Bj

In the doubly-constrained mobility models, we are given
Oi, Dj , and fi j for all nodes i and j. We seek to determine Ai

and Bj (the balancing factors) that satisfy

Oi =
∑

j

T model
i j =

∑
j

AiOiB jDj fi j , (B1)

Dj =
∑

i

T model
i j =

∑
j

AiOiB jDj fi j . (B2)

Rearranging Eqs. (B1) and (B2) yields

Ai =
(∑

j

B jDj fi j

)−1

, (B3)

Bj =
( ∑

i

AiOi fi j

)−1

. (B4)

In our iterative proportional-fitting procedure, we initialize
Ai = 1 for all i. We then calculate Bj using Eq. (B4) from
Ai, followed by an update of Ai using Eq. (B3). We repeat this
procedure until the values on the right-hand sides of Eqs. (B1)
and (B2) are close (specifically, within 1%) of the values
on the left-hand sides. In our computations, this procedure
converged within 1000 iterations for all of the employed
models.

APPENDIX C: PERFORMANCE OF THE
DOUBLY-CONSTRAINED GRAVITY MODEL WITH

AN EXPONENTIAL DETERRENCE FUNCTION

In the doubly-constrained gravity model with an exponen-
tial deterrence function, the OD matrix T model is given by
Eq. (3) with

fi j = fg(Oi, Dj, di j ) = OiDje
−γ di j/l . (C1)

We find that both the CPC score and NRMSEv are slightly
worse on average than for the gravity model with a power-law
deterrence function (see Table VIII).

TABLE VIII. Mean CPC scores and NRMSEv when fitting the
doubly-constrained gravity model with an exponential deterrence
function versus the doubly-constrained gravity model with a power-
law deterrence function.

Model Mean CPC Mean NRMSEv

Gravity (exponential) 0.677 0.049
Gravity (power law) 0.686 0.045

APPENDIX D: ESTIMATING {Ok}n
k=1 AND Ddata

1 FROM
PURCHASE DATA

In our models, we used {Ok}n
k=1 and Ddata

1 to calculate
mobility flow. In the main text, we assumed that we know
these values. In this section, we show how to estimate {Ok}n

k=1
and Ddata

1 from customer-level purchase data.
For each customer c, our data include a list of items

that were purchased during a shopping journey. Using item-
location data, we can identify the possible zones in which a
customer could have picked up each item. We assume that
all items in the same zone were picked up in one visit by a
customer, so customers do not visit a zone more than once.
The main challenge is how to account for multilocated items.
We calculate the number Odata,c

k of trips that start from nodes
k = 1, . . . , n for each customer c as follows. If a customer
buys an item that is located only in zone k, we set Odata,c

k = 1.
Otherwise, we check whether a customer buys an item that
is located both in zone k and in other zones. (In other words,
there are multiple possible zone locations for that item.) If
this is the case, let Mc be the number of such purchased items,
and let N1, . . . , NMc be the numbers of possible zone locations
for the items. We set Odata,c

k = min {∑Mc
l=1 1/Nl , 1}. Therefore,

each item that is located in zone k and in N − 1 other zones
counts as a fraction 1/N of a visit, with Odata,c

k capped at 1.
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FIG. 8. Comparison of our estimates and empirical values of Ok ,
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n for Store A.
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If a customer has not purchased any items that are located in
zone k, then Odata,c

k = 0. By construction, the value of Odata,c
k

is at most 1, and it can take a fractional value when a customer
buys (one or more) items that are located both in k and in other
zones.

We calculate Ok (with k = 1, . . . , n) with the formula

Ok =
∑

c

Odata,c
k + δk1C , (D1)

where C is the number of journeys in the data set and δk1 is the
Kronecker delta. The term δk1C accounts for the first trips of
each shopping journey, as these start at the entrance of a store.
We calculate Ddata

1 with the formula

Ddata
1 =

∑
c

Odata,c
1 . (D2)

We rescale {Ok}n
k=1 and Ddata

1 by dividing by ρ (i.e., by the
number of baskets in the data set during the time period
divided by the total number of baskets during the time period).

In Fig. 8, we compare the empirical values of {Ok}n
k=1

and Ddata
1 with ones that we estimate for Store A. In our

calculations, the estimated values are close to the empirical
ones, so we conclude that we can estimate Ok and Dk using
only purchase data.

APPENDIX E: DERIVATION OF THE ATTRACTION
FACTOR fi j IN SCHNEIDER’S IO MODEL

In Schneider’s IO model, each customer who leaves node i
considers each opportunity in nondecreasing order of distance
from i (i.e., from the nearest node to the farthest one). For
simplicity, we assume that there are no equidistant nodes.
A customer accepts the current opportunity with probability
L/N , where L ∈ [0, N] is a dimensionless fitting parameter
and N = ∑

i Odata
i is the total number of trips [58]. Upon ac-

cepting an opportunity at j, a customer takes a trip from node
i to node j and thus does not consider any other opportunities.
A customer who has not accepted any opportunity restarts the
process and considers all opportunities again in nondecreasing
distance from i. This process continues until the customer
accepts an opportunity.

We calculate the probability of a customer accepting an
opportunity at node j as follows. Let M be the number of
rejected opportunities in the iteration when an opportunity is
accepted (and thus the final iteration). The random variable M
has a truncated geometric distribution. A customer who ac-
cepts an opportunity at node j must reject all Si j opportunities

at closer nodes and accept one of the Dj opportunities at j.
In other words, a customer in zone i takes a trip to zone j
if Si j + Dj > M � Si j . The probability of rejecting at least k
opportunities is

P (M � k) ∝
(

1 − L

N

)k

≈ exp

(
−kL

N

)
, k < N , (E1)

where the approximation becomes exact as N and k tend to
infinity with k/N constant. Therefore, the probability that a
customer accepts an opportunity at node j is

P (Si j + Dj > M � Si j ) = P (M � Si j ) − P (M � Si j + Dj )

≈ e− L
N Si j − e− L

N (Si j+Dj ) = fi j . (E2)

In Eq. (E2), the quantity fi j equals the number of customers
who make a trip from i to j divided by the number of
customers who leave i. However, because we use a doubly-
constrained model, fi j gives only the attraction value of zone
j to a customer in zone i. In a doubly-constrained model, the
quantity T model

i j /Oi = AiBjDj fi j equals the actual number of
customers who make a trip from i to j divided by the total
number of trips that originate at i.

APPENDIX F: PARAMETERS OF THE
SIMULATED-ANNEALING ALGORITHM

We set the initial computational temperature to 200 when
minimizing λmax and to 20 when minimizing Q. We use
a cooling schedule in which we reduce the temperature by
0.18% of the current temperature at each step, and we use
5000 steps in total. We use the standard acceptance prob-
ability function exp(−	E/T ), where 	E is the change in
the objective-function value of the current step and T is the
computational temperature.

APPENDIX G: RESULTS OF THE
SIMULATED-ANNEALING ALGORITHM WITHOUT THE

AISLE CONSTRAINT

We now apply the SA algorithm without the aisle con-
straint. Specifically, in one swapping step, we choose an edge
uniformly at random among all edges, except for those that
are incident to the entrance or till nodes; if we accept the step,
we swap the two nodes that are incident to chosen edge. We
use the same parameters that we described in Appendix F. The
SA algorithm without the aisle constraint finds store layouts

TABLE IX. Minimum and mean values of objective functions of the final store layouts from 20 runs without the aisle constraint and 20 runs
with the aisle constraint of the SA algorithm for optimizing Store A. For each objective function, we show the original value of the objective
function, its minimum final value across 20 runs of the optimization algorithm, and its mean final value across the 20 runs. In parentheses, we
indicate the amount of improvement as a percentage.

Without the aisle constraint With the aisle constraint

Objective function Original Minimum value Mean value Minimum value Mean value

λmax 6575 5040 (−23.3%) 5150 (−21.7%) 5009 (−23.8%) 5042 (−23.3%)
Q (with μ = 7500) 38.10 27.21 (−28.6%) 28.02 (−26.5%) 29.10 (−23.6%) 29.28 (−23.1%)
Q (with μ = 15 000) 12.78 11.06 (−13.5%) 11.23 (−12.1%) 11.86 (−7.2%) 11.93 (−6.7%)
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with smaller values of Q on average than when we run the
algorithm with the aisle constraint (see Table IX). We find
that the relative decrease in Q is smaller for μ = 7500 than
for μ = 15 000. Interestingly, the store layouts that we obtain
when minimizing λmax have larger values of λmax without the

aisle constraint than with the constraint. This suggests that
the SA algorithm, which is a heuristic algorithm, is not very
efficient at exploring the state space of store layouts, as it is
unable to find the store layouts (with small values of λmax) that
we obtained when including the aisle constraints.
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